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Abstract

In this paper we study the property of harmonic vector fields. We
call a vector fields £ harmonic if it is a harmonic map from the mani-
fold into its tangent bundle with the Sasaki metric. We show that the
characteristic polynomial of operator A = V¢ in §2" 1 is (z? + 1)™.
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1. Introduction

What are the optimal unit vector fields on a round unit sphere of odd-dimen-
sion? Since a vector field on a Riemannian manifold M is a map from M to
its tangent bundle T'M as a graph, we can think about the best vector fields
on M in two ways; the volume[2] and energy[9], [5]. In the case of volume
the optimal unit vector field £ means that { has a minimum volumes as a
submanifold of the unit tangent bundles. On a flat torus, the optimal unit
vector fields are parallel ones. On the round (2n+1)-sphere $?"*1, no parallel

vector field exist, but we can seek the best organized vector fields. The first
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164 On the Property of Harmonic Vector Field on the Sphere S2n+!

result on this problem are due to Gluck and Ziller, who showed [2] that the
unit vector fields of minimum volume on S are precisely the Hopf vector
fields, and no others. But in $?"*!(n > 2) the Hopf vector fields are only
unstable ciritical points of volume, and thus no longer optimal by Johnson
[8].

By the another way, the Hopf vector fields on $?"*! are harmonic maps
from the sphere into the unit tangent bundle US?"*!, i.e. the critical points
of the energy functional [5]. However these are not energy minimizer since

harmonic maps from spheres to compact manifolds are unstable.

In [6] we define harmonic gauss map as Gauss map of m-dimensional dis-
tribution on a Riemannian manifold M which is a harmonic map from the
manifold into its Grassmann bundle G, (T'M) of m-dimensional tangent sub-
space. We show that the Hopf fibrations on $%"3 are the harmonic gauss

map of 3-dimensional distribution.

In [13] he propose the following conjecture: are there any harmonic sec-
tions of US?"*1 apart from Hopf vector field. We do not know whether this
is still true for higher dimensional sphere. Hence in this paper we study the
property of harmonic vector field on $***!. This property is very similar to

the property of Hopf vector fields.

2. Harmonic vector fields

Let M be a compact Riemannian manifold. For a point (p,v) € T'M and let
V.W € T(,.,nTM be two tangent vectors in the tangent bundle T'M at (p, v).

Consider two curves in TM

a:t— (p(t),v(t)), B:s — (q(s),w(s)),

such that p(0) = ¢(0) = p, v(0) = w(0) =v,and V = /(0), W = §/(0). We
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define an inner product on Ty, ,) 7'M by

Dv Dw

<V, W>(p,v) = <7r*(V)’ W*(W»P + <Et—(0)’ FS—

(0D,

where 7, is the differential of the projection map = : TM — M, and % is the
covariant derivative of the vector field v(¢) along the curve p(t). The metric
on the tangent bundle 7'M defined this way is called the Sasaki metric ([11],
[12]), and is a natural metric on TM induced from the Riemannian metric on
M. A vector at (p,v) € T'M that is perpendicular to the fiber 7~!(p) is called
a horizontal vector and a vector that is tangent to the fiber is called a vertical
vector. For example the curve v(t) = (p(t),v(t)) in TM is horizontal if the
vector field v(t) is parallel along the curve p(t) in M.

A harmonic vector field ¢x as a section of tangent bundle with the Sasaki

metric is a critical point of the energy functional

E(éy) = /M e(éx)dv,

where e(¢x) is the energy density of ¢x, and dv is the volume form of M[3],
[4]. For any orthonormal basis {e1,--- , e, } of T,M, the energy density asso-
ciated with the vector field ¢ x in M is

1
e(px)p = §”d¢X”%M

1 n
= 5 Z(ei + Veiqﬁx, e; + vgi(f))()TM
=1

1 n
= §(n+z<vel¢aV€l¢>M)

i=1
Now we calculate the tension field of vector field ¢ x. The indices i, j, k, . . .
run over the range {1,...,n} and the indices A, B,C, ... the range{l,...,n

)

...,2n}. and also i* = n + 1.
We can put locally X = }"7 , z'e;. Define F{* by ¢ (w?) = "2 | 6" where

{0} is coframe of {e;} and w is coframe of TM.
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Then it holds
Ok (W) = @5 (6") = 6",
And .
S5 (@) = Xibi
k=1

where X} are components of the first covariant differential of X given by

n n
Y oXiek=dX'+ > X6
k=1 7j=1

Thus
F} =06, F" = X;.

The fundamental tensor Fi’? of the mapping ¢ is defined to be

n 2 n
S Fj0 =dFf +> nFPuf - Flel
j=1 B=1 i=1

IfY°7 | F =0, x is called a harmonic map.

Proposition 2.1[7] The component Fi’;‘ of the fundamental tensor of the map ¢x :
M — TM are given by

ko
=

[

> (RELX] + Ry xMx!
Lk
1 :
k* k k v
Fy o= Xij+§Z(Rlin)
=1

where ij are the components of the second covariant differential of the vector field
X.

Proposition 2.2[7] ¢x : M — T(M) is a harmonic map if and only if

m(px)" = Z Ri—“l,.Xle = traceR(V. X, X)* =0,
ji=1
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m(ox)V = ZXﬁ = traceV2X = 0.
i=1

In this case a vector field is harmonic, i.e., 7(¢x) = 0 if and only if ¢x is
parallel [9]. Therefore, it is quite difficult to find a harmonic vector field in
TM. However, the situation is different in the case of harmonic vector fields
into unit tangent bundle. A unit tangent bundle has the induced metric as a
Riemannian submanifold of the tangent bundle with the Sasaki metric. Let
X be a unit tangent vector field, which is harmonic as a mapping from the
manifold to the unit tangent bundle U M. Then the energy functional is same
as the tangent bundle case because we use the induced metric. However the
variation of X is restricted to UM, and a unit vector field is harmonic if and
only if the tension field 7(¢x ) in TM is normal to U M. In other words,

traceR(V.X, X)x =0, traceV?X = cX,

for some constant ¢ € R[5].
When M = §?"*1, r(¢x) implies that

VxX =0, Y7 (VeX,e)=0,
traceV2X = cX.

In [5], we proved that the Hopf vector fields on S?**! are harmonic and
harmonic vector field on S? is Hopf. But we do not know whether this is true
for higher dimensional spheres. Hence in the next section we will study the

property of harmonic vector fields.

3. Main Theorem

Consider the harmonic unit vector field £ on the round sphere $?"*1, Then
the vector field ¢ satisfies that
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traceR(V,£,€)x =0, traceV3¢ = c£. o))

And the integral curve « of £ is geodesic in S2"*1.

Let {eg = £,e1, -+ , €25} be an orthonormal basis of 7,51 at p and par-
allel extend along . Consider the Jacobi tensor J along + at p which has the
initial condition

J(O0)=1Id, J(0)(e;) = Ve,&

Let A = V¢ be the derivative operator of harmonic vector fields on round

sphere.

This Jacobi tensor satisfies
J'"+J=0,

and therefore
J" =_J.

Lemma Let £ be a harmonic vector fields on S?"+! and A = V&. Then

—1)m/A2n, if m = even,
trace A™ = {( ) f

0, otherwise.

Proof By the harmonic equation div(§) = 0, £ preserves volume. Hence for
any t, det(J(t)) = 1.

0 = det(J(¢)) = trace(J'(t)J~1(t))det(J(t))
Hence trace(J'(t)J1(t)) = 0. Att = 0 trace(A - I) = traceA = 0. Also by

J"(0) = —J(0), we obtain A? + I = 0.

Let U(t) = J'(t)J7(t), then traceU(t) = 0. Since J' = UJ,J" = —J =
uJ+uJ,
U=-0JJ"-L
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Hence U (t) satisfies the following Riccati equation.
U+U+1=0

Also
traceU’(t) = trace(—U? — I) =0

Att =0
0 = tracel’(0) = —trace(A?) — 2n.

Therefore trace(A?) = —2n.
In the case of m = 3,
traceU” (t) = trace(=UU’ — U'U) = trace(—2U> — 2U) =0

Att =90
0 = traceU” (0) = —2trace(A3) — trace(A).

Therefore trace(A%) = 0. In the case of m = 4,
traceU" (t) = trace(—2U° — 2U) = trace(6U* + 8U2 + 2Id) = 0

Att=0
0 = tracell""(0) = 6trace(A*) 4 8trace(A?) + 4n.

Therefore trace(A?) = 2n.

Hence by induction generally

traceA%* = 2n, traceA%+1 = (),

traceA%+2 = —2n,  traceA* =0

Now we can find the characteristic polynomial of A = V¢.
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Theorem The characteristic polynomial of A = V¢ is

(x® +1)"
Proof. Let aj,aq,- -, a, be eigenvalues of A. Since traceA = 21220 «; and
a', o, - af} are eigenvalues of A™, by lemma 1 we can show that

Zai4k+1 — 0’ Zai4k+2 = _9n

3 o3 = 0, ) ok = 9p
Let

sg=1,8 = g O, Oty ~ - QG

11 <ig <<y
po=kp=> (o),
i
then by Newton’s formula
k: .
> (1) 'sipei =0
=0
But by the condition of A4,
pi = P () =2n
pakr1 = Y (@) =0
Paky2 = Z(ai)4k+2 =-2n
Pak+3 = Z(ai)“’”?’ =0
Hence
Sodd = 0,

_ 2n — 4k _ n
Skt2 = Ty M T ok 1
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Therefore the characteristic polynomial is

2n ' 4 n n ‘
Z(_l)zsixQn—z — Z(i)xm
i=0 1=0

= (2*+1)
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