Browse > Article
http://dx.doi.org/10.4134/JKMS.j200069

MONOIDAL FUNCTORS AND EXACT SEQUENCES OF GROUPS FOR HOPF QUASIGROUPS  

Alvarez, Jose N. Alonso (Departamento de Matematicas Universidad de Vigo Campus Universitario Lagoas-Marcosende)
Vilaboa, Jose M. Fernandez (Departamento de Matematicas Universidad de Santiago de Compostela)
Rodriguez, Ramon Gonzalez (Departamento de Matematica Aplicada II Universidad de Vigo Campus Universitario Lagoas-Marcosende)
Publication Information
Journal of the Korean Mathematical Society / v.58, no.2, 2021 , pp. 351-381 More about this Journal
Abstract
In this paper we introduce the notion of strong Galois H-progenerator object for a finite cocommutative Hopf quasigroup H in a symmetric monoidal category C. We prove that the set of isomorphism classes of strong Galois H-progenerator objects is a subgroup of the group of strong Galois H-objects introduced in [3]. Moreover, we show that strong Galois H-progenerator objects are preserved by strong symmetric monoidal functors and, as a consequence, we obtain an exact sequence involving the associated Galois groups. Finally, to the previous functors, if H is finite, we find exact sequences of Picard groups related with invertible left H-(quasi)modules and an isomorphism Pic(HMod) ≅ Pic(C)⊕G(H∗) where Pic(HMod) is the Picard group of the category of left H-modules, Pic(C) the Picard group of C, and G(H∗) the group of group-like morphisms of the dual of H.
Keywords
Monoidal category; monoidal functor; Hopf (co)quasigroup; (strong) Galois object; Galois group; group-like element; invertible object; Picard group;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. N. Alonso Alvarez, J. M. Fernandez Vilaboa, R. Gonzalez Rodriguez, and C. Soneira Calvo, Projections and Yetter-Drinfel'd modules over Hopf (co)quasigroups, J. Algebra 443 (2015), 153-199. https://doi.org/10.1016/j.jalgebra.2015.07.007   DOI
2 J. N. Alonso Alvarez, J. M. Fernandez Vilaboa, M. P. Lopez Lopez, E. Villanueva Novoa, and R. Gonzalez Rodriguez, A Picard-Brauer five term exact sequence for braided categories, in Rings, Hopf algebras, and Brauer groups (Antwerp/Brussels, 1996), 11-41, Lecture Notes in Pure and Appl. Math., 197, Dekker, New York, 1998.
3 J. N. Alonso Alvarez, R. Gonzalez Rodriguez, and J. M. Fernandez Vilaboa, The group of strong Galois objects associated to a cocommutative Hopf quasigroup, J. Korean Math. Soc. 54 (2017), no. 2, 517-543. https://doi.org/10.4134/JKMS.j160118   DOI
4 J. M. Barja Perez, Morita theorems for triples in closed categories, Departamento de Algebra y Fundamentos, Universidad de Santiago de Compostela, Santiago, 1977.
5 H. Bass, Algebraic K-Theory, W. A. Benjamin, Inc., New York, 1968.
6 R. H. Bruck, Contributions to the theory of loops, Trans. Amer. Math. Soc. 60 (1946), 245-354. https://doi.org/10.2307/1990147   DOI
7 T. Brzezinski, Hopf modules and the fundamental theorem for Hopf (co)quasigroups, Int. Electron. J. Algebra 8 (2010), 114-128.
8 T. Brzezinski and Z. Jiao, Actions of Hopf quasigroups, Comm. Algebra 40 (2012), no. 2, 681-696. https://doi.org/10.1080/00927872.2010.535588   DOI
9 S. Caenepeel, Computing the Brauer-Long group of a Hopf algebra. I. The cohomological theory, Israel J. Math. 72 (1990), no. 1-2, 38-83. https://doi.org/10.1007/BF02764611   DOI
10 S. Caenepeel, Brauer groups, Hopf algebras and Galois theory, K-Monographs in Mathematics, 4, Kluwer Academic Publishers, Dordrecht, 1998.
11 F. DeMeyer and E. Ingraham, Separable algebras over commutative rings, Lecture Notes in Mathematics, Vol. 181, Springer-Verlag, Berlin, 1971.
12 J. M. Fernandez Vilaboa, E. Villanueva Novoa, and R. Gonzalez Rodriguez, Exact sequences for the Galois group, Comm. Algebra 24 (1996), no. 11, 3413-3435. https://doi.org/10.1080/00927879608825758   DOI
13 C. Kassel, Quantum Groups, Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995. https://doi.org/10.1007/978-1-4612-0783-2   DOI
14 J. Klim, Integral theory for Hopf quasigroups, arXiv 1004.3929v2 (2010).
15 J. Klim and S. Majid, Hopf quasigroups and the algebraic 7-sphere, J. Algebra 323 (2010), no. 11, 3067-3110. https://doi.org/10.1016/j.jalgebra.2010.03.011   DOI
16 M. P. Lopez Lopez and E. Villanueva Novoa, The antipode and the (co)invariants of a finite Hopf (co)quasigroup, Appl. Categ. Structures 21 (2013), no. 3, 237-247. https://doi.org/10.1007/s10485-011-9260-5   DOI
17 J. M. Perez-Izquierdo and I. P. Shestakov, An envelope for Malcev algebras, J. Algebra 272 (2004), no. 1, 379-393. https://doi.org/10.1016/S0021-8693(03)00389-2   DOI
18 J. M. Perez-Izquierdo, Algebras, hyperalgebras, nonassociative bialgebras and loops, Adv. Math. 208 (2007), no. 2, 834-876. https://doi.org/10.1016/j.aim.2006.04.001   DOI