• Title/Summary/Keyword: H. Hopf

Search Result 29, Processing Time 0.032 seconds

OPPOSITE SKEW COPAIRED HOPF ALGEBRAS

  • Park, Junseok;Kim, Wansoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.85-101
    • /
    • 2004
  • Let A be a Hopf algebra with a linear form ${\sigma}:k{\rightarrow}A{\otimes}A$, which is convolution invertible, such that ${\sigma}_{21}({\Delta}{\otimes}id){\tau}({\sigma}(1))={\sigma}_{32}(id{\otimes}{\Delta}){\tau}({\sigma}(1))$. We define Hopf algebras, ($A_{\sigma}$, m, u, ${\Delta}_{\sigma}$, ${\varepsilon}$, $S_{\sigma}$). If B and C are opposite skew copaired Hopf algebras and $A=B{\otimes}_kC$ then we find Hopf algebras, ($A_{[{\sigma}]}$, $m_B{\otimes}m_C$, $u_B{\otimes}u_C$, ${\Delta}_{[{\sigma}]}$, ${\varepsilon}B{\otimes}{\varepsilon}_C$, $S_{[{\sigma}]}$). Let H be a finite dimensional commutative Hopf algebra with dual basis $\{h_i\}$ and $\{h_i^*\}$, and let $A=H^{op}{\otimes}H^*$. We show that if we define ${\sigma}:k{\rightarrow}H^{op}{\otimes}H^*$ by ${\sigma}(1)={\sum}h_i{\otimes}h_i^*$ then ($A_{[{\sigma}]}$, $m_A$, $u_A$, ${\Delta}_{[{\sigma}]}$, ${\varepsilon}_A$, $S_{[{\sigma}]}$) is the dual space of Drinfeld double, $D(H)^*$, as Hopf algebra.

  • PDF

PROPERTIES OF GENERALIZED BIPRODUCT HOPF ALGEBRAS

  • Park, Junseok;Kim, Wansoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.323-333
    • /
    • 2010
  • The biproduct bialgebra has been generalized to generalized biproduct bialgebra $B{\times}^L_H\;D$ in [5]. Let (D, B) be an admissible pair and let D be a bialgebra. We show that if generalized biproduct bialgebra $B{\times}^L_H\;D$ is a Hopf algebra with antipode s, then D is a Hopf algebra and the identity $id_B$ has an inverse in the convolution algebra $Hom_k$(B, B). We show that if D is a Hopf algebra with antipode $s_D$ and $s_B$ in $Hom_k$(B, B) is an inverse of $id_B$ then $B{\times}^L_H\;D$ is a Hopf algebra with antipode s described by $s(b{\times}^L_H\;d)={\Sigma}(1_B{\times}^L_H\;s_D(b_{-1}{\cdot}d))(s_B(b_0){\times}^L_H\;1_D)$. We show that the mapping system $B{\leftrightarrows}^{{\Pi}_B}_{j_B}\;B{\times}^L_H\;D{\rightleftarrows}^{{\pi}_D}_{i_D}\;D$ (where $j_B$ and $i_D$ are the canonical inclusions, ${\Pi}_B$ and ${\pi}_D$ are the canonical coalgebra projections) characterizes $B{\times}^L_H\;D$. These generalize the corresponding results in [6].

ACTIONS OF FINITE-DIMENSIONAL SEMISIMPLE HOPF ALGEBRAS AND INVARIANT ALGEBRAS

  • Min, Kang-Ju;Park, Jun-Seok
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.2
    • /
    • pp.225-232
    • /
    • 1998
  • Let H be a finite dimensional Hopf algebra over a field k, and A be an H-module algebra over k which the H-action on A is D-continuous. We show that $Q_{max}(A)$, the maximal ring or quotients of A, is an H-module algebra. This is used to prove that if H is a finite dimensional semisimple Hopf algebra and A is a semiprime right(left) Goldie algebra than $A#H$ is a semiprime right(left) Goldie algebra. Assume that Asi a semiprime H-module algebra Then $A^H$ is left Artinian if and only if A is left Artinian.

  • PDF

TWISTING COPRODUCTS ON HOPF ALGEBRAS

  • Min, Kang Ju;Park, Jun Seok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.99-113
    • /
    • 1998
  • Let (H, K) be a paired Hopf algebras and let A be arbitrary left H-module coalgebra. We construct twisting coproduct on $A{\otimes}K$. We show that the well known construction of the smash coproduct can be viewed as a particular case of the construction above.

  • PDF

THE GROUP OF STRONG GALOIS OBJECTS ASSOCIATED TO A COCOMMUTATIVE HOPF QUASIGROUP

  • Alvarez, Jose N. Alonso;Rodriguez, Ramon Gonzalez;Vilaboa, Jose M. Fernandez
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.517-543
    • /
    • 2017
  • Let H be a cocommutative faithfully flat Hopf quasigroup in a strict symmetric monoidal category with equalizers. In this paper we introduce the notion of (strong) Galois H-object and we prove that the set of isomorphism classes of (strong) Galois H-objects is a (group) monoid which coincides, in the Hopf algebra setting, with the Galois group of H-Galois objects introduced by Chase and Sweedler.

Department of Mathematics, Dongeui University

  • Yoon, Suk-Bong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.527-541
    • /
    • 2001
  • We find the necessary and sufficient conditions for the smash product algebra structure and the crossed coproduct coalgebra structure with th dual cocycle $\alpha$ to afford a Hopf algebra (A equation,※See Full-text). If B and H are finite algebra and Hopf algebra, respectively, then the linear dual (※See Full-text) is also a Hopf algebra. We show that the weak coaction admissible mapping system characterizes the new Hopf algebras (※See Full-text).

  • PDF

MONOIDAL FUNCTORS AND EXACT SEQUENCES OF GROUPS FOR HOPF QUASIGROUPS

  • Alvarez, Jose N. Alonso;Vilaboa, Jose M. Fernandez;Rodriguez, Ramon Gonzalez
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.351-381
    • /
    • 2021
  • In this paper we introduce the notion of strong Galois H-progenerator object for a finite cocommutative Hopf quasigroup H in a symmetric monoidal category C. We prove that the set of isomorphism classes of strong Galois H-progenerator objects is a subgroup of the group of strong Galois H-objects introduced in [3]. Moreover, we show that strong Galois H-progenerator objects are preserved by strong symmetric monoidal functors and, as a consequence, we obtain an exact sequence involving the associated Galois groups. Finally, to the previous functors, if H is finite, we find exact sequences of Picard groups related with invertible left H-(quasi)modules and an isomorphism Pic(HMod) ≅ Pic(C)⊕G(H∗) where Pic(HMod) is the Picard group of the category of left H-modules, Pic(C) the Picard group of C, and G(H∗) the group of group-like morphisms of the dual of H.

HOPF BIFURCATION IN NUMERICAL APPROXIMATION OF THE SUNFLOWER EQUATION

  • Zhang Chunrui;Zheng Baodong
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.113-124
    • /
    • 2006
  • In this paper we consider the numerical solution of the sunflower equation. We prove that if the sunflower equation has a Hopf bifurcation point at a = ao, then the numerical solution with the Euler-method of the equation has a Hopf bifurcation point at ah = ao + O(h).

Hopf's Life and Works (호프의 삶과 업적에 대하여)

  • Ko Kwanseok
    • Journal for History of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, we describe H. Hopf's life and works from the historical point of view. We have a very brief mention of history and results prior to Hopf. He raised the question of the topological implications of the sign of curvature. We discuss his contributions in the field of Riemannian geometry.

  • PDF

BIPRODUCT BIALGEBRAS WITH A PROJECTION ONTO A HOPF ALGEBRA

  • Park, Junseok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.91-103
    • /
    • 2013
  • Let (D,B) be an admissible pair. Then recall that $B\;{\times}^L_HD^{{\rightarrow}{\pi}_D}_{{\leftarrow}i_D}\;D$ are bialgebra maps satisfying ${\pi}_D{\circ}i_D=I$. We have solved a converse in case D is a Hopf algebra. Let D be a Hopf algebra with antipode $S_D$ and be a left H-comodule algebra and a left H-module coalgebra over a field $k$. Let A be a bialgebra over $k$. Suppose $A^{{\rightarrow}{\pi}}_{{\leftarrow}i}D$ are bialgebra maps satisfying ${\pi}{\circ}i=I_D$. Set ${\Pi}=I_D*(i{\circ}s_D{\circ}{\pi}),B=\Pi(A)$ and $j:B{\rightarrow}A$ be the inclusion. Suppose that ${\Pi}$ is an algebra map. We show that (D,B) is an admissible pair and $B^{\leftarrow{\Pi}}_{\rightarrow{j}}A^{\rightarrow{\pi}}_{\leftarrow{i}}D$ is an admissible mapping system and that the generalized biproduct bialgebra $B{\times}^L_HD$ is isomorphic to A as bialgebras.