# PROPERTIES OF GENERALIZED BIPRODUCT HOPF ALGEBRAS 

Junseok Park* and Wansoon Kim**


#### Abstract

The biproduct bialgebra has been generalized to generalized biproduct bialgebra $B \times{ }_{H}^{L} D$ in [5]. Let $(D, B)$ be an admissible pair and let $D$ be a bialgebra. We show that if generalized biproduct bialgebra $B \times{ }_{H}^{L} D$ is a Hopf algebra with antipode $s$, then $D$ is a Hopf algebra and the identity $i d_{B}$ has an inverse in the convolution algebra $\operatorname{Hom}_{k}(B, B)$. We show that if $D$ is a Hopf algebra with antipode $s_{D}$ and $s_{B} \in \operatorname{Hom}_{k}(B, B)$ is an inverse of $i d_{B}$ then $B \times{ }_{H}^{L} D$ is a Hopf algebra with antipode $s$ described by $s\left(b \times{ }_{H}^{L} d\right)=$ $\Sigma\left(1_{B} \times_{H}^{L} s_{D}\left(b_{-1} \cdot d\right)\right)\left(s_{B}\left(b_{0}\right) \times_{H}^{L} 1_{D}\right)$. We show that the mapping system $B \leftrightarrows_{j_{B}}^{\Pi_{B}} B \times_{H}^{L} D \rightleftarrows_{i_{D}}^{\pi_{D}} D$ (where $j_{B}$ and $i_{D}$ are the canonical inclusions, $\Pi_{B}$ and $\pi_{D}$ are the canonical coalgebra projections) characterizes $B \times_{H}^{L} D$. These generalize the corresponding results in [6].


The usual smash product $A \# H$ of an $H$-module algebra $A$ and a Hopf algebra $H$ has been defined in [7] or [8] and Molnar constructed a smash coproduct $C \sharp H$ of an $H$-comodule coalgebra $C$ and a Hopf algebra $H$ in [4].

Definition 1 [1]. Let $H$ be a bialgebra over a field $k$ and $C$ be a left Hcomodule coalgebra. Let $E$ be a left H-module coalgebra. The generalized smash coproduct $C \sharp_{H}^{L} E$ is defined to be $C \otimes_{k} E$ as a vector space with comultiplication given by

$$
\Delta\left(c \not \sharp_{H}^{L} e\right)=\Sigma\left(c_{1} \sharp_{H}^{L} c_{2,-1} \cdot e_{1}\right) \otimes\left(c_{2,0} \sharp_{H}^{L} e_{2}\right)
$$

and counit

$$
\varepsilon\left(c \not \sharp_{H}^{L} e\right)=\varepsilon_{C}(c) \varepsilon_{E}(e)
$$

Received March 17, 2010; Accepted April 23, 2010.
2000 Mathematics Subject Classifications: Primary 16S40.
Key words and phrases: Hopf algebra, biproduct, generalized biproduct.
Correspondence should be addressed to Junseok Park, junspk@hoseo.edu.

* This research was supported by the Academic Research fund of Hoseo University in 2009 (20090038).
for all $c \in C, e \in E$.
It is straightforward to show that $\pi_{C}: C \sharp E \longrightarrow C, c \sharp e \longmapsto c \varepsilon_{E}(e)$ and $\pi_{E}: C \sharp E \longrightarrow E, c \sharp e \longmapsto \varepsilon_{C}(c) e$ are coalgebra surjections since $C$ is a left $H$-comodule coalgebra and $E$ is a left $H$-module coalgebra.

Definition 2 [2]. Let $H$ be a bialgebra over a field $k$ and $A$ be a left H -module algebra. Let $D$ be a left H -comodule algebra. The generalized smash product $A \#_{H}^{L} D$ is defined to be $A \otimes_{k} D$ as a vector space, with multiplication given by

$$
\left(a \#_{H}^{L} d\right)\left(b \#_{H}^{L} e\right)=\Sigma a\left(d_{-1} \cdot b\right) \#_{H}^{L} d_{0} e
$$

and unit $1_{A} \otimes 1_{D}$ for all $a, b \in A$ and $d, e \in D$.
It is straightforward to show that $i_{A}: A \longrightarrow A \#_{H}^{L} D, a \longmapsto a \#_{H}^{L} 1_{D}$ and $i_{D}: D \longrightarrow A \#_{H}^{L} D, d \longmapsto 1_{A} \#_{H}^{L} d$ are algebra maps since $A$ is a left $H$-module algebra and $D$ is a left $H$-comodule algebra.

Definition 3 [5]. Let $H$ be a bialgebra over a field $k$. Let $B$ be a left Hmodule algebra and a left H -comodule coalgebra. Let $D$ be a left H -comodule algebra and a left H-module coalgebra. The generalized biproduct $B \times{ }_{H}^{L} D$ of $B$ and $D$ is defined to be $B \#_{H}^{L} D$ as an algebra and $B \sharp_{H}^{L} D$ as a coalgebra.

Example 1. A bialgebra $H$ is a left H -comodule algebra via $\Delta_{H}$ because $\Delta_{H}$ is an algebra map. $H$ is a left H -module coalgebra via $m_{H}$ because $m_{H}$ is a coalgebra map. The generalized biproduct $B \times{ }_{H}^{L} H$ is a biproduct $B \times H$ in [3].

Definition 4. Let $H$ be a bialgebra over $k . B$ is called a left-left $H$ crossed module crossed algebra if $B$ is a left $H$-module algebra and is a left $H$-comodule coalgebra such that $\varepsilon_{B}(h \cdot b)=\varepsilon_{H}(h) \varepsilon_{B}(b), \quad b \in B, h \in H$ and $\psi_{B}\left(1_{B}\right)=1_{H} \otimes 1_{B} . \quad D$ is called a left-left $H$-crossed comodule crossed algebra if $D$ is a left $H$-comodule algebra and a left $H$-module coalgebra such that $h \cdot 1_{D}=\varepsilon_{H}(h) 1_{D}, \quad h \in H, \quad \Sigma d_{-1} \varepsilon_{D}\left(d_{0}\right)=\varepsilon_{D}(d) 1_{H}, \quad d \in D$ and $\varepsilon_{D}\left(1_{D}\right)=1_{k}$.

Example 2. Let $B$ be a left $H$-module algebra, a left $H$-comodule coalgebra, a left $H$-module coalgebra and a left $H$-comodule algebra. Then $B$ is a left-left $H$-crossed module crossed algebra. Let the bialgebra $D$ be a left $H$-comodule algebra, a left $H$-module coalgebra, a left $H$-comodule coalgebra and a left $H$-module algebra. Then $D$ is a left-left $H$-crossed comodule crossed algebra.

The followings generalize the corresponding results in [6].
Proposition 1. Let $H$ be a bialgebra over $k$. Suppose $B$ is a left-left $H$-crossed module crossed algebra and $D$ is a left-left $H$-crossed comodule crossed algebra. Then the followings are equivalent;
(1) $\left(B \times_{H}^{L} D, m_{B \#_{H}^{L} D}, \eta_{B \#_{H}^{L} D}, \Delta_{B \#_{H}^{L} D}, \varepsilon_{B \sharp L_{H}^{L} D}\right)$ is a bialgebra.
(2) $\varepsilon_{B}$ and $\varepsilon_{D}$ are algebra maps, $\Delta_{B}\left(1_{B}\right)=1_{B} \otimes 1_{B}, \Delta_{D}\left(1_{D}\right)=1_{D} \otimes 1_{D}$, and the identities
(i) $\Sigma 1_{B} \times{ }_{H}^{L}\left(b_{-1} \cdot d_{1}\right)\left(b_{-1}^{\prime} \cdot d_{1}^{\prime}\right) \otimes b_{0}\left(d_{2,-1} \cdot b_{0}^{\prime}\right) \times{ }_{H}^{L} d_{2,0} d_{2}^{\prime}$

$$
=\Sigma 1_{B} \times_{H}^{L}\left[b\left(d_{-1} \cdot b^{\prime}\right)\right]_{-1} \cdot\left(d_{0,1} d_{1}^{\prime}\right) \otimes\left[b\left(d_{-1} \cdot b^{\prime}\right)\right]_{0} \times_{H}^{L} d_{0,2} d_{2}^{\prime} .
$$

(ii) $\Sigma\left[b\left(d_{-1} \cdot b^{\prime}\right)\right]_{1} \times_{H}^{L} 1_{D} \otimes\left[b\left(d_{-1} \cdot b^{\prime}\right)\right]_{2} \times_{H}^{L} d_{0} d^{\prime}$ $=\Sigma b_{1} b_{1}^{\prime} \times{ }_{H}^{L} 1_{D} \otimes b_{2}\left(d_{-1} \cdot b_{2}^{\prime}\right) \times{ }_{H}^{L} d_{0} d^{\prime}$
(iii) $\Sigma b^{\prime} \times_{H}^{L}\left(b_{-1} \cdot d\right) \otimes b_{0} \times{ }_{H}^{L} 1_{D}$

$$
=\Sigma\left(b_{-1} \cdot d\right)_{-1} \cdot b^{\prime} \times_{H}^{L}\left(b_{-1} \cdot d\right)_{0} \otimes b_{0} \times_{H}^{L} 1_{D}
$$

hold for $b, b^{\prime} \in B$ and $d, d^{\prime} \in D$.
Proof. From Theorem 1 of [5].
Definition 5. Let $H$ be a bialgebra and suppose that $B$ is a left-left $H$-crossed module crossed algebra and $D$ is a left-left $H$-crossed comodule crossed algebra. In case $\left(\mathrm{B} \times_{H}^{L} D, m_{B \#_{H}^{L} D}, \eta_{B \#_{H}^{L} D}, \Delta_{B \not \sharp_{H}^{L} D}, \varepsilon_{B \not \sharp_{H}^{L} D}\right)$ is a bialgebra, we say the pair $(D, B)$ is admissible.

Throughout we let $H$ be a bialgebra over $k$. Suppose $B$ is a left-left $H$-crossed module crossed algebra and $D$ is a left-left $H$-crossed comodule crossed algebra.

Theorem 1. Suppose that $(D, B)$ is an admissible pair and that $D$ is a bialgebra.
(1) If $B \times{ }_{H}^{L} D$ is a Hopf algebra with antipode $s$, then $D$ is a Hopf algebra and the identity $i d_{B}$ has an inverse in the convolution algebra $\operatorname{Hom}_{k}(B, B)$.
(2) If $D$ is a Hopf algebra with antipode $s_{D}$ and $s_{B} \in \operatorname{Hom}_{k}(B, B)$ is an inverse of $i d_{B}$, then $B \times{ }_{H}^{L} D$ is a Hopf algebra with antipode $s$ described by

$$
s\left(b \times_{H}^{L} d\right)=\Sigma\left(1_{B} \times_{H}^{L} s_{D}\left(b_{-1} \cdot d\right)\right)\left(s_{B}\left(b_{0}\right) \times_{H}^{L} 1_{D}\right) .
$$

Proof. (1): Define $\pi_{D}: B \times_{H}^{L} D \rightarrow D, \quad b \times_{H}^{L} d \mapsto \varepsilon_{B}(b) d, \quad i_{D}: D \rightarrow$ $B \times_{H}^{L} D, \quad d \mapsto 1_{B} \times_{H}^{L} d, \quad j_{B}: B \rightarrow B \times_{H}^{L} D, \quad b \mapsto b \times_{H}^{L} 1_{D}, \quad \Pi_{B}:$ $B \times_{H}^{L} D \rightarrow B, \quad b \times_{H}^{L} d \mapsto \varepsilon_{D}(d) b$. Let $s_{D}=\pi_{D} \circ s \circ i_{D}$. Then $1_{B} \times_{H}^{L}$ $\left(\Sigma s_{D}\left(d_{1}\right) d_{2}\right)=1_{B} \times_{H}^{L} \varepsilon_{D}(d) 1_{D}$. Therefore $\Sigma s_{D}\left(d_{1}\right) d_{2}=\varepsilon_{D}(d) 1_{D}$. Similarly, $\Sigma d_{1} s_{D}\left(d_{2}\right)=\varepsilon_{D}(d) 1_{D}$. So $D$ is a Hopf algebra with antipode $s_{D}$. And $j_{B}: B \rightarrow B \times{ }_{H}^{L} D$ is an algebra homomorphism since $B$ is a left $H$-module algebra. We transfer the coalgebra structure of $B$ to $j_{B}(B)=B \times_{H}^{L} 1_{D}$ via the algebra isomorphism $j_{B}: B \rightarrow B \times{ }_{H}^{L} D$ and identify $B$ with $B \times{ }_{H}^{L} 1_{D}$. Let $\pi=i_{D} \circ \pi_{D}$ and $\Pi=j_{B} \circ \Pi_{B}$. Let $S \in \operatorname{End}_{k}\left(B \times{ }_{H}^{L} D\right)$ be defined by $S=\pi * s$. Then $\Delta\left(b \times_{H}^{L} 1_{D}\right)=\Sigma\left(b_{1} \times_{H}^{L} 1_{D}\right)\left(b_{2} \times_{H}^{L} 1_{D}\right)$. So $S\left(b \times_{H}^{L} 1_{D}\right)=s\left(b \times_{H}^{L} 1_{D}\right)$. Therefore

$$
\begin{equation*}
\Sigma\left(b_{1} \times_{H}^{L} 1_{D}\right) S\left(b_{2} \times_{H}^{L} 1_{D}\right)=\varepsilon\left(b \times_{H}^{L} 1_{D}\right) 1_{B} \times_{H}^{L} 1_{D} . \tag{*}
\end{equation*}
$$

Thus $\left.S\right|_{B \times{ }_{H}^{L} 1_{D}}$ is a right inverse of $i d_{B \times_{H}^{L} 1_{D}} \in \operatorname{Hom}_{k}\left(B \times_{H}^{L} 1_{D}, B \times_{H}^{L} D\right)$. Since $\left(b \times_{H}^{L} 1_{D}\right)\left(1_{B} \times{ }_{H}^{L} d\right)=b \times_{H}^{L} d$ and $\Delta\left(1_{B} \times{ }_{H}^{L} d\right)=\Sigma\left(1_{B} \times_{H}^{L} d_{1}\right)\left(1_{B} \times{ }_{H}^{L} d_{2}\right)$, we have $S\left(b \times_{H}^{L} d\right)=\varepsilon_{D}(d) S\left(b \times_{H}^{L} 1_{D}\right)$. So $(S \circ \Pi)\left(b \times_{H}^{L} d\right)=S\left(b \times_{H}^{L} d\right)$. Therefore $S \circ \Pi=S$. Since $(\pi * \varepsilon)\left(b \times{ }_{H}^{L} d\right)=\Sigma \pi\left(b \times{ }_{H}^{L} d\right), S * i d=\pi * s * i d=$ $\pi * \varepsilon=\pi$ in $\operatorname{End}_{k}\left(B \times_{H}^{L} D\right)$. We have $\Sigma\left[S\left(b_{1} \times_{H}^{L} 1_{D}\right)\right]\left(b_{2} \times_{H}^{L} 1_{D}\right)=\varepsilon\left(b \times_{H}^{L}\right.$ $\left.1_{D}\right)\left(1_{B} \times{ }_{H}^{L} 1_{D}\right)$, and thus $\left.S\right|_{B \times{ }_{H}^{L} 1_{D}}$ is a left inverse of $i d_{B \times{ }_{H}^{L} 1_{D}}$. To complete the proof of (1) we need show that $S\left(B \times{ }_{H}^{L} 1_{D}\right) \subseteq B \times{ }_{H}^{L} 1_{D}$, that is, $\Pi \circ S=S$ on $B \times{ }_{H}^{L} 1_{D}$. But since $\Pi$ is a left $B \times{ }_{H}^{L} 1_{D}$-module homomorphism, applying $\Pi$ to the equation $(*)$ we see that $\Pi \circ\left(\left.S\right|_{B \times{ }_{H}^{L} 1_{D}}\right)$ is also a right inverse of $i d_{B \times{ }_{H}^{L} 1_{D}}$. This means $\Pi \circ S=S$ on $B \times{ }_{H}^{L} 1_{D}$.
(2): From Theorem 3 of [5].

Definition 6. Let $(D, B)$ be an admissible pair and suppose that $A$ is a bialgebra over $k$. Then

$$
B \leftrightarrows{ }_{j}^{\Pi} A \rightleftarrows_{i}^{\pi} D
$$

is an admissible mapping system if the following conditions hold :
(a) $\Pi \circ j=i d_{B}, \quad \pi \circ i=i d_{D}$,
(b) $i$ and $\pi$ are algebra maps and coalgebra maps, $j$ is an algebra map, and $\Pi$ is a coalgebra map,
(c) $\Pi$ is a $D$-bicomodule map ( $A$ is given the $D$-bimodule structure via pullback along $i$ and $B$ is given the trivial $D$-bimodule structure),
(d) $j(B)$ is a sub- $D$-bimodule of $A$ and $\left.\Pi\right|_{j(B)}$ is a $D$-bicomodule map ( $A$ is given the $D$-bicomodule structure via pushout along $\pi, B$ is given the trivial $D$-bicomodule structure).

Lemma 1. Let $(D, B)$ be an admissible pair and suppose that $A$ is a bialgebra over $k$.

$$
B \leftrightarrows{ }_{j}^{\Pi} A \rightleftarrows_{i}^{\pi} D
$$

If $i$ is an algebra map and $\pi$ is a coalgebra map then
(1) $A$ is a $D$-bimodule ( $A$ is given the $D$-bimodule structure via pullback along $i$ ),
(2) $B$ is a $D$-bimodule ( $B$ is given the trivial $D$-bimodule structure),
(3) $A$ is a $D$-bicomodule ( $A$ is given the $D$-bicomodule structure via pushout along $\pi$ ),
(4) $B$ is a $D$-bicomodule ( $B$ is given the trivial $D$-bicomodule structure).

Proof. (1). Define $A \otimes D \longrightarrow A, a \otimes d \longmapsto a \cdot d=a i(d)$. Then $A$ is a right $D$-module since $i$ is an algebra map. Define $D \otimes A \longrightarrow A, d \otimes a \longmapsto$ $d \cdot a=i(d) a$. Then $A$ is a left $D$-module since $i$ is an algebra map. For all $d, d^{\prime} \in D, a \in A,(d \cdot a) \cdot d^{\prime}=(i(d) a) \cdot d^{\prime}=i(d) a i\left(d^{\prime}\right)=i(d)\left(a \cdot d^{\prime}\right)=d \cdot\left(a \cdot d^{\prime}\right)$. Therefore $A$ is a $D$ - $D$-bimodule.
(2). Define $B \otimes D \longrightarrow B, b \otimes d \longmapsto b \cdot d=\varepsilon_{D}(d) b$. Then $B$ is a right $D$-module since $\varepsilon_{D}$ is an algebra map. Define $D \otimes B \longrightarrow B, d \otimes b \longmapsto$ $d \cdot b=\varepsilon_{D}(d) b$. Then $B$ is a left $D$-module. For all $d, d^{\prime} \in D, a \in A$,
$(d \cdot b) \cdot d^{\prime}=\left(\varepsilon_{D}(d) b\right) \cdot d^{\prime}=\varepsilon_{D}(d) \varepsilon_{D}\left(d^{\prime}\right) b=\varepsilon_{D}(d)\left(b \cdot d^{\prime}\right)=d \cdot\left(b \cdot d^{\prime}\right)$. Therefore $B$ is a $D$ - $D$-bimodule.
(3). Define $\rho_{r}: A \longrightarrow A \otimes D, a \longmapsto \Sigma a_{1} \otimes \pi\left(a_{2}\right)$. Then $\left(\rho_{r} \otimes I\right) \circ \rho_{r}=$ $(I \otimes \Delta) \circ \rho_{r}$. And $\left(\left(I \otimes \varepsilon_{D}\right) \circ \rho_{r}\right)(a)=a \otimes 1$ for all $a \in A$. Therefore $A$ is a right $D$-comodule. Define $\rho_{l}: A \longrightarrow D \otimes A, a \longmapsto \Sigma \pi\left(a_{1}\right) \otimes a_{2}$. Then $\left(\left(I \otimes \rho_{l}\right) \circ \rho_{l}\right)(a)=\left((\Delta \otimes I) \circ \rho_{l}\right)(a)$, and $\left(\left(\varepsilon_{D} \otimes I\right) \circ \rho_{l}\right)(a)=1 \otimes a$ for all $a \in A$. Therefore $A$ is a left $D$-comodule. And $\left(\left(I \otimes \rho_{r}\right) \circ \rho_{l}\right)(a)=\left(\rho_{l} \otimes I\right) \circ \rho_{r}(a)$ for all $a \in A$. Therefore $A$ is a $D$ - $D$-bicomodule.
(4). Define $\rho_{r}^{\prime}: B \longrightarrow B \otimes D, b \longmapsto b \otimes 1_{D}$. For all $b \in B,\left(\left(I \otimes \Delta_{D}\right) \circ\right.$ $\left.\rho_{r}^{\prime}\right)(b)\left(\left(\rho_{r}^{\prime} \otimes I\right) \circ \rho_{r}^{\prime}\right)(b)$ and $\left(\left(I \otimes \varepsilon_{D}\right) \circ \rho_{r}^{\prime}\right)(b)=b \otimes 1_{k}$. Therefore $B$ is a right $D$-comodule. Define $\rho_{l}^{\prime}: B \longrightarrow D \otimes B, b \longmapsto 1_{D} \otimes b$. Similarly $B$ is left $D$-comodule. And $\left(\left(I \otimes \rho_{r}^{\prime}\right) \circ \rho_{l}^{\prime}\right)(b)=\left(\left(\rho_{l}^{\prime} \otimes I\right) \circ \rho_{r}^{\prime}\right)(b)$ for all $b \in B$. Therefore $B$ is a $D$ - $D$-bicomodule.

Theorem 2. Let $(D, B)$ be an admissible pair. Then

$$
B \leftrightarrows j_{B}^{\Pi_{B}} B \times{ }_{H}^{L} D \rightleftarrows i_{D}^{\pi_{D}} D
$$

is an admissible mapping system where $i_{D}: D \longrightarrow B \times{ }_{H}^{L} D, d \longmapsto 1_{B} \times_{H}^{L}$ $d, \quad j_{B}: B \longrightarrow B \times{ }_{H}^{L} D, b \longmapsto b \times_{H}^{L} 1_{D}, \quad \Pi_{B}: B \times_{H}^{L} D \longrightarrow B, b \times_{H}^{L} d \longmapsto$ $\varepsilon_{D}(d) b$ and $\pi_{D}: B \times{ }_{H}^{L} D \longrightarrow D, b \times_{H}^{L} d \longmapsto \varepsilon_{B}(b) d$.

Proof. (a) By the definitions of mappings, $\Pi_{B} \circ j_{B}=I_{B}, \pi_{D} \circ i_{D}=i d_{D}$.
(b) The maps $j_{B}: \longrightarrow B \times{ }_{H}^{L} D, b \longmapsto b \times_{H}^{L} 1_{D}$ and $i_{D}: D \longrightarrow b \times_{H}^{L} D, d \longmapsto$ $1_{B} \times{ }_{H}^{L} d$ are algebra maps since $B$ is a left $H$-module algebra and $D$ is a left $H$-comodule algebra. The maps $\Pi_{B}: B \times{ }_{H}^{L} D \longrightarrow B, b \times{ }_{H}^{L} d \longmapsto \varepsilon_{D}(d) b$ and $\pi_{D}: B \times{ }_{H}^{L} D \longrightarrow D, b \times{ }_{H}^{L} d \longmapsto \varepsilon_{B}(b) d$ are coalgebra maps since $B$ is a left $H$-comodule coalgebra and $D$ is a left $H$-module coalgebra. For all $d \in D,\left(\Delta_{B \times{ }_{H}^{L} D} \circ i_{D}\right)(d)=\left(\left(i d_{D} \otimes i d_{D}\right) \circ \Delta_{D}\right)(d)$ and $\left(\varepsilon_{B \times{ }_{H}^{L} D} \circ i_{D}\right)(d)=$ $\varepsilon_{b \times{ }_{H}^{L} D}\left(1_{B} \times{ }_{H}^{L} d\right)=\varepsilon_{B}\left(1_{B}\right) \varepsilon_{D}(d)=1_{k} \varepsilon_{D}(d)=\varepsilon_{D}(d)$ by Proposition 1, (2). Therefore $i_{D}$ is a coalgebra map. $\pi_{D}\left(\left(a \times_{H}^{L} d\right)\left(b \times_{H}^{L} e\right)\right)=\pi_{D}\left(a \times_{H}^{L}\right.$ d) $\pi_{D}\left(b \times{ }_{H}^{L} e\right)$ and $\pi_{D}\left(1_{B} \times{ }_{H}^{L} 1_{D}\right)=\varepsilon_{B}\left(1_{B}\right) 1_{D}=1_{k} 1_{D}=1_{D}$ by Proposition 1 , (2). Therefore $\pi_{D}$ is an algebra map.
(c). $\Pi_{B}\left(d^{\prime} \cdot\left(b \times_{H}^{L} d\right)\right)=d^{\prime} \cdot \Pi_{B}\left(b \times_{H}^{L} d\right)$ for all $d, d^{\prime} \in D, b \in B$. Therefore $\Pi_{B}$ is a left $D$-module map. $\Pi_{B}\left(\left(b \times_{H}^{L} d\right) \cdot d^{\prime}\right)=\Pi_{B}\left(b \times_{H}^{L} d\right) \cdot d^{\prime}$ for all
$b \in B, d, d^{\prime} \in D$. So $\Pi_{B}$ is a right $D$-module map.
(d). Let $\rho_{l}: j_{B}(B) \longrightarrow D \otimes j_{B}(B), \quad b \times_{H}^{L} 1_{D} \longmapsto \Sigma \pi_{D}\left(\left(b \times_{H}^{L} 1_{D}\right)_{1}\right) \otimes$ $\left(b \times_{H}^{L} 1_{D}\right)_{2}=1_{D} \otimes\left(b \times_{H}^{L} 1_{D}\right)$ be the left sub- $D$-comodule structure map of $j_{B}(B)=B \times{ }_{H}^{L} 1_{D}$. Let $\rho_{D}: B \longrightarrow D \otimes B, b \longmapsto 1_{D} \otimes b$ be the left $D$ comodule structure map of $B$. For all $b \times{ }_{H}^{L} 1_{D} \in j_{B}(B),\left(\rho_{B} \circ \Pi_{B}\right)\left(b \times{ }_{H}^{L} 1_{D}\right)=$ $\rho_{B}\left(\varepsilon_{D}\left(1_{D}\right) b\right)=\rho_{B}\left(1_{k} b\right)=1_{D} \otimes b=1_{D} \otimes \varepsilon_{D}\left(1_{D}\right) b=\left(I \otimes \Pi_{B}\right)\left(1_{D} \otimes\left(b \times_{H}^{L}\right.\right.$ $\left.\left.1_{D}\right)\right)=\left(\left(I \otimes \Pi_{B}\right) \circ \rho_{l}\right)\left(b \times_{H}^{L} 1_{D}\right)$. Hence $\left.\Pi_{B}\right|_{j_{B}(B)}$ is a left $D$-comodule map. Let $\rho_{r}: j_{B}(B) \longrightarrow j_{B}(B) \otimes D, \quad b \times_{H}^{L} 1_{D} \longmapsto \Sigma\left(b \times_{H}^{L} 1_{D}\right)_{1} \otimes \pi_{D}\left(\left(b \times_{H}^{L} 1_{D}\right)_{2}\right)=$ $\left(b \times_{H}^{L} 1_{D}\right) \otimes 1_{D}$ be the right sub- $D$-comodule structure map of $j_{B}(B)$. Let $\rho_{B}^{\prime}: B \longrightarrow B \otimes D, \quad b \longmapsto b \otimes 1_{D}$ be the right $D$-comodule structure map of b. Similarly, $\left.\Pi_{B}\right|_{j_{B}(B)}$ is a right $D$-comodule map. Therefore $\left.\Pi_{B}\right|_{j_{B}(B)}$ is a $D$-bicomodule map.
(e). For all $b \times_{H}^{L} d \in B \times_{H}^{L} D,\left(j_{B} \circ \Pi_{B}\right) *\left(i_{D} \circ \pi_{D}\right)\left(b \times_{H}^{L} d\right)=\Sigma\left(j_{B} \circ\right.$ $\left.\Pi_{B}\right)\left(\left(b \times_{H}^{L} d\right)_{1}\right)\left(i_{D} \circ \pi_{D}\right)\left(\left(b \times_{H}^{L} d\right)_{2}\right)=\Sigma\left(\varepsilon_{H}\left(b_{2,-1}\right) \varepsilon_{D}\left(d_{1}\right) b_{1} \times_{H}^{L} 1_{D}\right)\left(1_{B} \times_{H}^{L}\right.$ $\left.\varepsilon_{B}\left(b_{2,0}\right) d_{2}\right)=\Sigma\left(\varepsilon_{H}\left(\varepsilon_{B}\left(b_{2}\right) 1_{H}\right) b_{1} \times{ }_{H}^{L} 1_{D}\right)\left(1_{B} \times{ }_{H}^{L} d\right)=b \times_{H}^{L} d=i d\left(b \times_{H}^{L} d\right)$. Therefore, $\left(j_{B} \circ \Pi_{B}\right) *\left(i_{D} \circ \pi_{D}\right)=i d$.

Lemma 2. Let $(D, B)$ be an admissible pair and let $A$ be a bialgebra over $k$. Suppose that $B \leftrightarrows{ }_{j}^{\Pi} A \rightleftarrows_{i}^{\pi} D$ is an admissible mapping system. Then

$$
i(d) j(b)=j(b) i(d)
$$

for all $b \in B, d \in D$.
Proof. $i(d) j(b)=((j \circ \Pi) *(i \circ \pi))(i(d) j(b))$
$=\Sigma(j \circ \Pi)\left(i\left(d_{1}\right) j(b)_{1}\right)(i \circ \pi)\left(i\left(d_{2}\right) j(b)_{2}\right)$
$=\Sigma(j \circ \Pi)\left(d_{1} \cdot j(b)_{1}\right) i\left((\pi \circ i)\left(d_{2}\right) \pi\left(j(b)_{2}\right)\right)$
$=\Sigma j\left(d_{1} \cdot \Pi(j(b)) i\left(d_{2}\right) i\left(1_{D}\right)\right.$
$=\Sigma j\left(d_{1} \cdot b\right) i\left(d_{2}\right)$
$=\Sigma j\left(\varepsilon_{D}\left(d_{1}\right) b\right) i\left(d_{2}\right)$

$$
=j(b) i(d)
$$

for all $b \in B, d \in D$.
Lemma 3. Let $(D, B)$ be an admissible pair and let $A$ be a bialgebra over $k$. Suppose that $B \leftrightarrows{ }_{j}^{\Pi} A \not \rightleftarrows_{i}^{\pi} D$ is an admissible mapping system. Then

$$
\Sigma j\left(d_{-1} \cdot b^{\prime}\right) i\left(d_{0}\right)=j\left(b^{\prime}\right) i(d)
$$

for all $b^{\prime} \in B, d \in D$.
Proof. By the definition of admissible pair and Theorem 1, (2), $\varepsilon_{B}$ and $\varepsilon_{D}$ are algebra maps. So $\varepsilon_{B}(h \cdot b)=\varepsilon_{H}(h) \varepsilon_{B}(b)$ and $\Sigma d_{-1} \varepsilon_{D}\left(d_{0}\right)$
$=\varepsilon_{D}(d) 1_{H}$. By [5, Corollary 3], $\Sigma\left(d_{-1} \cdot b^{\prime} \times{ }_{H}^{L} 1_{D}\right) \otimes\left(1_{B} \times_{H}^{L} d_{0}\right)=\left(b^{\prime} \times_{H}^{L}\right.$ $\left.1_{D}\right) \otimes\left(1_{B} \times_{H}^{L} d\right)$. If we apply $\Pi_{B} \otimes \pi_{D}$ to the two-side of the above, we get $\Sigma d_{-1} \cdot b^{\prime} \otimes d_{0}=b^{\prime} \otimes d$. So $\Sigma j\left(d_{-1} \cdot b^{\prime}\right) i\left(d_{0}\right)=j(b) i(d)$.

Lemma 4. Let $(D, B)$ be an admissible pair and let $A$ be a bialgebra over $k$. Suppose that $B \leftrightarrows{ }_{j}^{\Pi} A \rightleftarrows_{i}^{\pi} D$ is an admissible mapping system. Then

$$
\Sigma \Pi\left(a_{1}\right)_{-1} \cdot \pi\left(a_{2}\right) \otimes \Pi\left(a_{1}\right)_{0}=\Sigma \pi\left(a_{1}\right) \otimes \Pi\left(a_{2}\right)
$$

where $B \longrightarrow H \otimes B, b \mapsto \Sigma b_{-1} \otimes b_{0}$ is the left $H$-comodule structure map.

Proof. First let $a \in j(b)$. Then $\left.\Pi\right|_{j(B)}$ is a right $D$-comodule map, $\Sigma \Pi\left(a_{1}\right) \otimes$ $\pi\left(a_{2}\right)=\Pi(a) \otimes 1_{D}$. So, $\Sigma \Pi\left(a_{1}\right)_{-1} \cdot \pi\left(a_{2}\right) \otimes \Pi\left(a_{1}\right)_{0}=\Sigma \Pi(a)_{-1} \cdot 1_{D} \otimes \Pi(a)_{0}=$ $\Sigma \varepsilon_{B}\left(\Pi(a)_{-1}\right) 1_{D} \otimes \Pi(a)_{0}=\Sigma 1_{D} \otimes \varepsilon_{B}\left(\Pi(a)_{-1}\right)$
$\Pi(a)_{0}=1_{D} \otimes \Pi(a)=\Sigma \pi\left(a_{1}\right) \otimes \Pi\left(a_{2}\right)$. From the observation that $\Pi\left(a a^{\prime}\right)=$ $\Pi(a) \varepsilon\left(d^{\prime}\right)$ for all $a^{\prime}=i\left(d^{\prime}\right) \in i(D)$ and that $A=j(B) i(D)$ for $f$ is surjective, we reduce the general case to the special case.

Theorem 3. Let $(D, B)$ be an admissible pair and let $A$ be a bialgebra over $k$. Suppose that $B \leftrightarrows \leftrightarrows_{j}^{\Pi} A \rightleftarrows_{i}^{\pi} D$ is an admissible mapping system.
(1) There exists a unique algebra map $f: B \times_{H}^{L} D \longrightarrow A$ such that the diagram

commutes. Furthermore the diagram

commutes and $f$ is a bialgebra isomorphism.
(2) There exists a unique coalgebra map $g: A \longrightarrow B \times{ }_{H}^{L} D$ such that the diagram

commutes. Furthermore the diagram

commutes and $g$ is a bialgebra isomorphism.
Proof. For all $b \in B, d \in D,\left(b \times{ }_{H}^{L} 1_{D}\right)\left(1_{B} \times{ }_{H}^{L} d\right)=b \times{ }_{H}^{L} d$ since $D$ is a left $H$-comodule algebra and $B$ is a left $H$-module. If $f: B \times{ }_{H}^{L} D \longrightarrow A$ is an algebra map then first diagram commutes if and only if $f\left(b \times_{H}^{L} d\right)=$ $f\left(b \times{ }_{H}^{L} 1_{D}\right) f\left(1_{B} \times{ }_{H}^{L} d\right)=j(b) i(d)$ for all $b \in B, d \in D$. If $g: A \longrightarrow B \times{ }_{H}^{L} D$ is a coalgebra map then third diagram commutes if and only if $g(a)=I(g(a))=$ $\left(j_{B} \circ \Pi_{B}\right) *\left(i_{D} \circ \pi_{D}\right)(g(a))=\Sigma \Pi\left(a_{1}\right) \times_{H}^{L} \pi\left(a_{2}\right)$ for all $a \in A$ by Theorem 2.

Thus we have the uniqueness of $f$ and $g$. Let $f$ and $g$ be defined as above. Then $f(g(a))=f\left(\Sigma \Pi\left(a_{1}\right) \times{ }_{H}^{L} \pi\left(a_{2}\right)\right)=\Sigma j\left(\Pi\left(a_{1}\right)\right) i\left(\pi\left(a_{2}\right)\right)=((j \circ \Pi) *(i \circ$ $\pi))(a)=I(a)=a$ and $g\left(f\left(b \times_{H}^{L} d\right)\right)=g(j(b) i(d))=\Sigma \Pi\left((j(b) i(d))_{1}\right) \times_{H}^{L}$ $\pi\left((j(b) i(d))_{2}\right)=\Pi(j(b)) \times_{H}^{L} d=b \times_{H}^{L} d$. So $f$ and $g$ are inverses. Thus the proof will be complete once we show that $f$ is an algebra map and $g$ is a coalgebra map. $f\left(1_{B} \times_{H}^{L} 1_{D}\right)=j\left(1_{B}\right) i\left(1_{D}\right)=1_{A} 1_{A}=1_{A}$ since $i$ and $j$ are algebra maps. We need only show that $f$ is multiplicative. From Lemma 2, and Lemma 3, follow that $f\left(\left(b \times_{H}^{L} d\right)\left(b^{\prime} \times_{H}^{L} d^{\prime}\right)\right)=\Sigma f\left(b\left(d_{-1} \cdot b^{\prime}\right) \times_{H}^{L} d_{0} d^{\prime}\right)=$ $f\left(b \times_{H}^{L} d\right) f\left(b^{\prime} \times{ }_{H}^{L} d^{\prime}\right)$. And $\varepsilon_{B \times{ }_{H}^{L} D}(g(a))=\varepsilon_{A}(a)$. We need only show that $g$ is comultiplicative. By Lemma 4,

$$
\begin{aligned}
& \Sigma(g(a))_{1} \otimes(g(a))_{2}=\Delta_{B \times_{H}^{L} D}(g(a)) \\
& \quad=\Sigma\left(\Pi(a)_{1,1} \times{ }_{H}^{L} \Pi(a)_{1,2,-1} \cdot \pi(a)_{2,1}\right) \otimes\left(\Pi(a)_{1,2,0} \times \times_{H}^{L} \pi(a)_{2,2}\right) \\
& \quad=\Sigma\left(\Pi\left(a_{1}\right) \times{ }_{H}^{L} \Pi\left(a_{2}\right)_{-1} \cdot \pi\left(a_{3}\right)\right) \otimes\left(\Pi\left(a_{2}\right)_{0} \times \times_{H}^{L} \pi\left(a_{4}\right)\right) \\
& \quad=\Sigma\left(\Pi\left(a_{1}\right) \times{ }_{H}^{L} \pi\left(a_{2}\right)\right) \otimes\left(\Pi\left(a_{3}\right) \times_{H}^{L} \pi\left(a_{4}\right)\right) \\
& \quad=\Sigma g\left(a_{1}\right) \otimes g\left(a_{2}\right) .
\end{aligned}
$$

So $g$ is a coalgebra map. This completes the proof.

## References

[1] S. Caenepeel, G. Militaru and Z. Shenglin, Crossed Modules and Doi-Hopf Modules, Israel J. Math. 100 (1997), 221-247.
[2] Zhang Liangyun, $L-R$ smash products for bimodule algebras, Progress in Nature Science 16 (6) (2006), 580-587
[3] S. Montgomery, Hopf Algebras and their actions on Rings, AMS, Rhode Island, 1992.
[4] R. K. Molnar Semi-Direct Products of Hopf Algebras, Journal of Algebra, 47 (1977), 29-51.
[5] J. S. Park, Generalized Biproduct Hopf Algebras, J. of the Chungcheong Mathematical Society 21 (2008), no. 3, 301-320
[6] D. E. Radford, The Structure of Hopf Algebras with a Projection, Journal of Algebra 92 (1985) 322-347.
[7] M. Takeuchi, $\operatorname{Ext}_{a d}\left(S_{p} R, \mu^{A}\right) \cong \widehat{B_{r}}(A / k)$, Journal of Algebra, 67 (1980) 436-475
[8] E. Abe, Hopf Algebras, Cambridge University Press, Cambridge, 1977.

## *

Department of Mathematics
The Research Institute for Basic Sciences, Hoseo University
Asan 336-795, Republic of Korea
E-mail: junspk@hoseo.edu

Department of Mathematics
College of Natural Sciences, Hoseo University
Asan 336-795, Republic of Korea
E-mail: kimws@hoseo.edu

