Browse > Article
http://dx.doi.org/10.4134/JKMS.j160508

SLANT HELICES IN THE THREE-DIMENSIONAL SPHERE  

Lucas, Pascual (Departamento de Matematicas Universidad de Murcia Campus de Espinardo)
Ortega-Yagues, Jose Antonio (Departamento de Matematicas Universidad de Murcia Campus de Espinardo)
Publication Information
Journal of the Korean Mathematical Society / v.54, no.4, 2017 , pp. 1331-1343 More about this Journal
Abstract
A curve ${\gamma}$ immersed in the three-dimensional sphere ${\mathbb{S}}^3$ is said to be a slant helix if there exists a Killing vector field V(s) with constant length along ${\gamma}$ and such that the angle between V and the principal normal is constant along ${\gamma}$. In this paper we characterize slant helices in ${\mathbb{S}}^3$ by means of a differential equation in the curvature ${\kappa}$ and the torsion ${\tau}$ of the curve. We define a helix surface in ${\mathbb{S}}^3$ and give a method to construct any helix surface. This method is based on the Kitagawa representation of flat surfaces in ${\mathbb{S}}^3$. Finally, we obtain a geometric approach to the problem of solving natural equations for slant helices in the three-dimensional sphere. We prove that the slant helices in ${\mathbb{S}}^3$ are exactly the geodesics of helix surfaces.
Keywords
slant helix; 3-sphere; helix surface; Killing field; Hopf field;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Barros, General helices and a theorem of Lancret, Proc. Amer. Math. Soc. 125 (1997), no. 5, 1503-1509.   DOI
2 V. N. Berestovskii and Y. G. Nikonorov, Killing vector fields of constant length on Riemannian manifolds, Sib. Math. J. 49 (2008), no. 3, 395-407.   DOI
3 F. Dillen, J. Fastenakels, J. Van der Veken, and L. Vrancken, Constant angle surfaces in ${\mathbb{S}}^2{\times}{\mathbb{R}}$, Monatsh. Math. 152 (2007), no. 2, 89-96.   DOI
4 A. J. Di Scala and G. Ruiz-Hernandez, Helix submanifolds of euclidean spaces, Monasth. Math. 157 (2009), no. 3, 205-215.
5 J. M. Espinar and I. S. de Oliveira, Locally convex surfaces immersed in a Killing submersion, Bull. Braz. Math. Soc. (N.S.) 44 (2013), no. 1, 155-171.   DOI
6 J. A. Galvez, Surfaces of constant curvature in 3-dimensional space forms, Mat. Contemp. 37 (2009), 1-42.
7 J. A. Galvez and P. Mira, Isometric immersions of ${\mathbb{R}}^2$ into ${\mathbb{R}}^4$ and perturbation of Hopf tori, Math. Z. 266 (2010), no. 1, 207-227.   DOI
8 S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turkish J. Math. 28 (2004), no. 2, 153-163.
9 Y. Kitagawa, Periodicity of the asymptotic curves on flat tori in $S^3$, J. Math. Soc. Japan 40 (1988), no. 3, 457-476.   DOI
10 J. Langer and D. A. Singer, The total squared curvature of closed curves, J. Differential Geom. 20 (1984), no. 1, 1-22.   DOI
11 J. Langer and D. A. Singer, Knotted elastic curves in ${\mathbb{R}}^3$, J. London Math. Soc. 30 (1984), no. 3, 512-520.
12 S. Montaldo and I. I. Onnis, Helix surfaces in the Berger sphere, Israel J. Math. 201 (2014), no. 2, 949-966.   DOI
13 M. I. Munteanu and A. I. Nistor, A new approach on constant angle surfaces in ${\mathbb{E}}^3$, Turkish J. Math. 33 (2009), no. 2, 169-178.
14 U. Pinkall, Hopf tori in $S^3$, Invent. Math. 81 (1985), no. 2, 379-386.   DOI
15 P. D. Scofield, Curves of constant precession, Amer. Math. Monthly 102 (1995), no. 6, 531-537.   DOI
16 G. Wiegmink, Total bending of vector fields on the sphere ${\mathbb{S}}^3$, Differential Geom. Appl. 6 (1996), no. 3, 219-236.   DOI
17 D. J. Struik, Lectures on Classical Differential Geometry, Dover, New York, 1988. Reprint of second edition (Reading, 1961).