ACTIONS OF FINITE-DIMENSIONAL SEMISIMPLE HOPF ALGEBRAS AND INVARIANT ALGEBRAS

KANG JU MIN AND JUN SEOK PARK

ABSTRACT. Let H be a finite dimensional Hopf algebra over a field k, and A be an H-module algebra over k which the H-action on A is \mathcal{D} -continuous. We show that $Q_{max}(A)$, the maximal ring of quotients of A, is an H-module algebra. This is used to prove that if H is a finite dimensional semisimple Hopf algebra and A is a semiprime right(left) Goldie algebra then A#H is a semiprime right(left) Goldie algebra. Assume that A is a semiprime H-module algebra. Then A^H is left Artinian if and only if A is left Artinian.

Throughout we let k be a field. Tensor products are assumed to be over k. Let H be a Hopf algebra over k; that is, H is an algebra with 1 and a coalgebra over k with:

- (1) comultiplication $\Delta : H \to H \otimes H$
- (2) counit $\epsilon: H \to k$
- (3) antipode $S: H \to H$
- (4) multiplication $m: H \otimes H \to H$
- (5) unit $u: k \to H$,

where Δ and ϵ are algebra homomorphisms and S is an algebra antihomomorphism.

An algebra A is said to be a *left H-module algebra* if

- (1) A is a left H-module
- (2) $h \cdot (ab) = \sum (h_1 \cdot a)(h_2 \cdot b)$
- (3) $h \cdot 1_A = \epsilon(h)1_A$,

Received November 15, 1996. Revised February 14, 1998.

1991 Mathematics Subject Classification: Primary 16S40.

Key words and phrases: finite dimensional semisimple Hopf algebra, invariant algebra, smash product.

This paper was supported by the Basic Science Research Institute Program, Ministry of Education, Korea, 1996, Project BSRI-96-1427.

for all $h \in H, a, b \in A$.

A related algebra arising from a left H-module algebra A is the *subalgebra of H-invariants*, $A^H = \{a \in A | h \cdot a = \epsilon(h)a$, for all $h \in H\}$. That is the subalgebra on which H acts trivially.

Let A be a left H-module algebra. Then the smash product algebra, A#H is defined as follows: for all $a,b\in A$ and $g,h\in H$,

- (1) $A\#H = A \otimes H$, as k-spaces. We write a#h for the element $a \otimes h$.
- (2) multiplication is given by

$$(a\#h)(b\#g) = \sum a(h_1 \cdot b)\#h_2g.$$

It is easy to verify 1#1 is the identity of A#H and that $A\cong A\#1$ and $H\cong 1\#H$; for this reason we frequently abbrevate the element a#h by ah.

If I is a right ideal of A and $x \in A$, then we define the *residual*, $x^{-1}I$ by $x^{-1}I = \{a \in A | xa \in I\}$. If I is a subset of A, we call the set $l.ann_A(I) = l.ann(I) = \{a \in A | aI = 0\}$ the left annihilator of I in A. If I is any right ideal of A then I is said to be *dense* if and only if $l.ann(x^{-1}I) = 0$ for all $x \in A$.

Let A be an H-module algebra. Let $\mathcal{D}=\mathcal{D}(A)$ denote collection of dense right ideals of A. Then the H-action on A is \mathcal{D} -continuous if given any $I\in\mathcal{D}$ and $h\in H$, there exists $J\in\mathcal{D}$ such that $h\cdot J\subseteq I$.

EXAMPLE. Let H be a pointed Hopf algebra and let A be an H-module algebra. Let I, J be dense right ideals of A. From [10, Lemma 24.5], $x^{-1}I$ is dense for $x \in A$ and $I \cap J$ is dense. These facts are used to show that the H-action on A is \mathcal{D} -continuous as in the proof of [8, Proposition 2.3].

Let \mathcal{F} be the set of all pairs (I,f), where $I \in \mathcal{D}$ and $f \colon I \to A$ is a right A-module map. Two elements (I,f) and (J,g) are equivalent if f = g on some $K \in \mathcal{D}$, $K \subseteq I \cap J$. In the case we denote $(I,f) \sim (J,g)$. Then $Q_{max}(A) = \mathcal{F}/\sim$. More compactly:

$$Q_{max}(A) = \varinjlim_{I \in \mathcal{D}} Hom_A(I_A, A).$$

 $Q_{max}(A)$ becomes a ring as follows: for (I, f) and (J, g), $(I \cap J, f + g)$ determines addition and $(IJ, g \circ f)$ multiplication. We call $Q = Q_{max}(A)$ the maximal ring of quotients of A.

Let A be an H-module algebra which the H-action on A is \mathcal{D} -continuous. By [10, Theorem 24.8], if $q \in Q$ then there exists $I_q \in \mathcal{D}$ with $qI_q \subseteq A$. We have $q\colon I_q \to A$ is a right A-module homomorphism via $x \mapsto qx$. For $h \in H$, let $\Delta h = \sum h_1 \otimes h_2$. Since H-action on A is \mathcal{D} -continuous, there exists $J_{qh} \in \mathcal{D}$ with $Sh_2 \cdot J_{qh} \subseteq I_q$. Define for any $h \in H$, $h \cdot q\colon J_{qh} \to A$ as $(h \cdot q)(x) = \sum h_1 \cdot [q(Sh_2 \cdot x)]$ for all $x \in J_{qh}$. Then $h \cdot q$ is a right A-module homomorphism by the following two lemmas, so determines an element of Q. And the action is well-defined.

LEMMA 1. Let H be a Hopf algebra and A be an H-module algebra. For any $a, b \in A$ and $h \in H$,

$$(h \cdot a)b = \sum h_1 \cdot [a(Sh_2 \cdot b)].$$

Proof.

$$\sum h_1 \cdot [a(Sh_2 \cdot b)] = \sum (h_1 \cdot a)[h_2 \cdot (Sh_3 \cdot b)]$$

$$= \sum (h_1 \cdot a)(\epsilon(h_2)b)$$

$$= [(\sum h_1 \epsilon(h_2)) \cdot a]b$$

$$= (h \cdot a)b.$$

LEMMA 2. $h \cdot q : J_{qh} \to A$ via $x \mapsto (h \cdot q)(x) = \sum h_1 \cdot [q(Sh_2 \cdot x)]$ is a right A-module homomorphism.

PROOF. For any $a \in A$,

$$(h \cdot q)(xa) = \sum h_1 \cdot [q(Sh_2 \cdot (xa))]$$

$$= \sum h_1 \cdot [q((Sh_2 \cdot x)(Sh_3 \cdot a))]$$

$$= \sum h_1 \cdot [(q(Sh_2 \cdot x))(Sh_3 \cdot a)]$$

$$= \sum (h_1 \cdot [q(Sh_2 \cdot x)])a$$

$$= (\sum h_1 \cdot [q(Sh_2 \cdot x)])a$$

$$= (h \cdot q)(x)a.$$

where the last equality follows from Lemma 1.

PROPOSITION 3. Let H be a finite dimensional Hopf algebra and A be an H-module algebra on which the H-acton is \mathcal{D} -continuous. If we define $\gamma \colon H \otimes Q_{max}(A) \to Q_{max}(A)$, $h \otimes q \mapsto h \cdot q$ as above then $Q_{max}(A)$ is an H-module algebra.

PROOF. For any $q \in Q$, there exists $I_q \in \mathcal{D}$ with $qI_q \subseteq A$. For any $h, l \in H$, there exist $J_{qh}, J_{ql} \in \mathcal{D}$ such that $Sh_2 \cdot J_{qh} \subseteq I_q$ and $Sl_2 \cdot J_{ql} \subseteq J_{qh}$ since the H-action on A is \mathcal{D} -continuous. Let $J_q = J_{qh} \cap J_{ql}$. Then $J_q \in \mathcal{D}$ by [10, Lemma 24.5]. For any $x \in J_q$, by Lemma 1,

$$\gamma \circ (m \otimes id)(l \otimes h \otimes q)(x) = \gamma(lh \otimes q)(x) \\
= ((lh) \cdot q)(x) \\
= \sum (lh)_1 \cdot [q(S(lh)_2 \cdot x)] \\
= \sum l_1 h_1 \cdot [q(Sh_2)(Sl_2) \cdot x)] \\
= \sum l_1 h_1 \cdot [q(Sh_2 \cdot (Sl_2 \cdot x))] \\
= \sum l_1 \cdot (\sum h_1 \cdot [q(Sh_2 \cdot (Sl_2 \cdot x))]) \\
= \sum l_1 \cdot [(h \cdot q)(Sl_2 \cdot x)] \\
= (l \cdot (h \cdot q))(x) \\
= \gamma \circ (id \otimes \gamma)(l \otimes h \otimes q)(x).$$

For any $x \in I_q$ and $\alpha \in k$,

$$\gamma \circ (u \otimes id)(\alpha \otimes q)(x) = \gamma(u(\alpha) \otimes q)(x)
= ((\alpha \cdot 1_H) \cdot q)(x)
= \alpha 1_H \cdot [q(1_H \cdot x)]
= (\alpha q)(x).$$

Therefore $Q_{max}(A)$ is a left H-module. For any $p, q \in Q_{max}(A)$, there exist $I_p, I_q \in \mathcal{D}$ such that $pI_p \subseteq A$ and $qI_q \subseteq A$. For any $h \in H$, there exists $J_{ph} \in \mathcal{D}$ with $Sh_2 \cdot J_{ph} \subseteq I_p$ and there exists $J_{qh} \in \mathcal{D}$ with

$$egin{aligned} Sh_2 \cdot J_{qh} &\subseteq I_q. \ \ ext{Let} \ J_h &= J_{ph} \cap J_{qh} \in \mathcal{D}. \ \ ext{For any} \ x \in J_h, \ &(h \cdot (qp))(x) &= \sum h_1 \cdot [(qp)(Sh_2 \cdot x)] \ &= \sum h_1 \cdot [q(p)(\epsilon(h_2)Sh_3 \cdot x)] \ &= \sum h_1 \cdot [q(\epsilon(h_2)p)(Sh_3 \cdot x)] \ &= \sum h_1 \cdot [q(Sh_2)h_3 \cdot p)(Sh_4 \cdot x)] \ &= \sum h_1 \cdot [q\{Sh_2 \cdot ((h_3 \cdot p)(Sh_4 \cdot x))\}] \ &= \sum (h_1 \cdot q)(h_2 \cdot p(Sh_3 \cdot x)) \ &= \sum (h_1 \cdot q)(h_2 \cdot p)(x) \end{aligned}$$

and,

$$(h \cdot 1_Q)(x) = \sum_{i=1}^{n} h_i \cdot [1_Q(Sh_2 \cdot x)]$$
$$= \sum_{i=1}^{n} h_i \cdot (Sh_2 \cdot x)$$
$$= \epsilon(h)x.$$

Therefore $Q_{max}(A)$ is a left H-module algebra.

LEMMA 4. Let A be an H-module algebra. Then for all $a \in A$ and $h \in H$,

$$ah = \sum h_2(S^{-1}h_1 \cdot a).$$

PROOF.

$$\sum h_2(S^{-1}h_1 \cdot a) = \sum h_2 \#(S^{-1}h_1 \cdot a)$$

$$= \sum (1 \# h_2)((S^{-1}h_1 \cdot a) \# 1)$$

$$= \sum [1 \cdot (h_2 \cdot (S^{-1}h_1 \cdot a))] \# (h_3 \cdot 1)$$

$$= \sum 1 \cdot ((h_2 S^{-1}h_1) \cdot a) \# h_3$$

$$= \sum (\epsilon(h_1) 1_H \cdot a) \# h_2$$

$$= a \# h = ah.$$

Since the multiplication on A#H is given by

$$(a\#h)(b\#g) = \sum a(h_1 \cdot b)\#h_2g,$$

we may write $ha = (1#h)(a#1) = \sum (h_1 \cdot a)h_2$.

THEOREM 5. Let us consider a finite dimensional semisimple Hopf algebra H and H-module algebra A which the H-action on A is \mathcal{D} -continuous. If A is a semiprime right(left) Goldie algebra then A#H is a semiprime right(left) Goldie.

PROOF. Let Q be the right(left) classical algebra of quotients of A. The classical algebra of quotients for a Goldie algebra coincides with the maximal of quotients by [10, p.261]. Furthermore, Q is a semisimple Artinian. By Proposition 3, we can consider the smash product algebra, Q#H. It was proved in [2] that Q#H is semisimple Artinian. If we prove that A#H is a right(left) order in Q#H, we are done by the Goldie Theorem [4, Proposition 5.2]. Let T be the set of all nonzero divisors in A. The element of T are invertible in Q#H which forces them to be nonzero divisors in A#H. It is enough to show that each $x \in Q\#H$ can be represented as rt^{-1} (resp. $t^{-1}r$) where $r \in A\#H$ and $t \in T$.

$$x = \sum_i a_i h_i$$

for all $a_i \in Q, h_i \in H$. To complete the proof in the left case we take a common denominator for all a_i . To complete the right case we use the following identity in Q#H. By Lemma 4,

$$\begin{split} qh &= (at^{-1})h = \sum h_2(S^{-1}h_1 \cdot (at^{-1})) \\ &= \sum h_2[((S^{-1}h_1)_1 \cdot a)((S^{-1}h_1)_2 \cdot t^{-1})] \\ &= \sum h_3[(S^{-1}h_2 \cdot a)(S^{-1}h_1 \cdot t^{-1})] \\ &= \sum \{h_3 \cdot (S^{-1}h_2 \cdot a)\}h_4(S^{-1}h_1 \cdot t^{-1}) \end{split}$$

for some $a \in A$ and $t \in T$. We conclude that $Q \# H = (A \otimes 1)(1 \otimes H)(Q \otimes 1)$. Now we can use a common denominator arguments as in the left case.

If H is a finite dimensional Hopf algebra then the *left integral* of H, $\int_H^l = \{t \in H | ht = \epsilon(h)t$, for all $h \in H\}$ is one dimensional [5]. Choose $0 \neq t \in \int_H^l$. Let A be a left H-module algebra and let $A^H = \{a \in A | h \cdot a = \epsilon(h)t$ for all $h \in H\}$. Then the map $\hat{t} \colon A \to A$ given by $\hat{t}(a) = t \cdot a$ is an A^H -bimodule map with values in A^H . If H is finite dimensional Hopf algebra then H is semisimple if and only if $\epsilon(\int_H^l) \neq 0$ [5]. Hence if H is semisimple, we may choose $t \in \int_H^l$ with $\epsilon(t) = 1$. It follows that $\hat{t}(1) = t \cdot 1 = \epsilon(t) \cdot 1 = 1$ and so $\hat{t} \colon A \to A^H$ is surjective.

PROPOSITION 6. Let H be a finite dimensional Hopf algebra and let A be an H-module algebra. If A is left Noetherian then A is a left Noetherian A^H -module.

PROOF. Since H is a finite dimensional Hopf algebra, the antipode S of H is bijective. Therefore A#H is a free right A-module with rank $n=dim_kH$ since S is invertible [1]. The proof is similar to [6, Theorem 4.4.2].

THEOREM 7. Let H be a finite dimensional semisimple Hopf algebra and A be a semiprime H-module algebra which the H-action on A is \mathcal{D} -continuous. Then A^H is left Artinian if and only if A is left Artinian.

PROOF. Assume that A is semiprime and that Krull dimension of A^H , $\mathcal{K}\dim A^H$, exists. Then A is semiprime Goldie by [3, Theorem 2.10(ii)]. The algebra A has a classical algebra of quotients $Q_{cl}(A)$ which is semisimle Artinian. For any algebra with a $Q_{cl}(A)$, we have a maximal quotient algebra of A, $Q_{max}(A)$. By [10, p.261], $Q_{cl}(A) = Q_{max}(A)$. Let denote Q instead of $Q_{cl}(A) = Q_{max}(A)$. By Proposition 6, Q is a finite generated as a left module over the fixed algebra Q^H . We can find a finite set of generators x_1, \dots, x_n for Q as a left Q^H -module. Choose a regular b and a_i both in A such that $x_i = a_i b^{-1}$. Then $Q = \sum_{i=1}^n Q^H x_i = \sum_{i=1}^n Q^H a_i b^{-1}$. Hence $Qb = \sum_i Q^H a_i$. But Qb = Q since b is invertible. Thus we assume $x_i \in A$. Define $T: A \to \bigoplus_{i=1}^n A^H$ via $a \mapsto [\hat{t}(x_i a)]_{i=1}^n$ where \hat{t} is above. Then T is a right A^H -module map. If T(a) = 0 then $\hat{t}(x_i a) = 0$ for all i. But \hat{t} is a left Q^H -module map. Thus $\hat{t}(Qa) = 0$ and Qa is a left H-stable ideal of Q by Proposition 3. Since Q is a semiprime H-module algebra [10, p.260] and Artinian,

Q#H is semiprime by [2]. By [6, Lemma 4.4.6], Qa=0. Since Q is semiprime, a=0. Hence we deduce that A as a left A^H -module can be embedded in a finte direct sum of copies of A^H . Since the later module has the same Krull-dimension as A^H , we conclude that $\mathcal{K}\dim_{A^H}A$ exists and $\mathcal{K}\dim_{A^H}A \leq \mathcal{K}\dim_{A^H}A^H$. By [9, Proposition 1], $\mathcal{K}\dim_A A = \mathcal{K}\dim_{A^H}A$. Therefore A is left Artinian. Conversely if A is left Artinian then A^H is left Artinian by [9, Theorem 1]. This completes the proof. \square

References

- R. J. Blattner, S. Montgomery, Crossed products and Galois extensions of Hopf algebras, Pacific J. Math. 137 (1989), 37-54.
- [2] M. Cohen, D. Fishman, Hopf algebra actions, J. Algebra 100 (1986), 363-379.
- [3] J. W. Fisher, J. Osterbug, Semiprime ideals in rings with finite group actions,
 J. Algebra 50 (1978), 488-502.
- [4] K. R. Goodearl, An Introduction to Noncommutative Noetherian Rings, Cambridge University, New York, 1989.
- [5] R. S. Larson, M. Sweedler, An associative orthogonal bilinear form for Hopf algebras, Amer. J. Math. 91 (1969), 75-93.
- [6] S. Montgomery, Fixed Rings of Finite Automorphism Groups of Associative Rings, Lecture Notes in Math. 818, Spring, Berlin, 1980.
- [7] S. Montgomery, Hopf Algebras and their actions on Rings, AMS, Providence, Rhode Island, 1993.
- [8] S. Montgomery, Biinvertible actions of Hopf algebras, Israel J. Math. 83 (1993), 45-72.
- [9] K. J. Min, J. S. Park, Smash product algebras and invariant algebras, J. Chungcheong Math. 8 (1995), 173-181.
- [10] D. S. Passman, A Course in Ring Theory, Brooks/Cole Mathematics Series, California, 1991.

Kang Ju Min Department of Mathematics Chungnam National University Taejon 305-764, Korea

Jun Seok Park Department of Mathematics Hoseo University Asan 336-795, Korea