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ACTIONS OF FINITE-DIMENSIONAL SEMISIMPLE
HOPF ALGEBRAS AND INVARIANT ALGEBRAS

KANG JU MIN AND JUN SEOK PARK

ABSTRACT. Let H be a finite dimensional Hopf algebra over a field &,
and A be an H-module algebra over k which the H-action on A4 is D-
continuous. We show that Qmaz(A) , the maximal ring of quotients
of A, is an H-module algebra. This is used to prove that if H is
a finite dimensional semisimple Hopf algebra and A4 is a semiprime
right(left) Goldie algebra then A# H is a semiprime right(left) Goldie
algebra. Assume that A is a semiprime H-module algebra. Then A4H
is left Artinian if and only if A is left Artinian.

Throughout we let £ be a field. Tensor products are assumed to be
over k. Let H be a Hopf algebra over k; that is, H is an algebra with 1
and a coalgebra over k with:

) comultiplication A: H — H® H
2) counit e: H — k

) antipode S: H — H

) multiplication m: H® H — H
(5) unit u: k — H,

where A and ¢ are algebra homomorphisms and S is an algebra antiho-
momorphism.
An algebra A is said to be a left H-module algebra if

(1) Ais a left H-module

(2) h-(ab) =3 (h1 - a)(hz - b)
(3) h . lA = E(h)lA,
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for all h € H,a,b € A.

A related algebra arising from a left H-module algebra A is the subal-
gebra of H-invariants, A” = {a € Alh-a = €(h)a, for all h ¢ H}. That
is the subalgebra on which H acts trivially.

Let A be a left H-module algebra. Then the smash product algebra,
A#H is defined as follows: for all a,b € A and ¢,h € H,

(1) A#H = AQH, as k-spaces. We write a#th for the element a® h.
(2) multiplication is given by

(a#th)(b#g) = > a(hy - b)#hag.

It is easy to verify 1#1 is the identity of A#H and that A = A#1
and H = 14 H; for this reason we frequently abbrevate the element a#h
by ah.

If Iis a right ideal of A and z € A, then we define the residual,
e by 271 = {a € Alza € I}. If I is a subset of A, we call the
set l.anna(l) = l.ann(l) = {a € A|al = 0} the left annihilator of I in
A. If I is any right ideal of A then I is said to be dense if and only if
l.ann(z=11) = 0 for all z € A.

Let A be an H-module algebra. Let D = D(.A) denote collection of
dense right ideals of A. Then the H-action on A is D-continuous if given
any I € D and h € H, there exists J € D such that h-J C I.

EXAMPLE. Let H be a pointed Hopf algebra and let A be an H-
module algebra. Let I,.J be dense right ideals of A. From 110, Lemma
24.5], 71 is dense for z € A and I N J is dense. These facts are used
to show that the H-action on A is D-continuous as in the proof of [8,
Proposition 2.3].

Let F be the set of all pairs (I, f), where I = Dand f: I — A is
a right A-module map. Two elements (I, f) and (J, g) are equivalent if

f=gonsome K€D, KCINJ Inthe case we denote (I, f) ~ (J, g).
Then Q,0.(A) = F/ ~. More compactly:

Qmam(A) = 11251 flomA([A’ A).
1€D

@maz(A) becomes a ring as follows: for (I, f) and (J,g), (INJ, f+g)
determines addition and (1J, go f) multiplication. We call Q = Q4. (A)
the mazimal ring of quotients of A.
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Let A be an H-module algebra which the H-action on A is D-continu-
ous. By [10, Theorem 24.8], if ¢ € Q then there exists [, € D with
ql, © A, We have g: I; — A is a right A-module homomorphism via
r +— gz. For h € H, let Ah = Y h; ® hyo. Since H-action on A is
D-continuous, there exists Jy, € D with Shy - Jyn C I,. Define for any
heH, h-q: Jgp — Aas (h-q)(x) =3 hi-[q(Shy-x)| for all z € Jp,.
Then h - q is a right A-module homomorphism by the following two
lemmas, so determines an element of ). And the action is well-defined.

LEMMA 1. Let H be a Hopf algebra and A be an H-module algebra.
For any a,be Aand h € H,

(h- ab_Zh1 a(Shy - b

PROOF.
> hi-[a(Shy - b)] = (k1 - a)[ho - (Shs - b)]
= (h-a)(e(ho)b)
=[O hae(ha))

= (h-a)b. O

LEMMA 2. h-q: Jyp — Aviaz s (h-q)(x) =>_h1-[g(Shy )] is a
right A-module homomorphisim.

PROOF. For any a € A,

(h-g)(za) = 3" ha - [q(Shs - (za))]

where the last equality follows from Lemma 1. L
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PROPOSITION 3. Let H be a finite dimensional Hopf algebra and A
be an H-module algebra on which the H-acton is D-continuous. If we
define v H®Qmaz(A) - Qmaw(A)f h’®q = h'q as above then Qmaz(A)
is an H-module algebra.

PROOF. For any q € Q, there exists I, € D with ¢I, C A. For any
h,l € H, there exist Jg,, Jg € D such that Shs - Jon € I and Sly - Jy C
Jqn since the H-action on A is D-continuous. Let Jg = Jyn N Jg. Then
Jq € D by [10, Lemma 24.5]. For any z € J,, by Lemma 1,

Yo (m®id)(I®h o q)(x) = v(h© q)(z)
= ((th) - q)(z )
= (lh)- h)e - z)]
—lem S"2)(Sl2) )]
= hihy - [g(Shy - (Sly - 2))]
=> I+ (Shy - [g(Sha - (Sly - z)))
=> b [(h-q)(Sl - )]

=(l-(h-q)(z)
=70 (id®Y)(I®h® q)(x).

For any z € I, and « € k,

Yo (u®id)(a®q)(z) = y(ula)® 9)(x)
= ((a-1y) - q)(z)
=aly - [q(ly - z)]
= (ag)(z).

Therefore Qna-(A) is a left H-module. For any p,q € Quuaz(A), there
exist I,,1, € D such that pI, C A and ¢I, C A. For any h € H,
there exists Jp, € D with Shy - Jp, C I, and there exists Jon € D with
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Shy - th - Iq. Let J;, = ']ph N th € D. For any z € J;,

- (gp)(Shz - z)]

=Y hi-[(gp)(e(h2)Shs - )]
~la(e(h2)p)(Shs - z)]

= " hi - [g(Sho)hs - p)(Shs - z)]
[g{Shz - ((hs - p)(Shy - 2))}]

— Z(hl ~q)(h2 - p(Shs - x))

=Y (b1 q)(h2 - p)(2)

and,
(h-1Q)(®) =D h1 - [1o(Shs - 2]
=> h1-(Shy-z)
= e(h)z.
Therefore Q,42(A) is a left H-module algebra. O

LEMMA 4. Let A be an H-module algebra. Then for all a € A and
he H,

ah = ha(S7 hy - a).
PRroOOF.
Y ha(S7 hia) =D ho#(S - a)
= Z(l#h2><(5"1h1 L a)#1)
=D [t (ha- (S h1 - @) #(hs - 1)
= 1-((h2S hy) - a)ths

= Z(f (h1)1y - a)Ftho
= a#h = ah. U
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Since the multiplication on A#H is given by
(a#h)(b#g) =Y a(hy - b)#hag,

we may write ha = (1#h)(a#1) = S (h1 - a)h,.

THEOREM 5. Let us consider a finite dimensional semisimple Hopf
algebra H and H-module algebra A which the H-action on A is D-
continuous. If A is a semiprime right(left) Goldie algebra then A#H is
a semiprime right(left) Goldie.

PROOF. Let Q be the right(left) classical algebra of quotients of A.
The classical algebra of quotients for a Goldie algebra coincides with the
maximal of quotients by [10, p.261]. Furthermore, Q is a semisimple
Artinian. By Proposition 3, we can consider the smash product algebra,
Q#H. It was proved in [2] that Q#H is semisimple Artinian. If we
prove that A#H is a right(left) order in Q#H, we are done by the
Goldie Theorem [4, Proposition 5.2]. Let T be the set of all nonzero
divisors in A. The element of 1" are invertible in Q#H which forces
them to be nonzero divisors in A#H. It is enough to show that each
z € Q#H can be represented as rt ! (resp. t~1r1 where r € A#H and

teT.

r= Z a;h;
for all a; € Q,h; € H. To complete the proof in the left case we take a
common denominator for all a;. To complete the right case we use the
folllowing identity in Q#H. By Lemma 4,

gh = (at™"h = hy(S hy - (at™))
=D ha((S )1 - @) (S Mhy)a - 7Y
= h3[(Stha-a)(ST R -t
= {h3 (S ho - a)}ha(3 Thy -t

for some a € A and t € T. We conclude that Q#H = (A ® 1)(1
H)(Q@®1). Now we can use a common denominator arguments as in the
left case. O
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If H is a finite dimensional Hopf algebra then the left integral of H,
f}l{ = {t € H|ht = €(h)t, for all h € H} is one dimensional [5]. Choose
0#4tc¢e ffli Let A be a left H-module algebra and let A" = {a €
Alh - a = e(h)t for all h € H}. Then the map {: A — A given by
t(a) = t-a is an Af-bimodule map with values in A. If H is finite
dimensional Hopf algebra then H is semisimple if and only if ¢( i) 111) #0
[5]. Hence if H is semisimple, we may choose t € [ ;’, with €(t) = 1. Tt
follows that (1) =t-1=¢(t)- 1 =1 and so £: A — A is surjective.

PROPOSITION 6. Let H be a finite dimensional Hopf algebra and let
A be an H-module algebra. If A is left Noetherian then A is a left
Noetherian A" -module.

PROOF. Since H is a finite dimensional Hopf algebra, the antipode
S of H is bijective. Therefore A#H is a free right A-module with rank
n = dimyH since S is invertible [1]. The proof is similar to [6, Theorem
14.2). O

THEOREM 7. Let H be a finite dimensional semisimple Hopf algebra
and A be a semiprime H-module algebra which the H-action on A is D-
continuous. Then A is left Artinian if and only if A is left Artinian.

PROOF. Assume that A is semiprime and that Krull dimension of
A" Kdim A | exists. Then A is semiprime Goldie by 3, Theorem
2.10(ii)]. The algebra A has a classical algebra of quotients Q.;(A) which
is semisimle Artinian. For any algebra with a Q.(A), we have a maximal
quotient algebra of A, Q..a.(A). By [10, p.261] ,Q(A4) = Qas(A).
Let denote @ instead of Qu(A) = Quaez(A). By Proposition 6, Q is
a finite generated as a left module over the fixed algebra Q. We can
find a finite set of generators zy,---,x, for Q as a left Q"-module.
Choose a regular b and a; both in A4 such that z; = a;b~!. Then Q=
S Qi =31, QMadb . Hence Qb= Y. Q"a,. But Qb = Q since

b is invertible. Thus we assume z; € A. Define 7: A — e Al via

2

a — [t(x;a)]j_, where { is above. Then T is a rigat A’'-module map.
If T(a) = 0 then #(z;a) = 0 for all 7. But { is a left Q¥'-module map.
Thus #(Qa) = 0 and Qa is a left H-stable ideal of @ by Proposition
3. Since @ is a semiprime H-module algebra [10, 1>.260] and Artinian,
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Q#H is semiprime by [2]. By [6, Lemma 4.4.6], Qa = 0. Since Q is
semiprime, a = 0. Hence we deduce that A as a left A”-module can be
embedded in a finte direct sum of copies of A¥. Since the later module
has the same Krull-dimension as A¥ | we conclude that X dim A A exists
and Kdimys A < Kdimyw A”. By [9, Proposition 1], Kdims A =
Kdimn A. Therefore A is left Artinian. Conversely if A is left Artinian
then A is left Artinian by [9, Theorem 1]. This completes the proof.[]
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