• Title/Summary/Keyword: Gorenstein Rings

Search Result 33, Processing Time 0.025 seconds

ON TYPES OF NOETHERIAN LOCAL RINGS AND MODULES

  • Lee, Ki-Suk
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.987-995
    • /
    • 2007
  • We investigate some results which concern the types of Noetherian local rings. In particular, we show that if r(Ap) ${\le}$ depth Ap + 1 for each prime ideal p of a quasi-unmixed Noetherian local ring A, then A is Cohen-Macaulay. It is also shown that the Kawasaki conjecture holds when dim A ${\le}$ depth A + 1. At the end, we deal with some analogous results for modules, which are derived from the results studied on rings.

NOTE ON GOOD IDEALS IN GORENSTEIN LOCAL RINGS

  • Kim, Mee-Kyoung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.479-484
    • /
    • 2002
  • Let I be an ideal in a Gorenstein local ring A with the maximal ideal m and d = dim A. Then we say that I is a good ideal in A, if I contains a reduction $Q=(a_1,a_2,...,a_d)$ generated by d elements in A and $G(I)=\bigoplus_{n\geq0}I^n/I^{n+1}$ of I is a Gorenstein ring with a(G(I)) = 1-d, where a(G(I)) denotes the a-invariant of G(I). Let S = A[Q/a$_1$] and P = mS. In this paper, we show that the following conditions are equivalent. (1) $I^2$ = QI and I = Q:I. (2) $I^2S$ = $a_1$IS and IS = $a_1$S:sIS. (3) $I^2$Sp = $a_1$ISp and ISp = $a_1$Sp :sp ISp. We denote by $X_A(Q)$ the set of good ideals I in $X_A(Q)$ such that I contains Q as a reduction. As a Corollary of this result, we show that $I\inX_A(Q)\Leftrightarrow\IS_P\inX_{SP}(Qp)$.

A NOTE ON TYPES OF NOETHERIAN LOCAL RINGS

  • Lee, Kisuk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.4
    • /
    • pp.645-652
    • /
    • 2002
  • In this note we investigate some results which concern the types of local rings. In particular it is shown that if the type of a quasi-unmixed local ring A is less than or equal to depth A + 1, and $\hat{A}_p$ is Cohen-Macaulay for every prime $p\neq\hat{m}$, then A is Cohen-Macaulay. (This implies the previously known result: if A satisfies $(S_{n-1})}$, where n is the type of a .ins A, then A is Cohen-Macaulay.)

SOME REMARKS ON TYPES OF NOETHERIAN LOCAL RINGS

  • Lee, Kisuk
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.625-633
    • /
    • 2014
  • We study some results which concern the types of Noetherian local rings, and improve slightly the previous result: For a complete unmixed (or quasi-unmixed) Noetherian local ring A, we prove that if either $A_p$ is Cohen-Macaulay, or $r(Ap){\leq}depth$ $A_p+1$ for every prime ideal p in A, then A is Cohen-Macaulay. Also, some analogous results for modules are considered.

SYMMETRIC AND PSEUDO-SYMMETRIC NUMERICAL SEMIGROUPS VIA YOUNG DIAGRAMS AND THEIR SEMIGROUP RINGS

  • Suer, Meral;Yesil, Mehmet
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1367-1383
    • /
    • 2021
  • This paper studies Young diagrams of symmetric and pseudo-symmetric numerical semigroups and describes new operations on Young diagrams as well as numerical semigroups. These provide new decompositions of symmetric and pseudo-symmetric semigroups into a numerical semigroup and its dual. It is also given exactly for what kind of numerical semigroup S, the semigroup ring 𝕜⟦S⟧ has at least one Gorenstein subring and has at least one Kunz subring.

CHOW GROUPS OF COMPLETE REGULAR LOCAL RINGS III

  • Lee, Si-Chang
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.221-227
    • /
    • 2002
  • In this paper we will show that the followings ; (1) Let R be a regular local ring of dimension n. Then $A_{n-2}$(R) = 0. (2) Let R be a regular local ring of dimension n and I be an ideal in R of height 3 such that R/I is a Gorenstein ring. Then [I] = 0 in $A_{n-3}$(R). (3) Let R = V[[ $X_1$, $X_2$, …, $X_{5}$ ]]/(p+ $X_1$$^{t1}$ + $X_2$$^{t2}$ + $X_3$$^{t3}$ + $X_4$$^2$+ $X_{5}$ $^2$/), where p $\neq$2, $t_1$, $t_2$, $t_3$ are arbitrary positive integers and V is a complete discrete valuation ring with (p) = mv. Assume that R/m is algebraically closed. Then all the Chow group for R is 0 except the last Chow group.group.oup.

INJECTIVE DIMENSIONS OF LOCAL COHOMOLOGY MODULES

  • Vahidi, Alireza
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1331-1336
    • /
    • 2017
  • Assume that R is a commutative Noetherian ring with non-zero identity, a is an ideal of R, X is an R-module, and t is a non-negative integer. In this paper, we present upper bounds for the injective dimension of X in terms of the injective dimensions of its local cohomology modules and an upper bound for the injective dimension of $H^t_{\alpha}(X)$ in terms of the injective dimensions of the modules $H^i_{\alpha}(X)$, $i{\neq}t$, and that of X. As a consequence, we observe that R is Gorenstein whenever $H^t_{\alpha}(R)$ is of finite injective dimension for all i.

Chow groups on complete regular local rings II

  • Si Chang Lee;Kyu Bum Hwang
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.3
    • /
    • pp.569-573
    • /
    • 1996
  • We study some special cases of Chow groups of a ramified complete regular local ring R of dimension n. We prove that (a) for codimension 3 Gorenstein ideal I, [I] = 0 in $A_{n-3}(R)$ and (b) for a particular class of almost complete intersection prime ideals P of height i, [P] = 0 in $A_{n-i}(R)$.

  • PDF

ADMISSIBLE BALANCED PAIRS OVER FORMAL TRIANGULAR MATRIX RINGS

  • Mao, Lixin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1387-1400
    • /
    • 2021
  • Suppose that $T=\(\array{A&0\\U&B}\)$ is a formal triangular matrix ring, where A and B are rings and U is a (B, A)-bimodule. Let ℭ1 and ℭ2 be two classes of left A-modules, 𝔇1 and 𝔇2 be two classes of left B-modules. We prove that (ℭ1, ℭ2) and (𝔇1, 𝔇2) are admissible balanced pairs if and only if (p(ℭ1, 𝔇1), h(ℭ2, 𝔇2) is an admissible balanced pair in T-Mod. Furthermore, we describe when ($P^{C_1}_{D_1}$, $I^{C_2}_{D_2}$) is an admissible balanced pair in T-Mod. As a consequence, we characterize when T is a left virtually Gorenstein ring.