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ADMISSIBLE BALANCED PAIRS OVER FORMAL

TRIANGULAR MATRIX RINGS

Lixin Mao

Abstract. Suppose that T =
(
A 0
U B

)
is a formal triangular matrix ring,

where A and B are rings and U is a (B,A)-bimodule. Let C1 and C2 be

two classes of left A-modules, D1 and D2 be two classes of left B-modules.

We prove that (C1,C2) and (D1,D2) are admissible balanced pairs if and
only if (p(C1,D1),h(C2,D2)) is an admissible balanced pair in T -Mod.

Furthermore, we describe when (PC1
D1

, IC2
D2

) is an admissible balanced pair

in T -Mod. As a consequence, we characterize when T is a left virtually

Gorenstein ring.

1. Introduction

Let A and B be rings and U be a (B,A)-bimodule. The ring T = (A 0
U B ) is

known as a formal triangular matrix ring or generalized triangular matrix ring
with usual matrix addition and multiplication. Formal triangular matrix rings
play an important role in ring theory and the representation theory of algebras.
This kind of rings are often used to construct examples and counterexamples.
As a consequence of the classical results by Green [11], the module category
over the formal triangular matrix ring T can be, via some functors, recon-
structed from the categories of modules over A and B. Using these functors,
one can describe classes of modules over the formal triangular matrix ring T
from the corresponding classes of modules over A and B. So the properties of
formal triangular matrix rings and modules over them make the theory of rings
and modules more abundant and concrete, and have deserved more and more
interest (see [1, 8], [11–16]).

On the other hand, the concepts of preenvelopes and precovers (approxima-
tions) of modules were introduced independently in the early eighties of the
20th century by Enochs [5] and Auslander-Smalø [2]. Let C be a class of left R-
modules and M be a left R-module. Recall that a homomorphism φ : M → C
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with C ∈ C is a C-preenvelope of M [5] if for any homomorphism f : M → C
′

with C
′ ∈ C, there is a homomorphism g : C → C

′
such that gφ = f . Dually

we have the definition of a C-precover. The class C is called a (resp. epic) pre-
covering class of the category R-Mod of left R-modules if every left R-module
has a (resp. epic) C-precover. The class C is called a (resp. monic) preenvelop-
ing class of the category R-Mod if every left R-module has a (resp. monic)
C-preenvelope. Using precovering classes and preenveloping classes, Enochs
and Jenda [6] introduced the notion of a balanced functor, which plays an im-
portant role in relative homological algebra. In [4], Chen called a pair (F,L)
of classes of left R-modules a balanced pair if the functor HomR(−,−) is right
balanced on R-Mod × R-Mod by F×L in the sense of [6]. We use RP and RI
to denote the classes of projective left R-mdules and injective left R-mdules,
respectively. It is well known that (RP, RI) is a balanced pair, which is called
the classical balanced pair. In general, the concept of a balanced pair inher-
its many similar properties from the classical one (see [4]) and so has gained
attention in recent years in the context of relative homological algebra.

In this paper, we will investigate how to construct balanced pairs over a
formal triangular matrix ring T = (A 0

U B ). Let C1 and C2 be two classes of left
A-modules, D1 and D2 be two classes of left B-modules. We prove that (C1,C2)
and (D1,D2) are admissible balanced pairs if and only if (p(C1,D1),h(C2,D2))
is an admissible balanced pair in T -Mod (see Theorem 2.2). Moreover, we de-

scribe when (PC1

D1
, IC2

D2
) is an admissible balanced pair in T -Mod (see Theorem

2.5). As an application, we characterize when T is a left virtually Gorenstein
ring (see Theorem 2.8).

Throughout this paper, all rings are nonzero associative rings with identity
and all modules are unitary. For a ring R, we write R-Mod (resp. Mod-R) for
the category of left (resp. right) R-modules. RM (resp. MR) denotes a left
(resp. right) R-module. All classes of modules are assumed to be closed under
isomorphisms and contain 0.

Next let us recall some basic facts about formal triangular matrix rings.
T = (A 0

U B ) always means a formal triangular matrix ring, where A and B are
rings and U is a (B,A)-bimodule. By [11, Theorem 1.5], the category T -Mod
of left T -modules is equivalent to the category Ω whose objects are triples
M =

(
M1

M2

)
ϕM

, where M1 ∈ A-Mod, M2 ∈ B-Mod and ϕM : U ⊗A M1 → M2

is a B-morphism, and whose morphisms from
(
M1

M2

)
ϕM

to
(
N1

N2

)
ϕN

are pairs(
f1
f2

)
such that f1 ∈ HomA(M1, N1), f2 ∈ HomB(M2, N2) satisfying that the

following diagram is commutative:

U ⊗AM1

ϕM

��

1⊗f1 // U ⊗A N1

ϕN

��
M2

f2 // N2
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Given a triple M =
(
M1

M2

)
ϕM

in Ω, we will denote by ϕ̃M the A-morphism from

M1 to HomB(U,M2) given by ϕ̃M (x)(u) = ϕM (u ⊗ x) for each u ∈ U and
x ∈ M1. In the rest of the paper we will identify T -Mod with this category Ω
and, whenever there is no possible confusion, we will omit the morphism ϕM .

Note that a sequence 0 →
(
M ′1
M ′2

)
ϕM′
→
(
M1

M2

)
ϕM
→
(
M ′′1
M ′′2

)
ϕM′′

→ 0 of left

T -modules is exact if and only if the two sequences 0→M ′1 →M1 →M ′′1 → 0
and 0→M ′2 →M2 →M ′′2 → 0 are exact.

Recall that the product category A-Mod ×B-Mod is defined as follows: An
object of A-Mod × B-Mod is a pair (M,N) with M ∈ A-Mod and N ∈ B-Mod,
a morphism from (M,N) to (M ′, N ′) is a pair (f, g) with f ∈ HomA(M,M ′)
and g ∈ HomB(N,N ′). There are some functors between the category T -Mod
and the product category A-Mod × B-Mod as follows:

(1) p : A-Mod × B-Mod → T -Mod is defined as follows: For each ob-

ject (M1,M2) of A-Mod × B-Mod, let p(M1,M2) =
(

M1

(U⊗AM1)⊕M2

)
with

the obvious map and for any morphism (f1, f2) in A-Mod × B-Mod, let

p(f1, f2) =
(

f1
(U⊗Af1)⊕f2

)
.

(2) h : A-Mod × B-Mod → T -Mod is defined as follows: For each object

(M1,M2) of A-Mod × B-Mod, let h(M1,M2) =
(
M1⊕HomB(U,M2)

M2

)
with the

obvious map and for any morphism (f1, f2) in A-Mod × B-Mod, let h(f1, f2) =(
f1⊕HomB(U,f2)

f2

)
.

(3) q : T -Mod → A-Mod × B-Mod is defined, for each left T -module(
M1

M2

)
ϕM

as q
(
M1

M2

)
ϕM

= (M1,M2), and for each morphism
(
f1
f2

)
in T -Mod

as q
(
f1
f2

)
= (f1, f2).

It is easy to see that p is a left adjoint of q and h is a right adjoint of q.

2. Admissible balanced pairs over formal triangular matrix rings

Let F and L be two classes of left R-modules. Following [6], a complex · · · →
A1 → A0 → A0 → A1 → · · · of left R-modules is called HomR(F,−)-exact if
the induced sequence · · · → HomR(C,A1)→ HomR(C,A0)→ HomR(C,A0)→
HomR(C,A1)→ · · · is exact for any C ∈ F, and it is called HomR(−,L)-exact if
the induced sequence · · · → HomR(A1, D)→ HomR(A0, D)→HomR(A0, D)→
HomR(A1, D) → · · · is exact for any D ∈ L. A complex · · · → A1 → A0 →
M → 0 of left R-modules with each Ai ∈ F is called a left F-resolution of M
if it is HomR(F,−)-exact. Dually, a complex 0 → M → A0 → A1 → · · · of
left R-modules with each Ai ∈ L is called a right L-resolution of M if it is
HomR(−,L)-exact. Obviously, F is a precovering class if and only if each left
R-module has a left F-resolution, L is a preenveloping class if and only if each
left R-module has a right L-resolution.
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A pair (F,L) of classes of left R-modules is called a balanced pair [4] if
the following conditions are satisfied: (1) F is a precovering class and L is a
preenveloping class; (2) for each left R-module M , there is a left F-resolution
which is HomR(−,L)-exact; (3) for each left R-module M , there is a right
L-resolution which is HomR(F,−)-exact.

A balanced pair (F,L) is called admissible [4] provided that F is an epic
precovering class and L is a monic preenveloping class.

Lemma 2.1. Let F be an epic precovering class and L be a monic preenveloping
class in R-Mod. Then the following conditions are equivalent:

(1) (F,L) is an admissible balanced pair.
(2) An exact sequence in R-Mod is HomR(F,−)-exact if and only if it is

HomR(−,L)-exact.
(3) For each left R-module M , there are two exact sequences 0 → K →

F →M → 0 and 0→M → L→ G→ 0 with F ∈ F and L ∈ L, which
are both HomR(F,−)-exact and HomR(−,L)-exact.

Proof. It is easy by [4, Proposition 2.2] or [7, Lemma 3.1]. �

Let C be a class of left A-modules and D be a class of left B-modules. We
write p(C,D) = {p(M1,M2) : M1 ∈ C,M2 ∈ D} and h(C,D) = {h(M1,M2) :
M1 ∈ C,M2 ∈ D}.

Let C1 and C2 be two classes of left A-modules, D1 and D2 be two classes
of left B-modules. We first characterize when (p(C1,D1),h(C2,D2)) is an ad-
missible balanced pair in T -Mod.

Theorem 2.2. Let C1 and C2 be two classes of left A-modules, D1 and D2 be
two classes of left B-modules. The following conditions are equivalent:

(1) (C1,C2) and (D1,D2) are admissible balanced pairs.
(2) (p(C1,D1),h(C2,D2)) is an admissible balanced pair.

Proof. (1) ⇒ (2) By Lemma 2.1, for any left T -module M =
(
M1

M2

)
ϕM

, there

is an exact sequence 0 → K1
λ1→ F1

f1→ M1 → 0 with F1 ∈ C1 which is
HomA(C1,−)-exact and HomA(−,C2)-exact. Also there is an exact sequence

0 → N
ι→ F2

γ→ M2 → 0 with F2 ∈ D1 which is HomB(D1,−)-exact and
HomB(−,D2)-exact.

Define f2 : (U⊗AF1)⊕F2 →M2 by f2(u⊗x1, x2) = ϕM (u⊗f1(x1))+γ(x2)
for u ∈ U, x1 ∈ F1, x2 ∈ F2. Then f2 is clearly an epimorphism. So we get an

epimorphism
(
f1
f2

)
: p(F1, F2) → M. Let K =

(
K1

K2

)
ϕK

= ker
(
f1
f2

)
. Then we

get the exact sequence

0→ K

(
λ1

λ2

)
→ p(F1, F2)

(
f1
f2

)
→ M → 0

with p(F1, F2) ∈ p(C1,D1). Let p(C1, D1) ∈ p(C1,D1). Then we get the epi-
morphism (f1)∗ : HomA(C1, F1)→ HomA(C1,M1). Let i : F2 → (U⊗AF1)⊕F2
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be the injection. Then γ = f2i. Since γ∗ : HomB(D1, F2) → HomB(D1,M2)
is an epimorphism, we obtain that (f2)∗ : HomB(D1, (U ⊗A F1) ⊕ F2) →
HomB(D1,M2) is an epimorphism. From the following commutative diagram:

HomT (p(C1, D1),p(F1, F2))

∼=
��

// HomT (p(C1, D1),M)

∼=
��

HomA(C1, F1)⊕HomB(D1, (U ⊗A F1)⊕ F2)
(f1)∗⊕(f2)∗ // HomA(C1,M1)⊕HomB(D1,M2),

we infer that 0→ K → p(F1, F2)→M → 0 is HomT (p(C1,D1),−)-exact.
There is the following commutative diagram with exact rows and columns:

0

��

0

��

0

��
0 // N

��

ι // F2

i

��

γ // M2

��

// 0

0 // K2

��

λ2 // (U ⊗A F1)⊕ F2

��

f2 // M2

��

// 0

0 // U ⊗A F1
//

��

U ⊗A F1

��

// 0

��

// 0

0 0 0

Let h(C2, D2) ∈ h(C2,D2). Applying HomB(−, D2) to the above commu-
tative diagram, we have the following commutative diagram with exact rows:

0 // HomB(U ⊗A F1, D2) // HomB((U ⊗A F1)⊕ F2, D2)

λ∗2
��

// HomB(F2, D2)

ι∗

��

// 0

0 // HomB(U ⊗A F1, D2) // HomB(K2, D2) // HomB(N,D2).

Notice that ι∗ is an epimorphism, so λ∗2 is an epimorphism by the Snake
lemma. Also λ∗1 : HomA(F1, C2) → HomA(K1, C2) is an epimorphism. Thus
the commutative diagram:

HomT (p(F1, F2),h(C2, D2))

∼=
��

// HomT (K,h(C2, D2))

∼=
��

HomA(F1, C2)⊕HomB((U ⊗A F1)⊕ F2, D2)
λ∗1⊕λ

∗
2 // HomA(K1, C2)⊕HomB(K2, D2)

implies that 0→ K → p(F1, F2)→M → 0 is HomT (−,h(C2,D2))-exact.

On the other hand, there are two exact sequences 0 → M1
θ→ X

ρ→
Q → 0 with X ∈ C2 which is HomA(C1,−)-exact and HomA(−,C2)-exact,

and 0 → M2
g2→ Y

π2→ L2 → 0 with Y ∈ D2 which is HomB(D1,−)-exact
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and HomB(−,D2)-exact. Define g1 : M1 → X ⊕ HomB(U, Y ) by g1(x) =

(θ(x),HomB(U, g2)ϕ̃M (x)) for x ∈ M1. Since g1 is clearly a monomorphism,

we get a monomorphism ( g1g2 ) : M → h(X,Y ). Let L =
(
L1

L2

)
ϕL

= coker ( g1g2 ).

Then we get the exact sequence

0→M
( g1g2 )
→ h(X,Y )

(π1
π2

)
→ L→ 0

with h(X,Y ) ∈ h(C2,D2). Let j : X ⊕ HomB(U, Y ) → X be the projec-
tion. Then θ = jg1. Let h(C2, D2) ∈ h(C2,D2). Since θ∗ : HomA(X,C2) →
HomA(M1, C2) is an epimorphism, we obtain the epimorphism g∗1 : HomA(X⊕
HomB(U, Y ), C2)→ HomA(M1, C2). Also g∗2 : HomB(Y,D2)→HomB(M2, D2)
is an epimorphism. Thus from the following commutative diagram:

HomT (h(X,Y ),h(C2, D2))

∼=
��

// HomT (M,h(C2, D2))

∼=
��

HomA(X ⊕HomB(U, Y ), C2)⊕HomB(Y,D2)
g∗1⊕g

∗
2 // HomA(M1, C2)⊕HomB(M2, D2),

we infer that 0→M → h(X,Y )→ L→ 0 is HomT (−,h(C2,D2))-exact.
Let p(C1, D1) ∈ p(C1,D1). Applying HomA(C1,−) to the following com-

mutative diagram with exact rows and columns:

0

��

0

��

0

��
0 // 0

��

// HomB(U, Y )

��

// HomB(U, Y )

��

// 0

0 // M1

��

g1 // X ⊕HomB(U, Y )

j

��

π1 // L1

��

// 0

0 // M1

��

θ // X

��

ρ // Q

��

// 0

0 0 0

we have the following commutative diagram with exact rows:

0 // HomA(C1,HomB(U, Y )) // HomA(C1, X ⊕HomB(U, Y ))

(π1)∗

��

// HomA(C1, X)

ρ∗

��

// 0

0 // HomA(C1,HomB(U, Y )) // HomA(C1, L1) // HomA(C1, Q).

Notice that ρ∗ is an epimorphism, so (π1)∗ is an epimorphism by the Snake
lemma. Also (π2)∗ : HomB(D1, Y ) → HomB(D1, L2) is an epimorphism. So
the commutative diagram:
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HomT (p(C1, D1),h(X,Y ))

∼=
��

// HomT (p(C1, D1), L)

∼=
��

HomA(C1, X ⊕HomB(U, Y ))⊕HomB(D1, Y )
(π1)∗⊕(π2)∗ // HomA(C1, L1)⊕HomB(D1, L2)

implies that 0→M → h(X,Y )→ L→ 0 is HomT (p(C1,D1),−)-exact.
Thus (p(C1,D1),h(C2,D2)) is an admissible balanced pair by Lemma 2.1.
(2) ⇒ (1) We first prove that (C1,C2) is an admissible balanced pair. For

any left A-module M1, by Lemma 2.1, there is an exact sequence 0 → J →
p(X1, X2) → h(M1, 0) → 0 with p(X1, X2) ∈ p(C1,D1) and J =

(
J1
J2

)
ϕJ

,

which is HomT (p(C1,D1),−)-exact and HomT (−,h(C2,D2))-exact. Let C1 ∈
C1 and C2 ∈ C2. Then we get two commutative diagrams with exact rows:

HomT (p(C1, 0),p(X1, X2))

∼=
��

// HomT (p(C1, 0),h(M1, 0))

∼=
��

// 0

HomA(C1, X1) // HomA(C1,M1) // 0

and

HomT (p(X1, X2),h(C2, 0))

∼=
��

// HomT (J,h(C2, 0))

∼=
��

// 0

HomA(X1, C2) // HomA(J1, C2) // 0.

So 0→ J1 → X1 →M1 → 0 is HomA(C1,−)-exact and HomB(−,C2)-exact.
On the other hand, by Lemma 2.1, there is an exact sequence

0→ h(M1, 0)→ h(Y1, Y2)

(
φ
θ

)
→ E → 0

with h(Y1, Y2) ∈ h(C2,D2) and E =
(
E1

E2

)
ϕE

, which is HomT (p(C1,D1),−)-

exact and HomT (−,h(C2,D2))-exact. It is obvious that θ : Y2 → E2 is an
isomorphism. For C1 ∈ C1 and C2 ∈ C2, we get the following commutative
diagrams with exact rows:

HomT (p(C1, 0),h(Y1, Y2))

∼=
��

// HomT (p(C1, 0), E)

∼=
��

// 0

HomA(C1, Y1 ⊕HomB(U, Y2)) // HomA(C1, E1) // 0

and

HomT (h(Y1, Y2),h(C2, 0))

∼=
��

// HomT (h(M1, 0),h(C2, 0))

∼=
��

// 0

HomA(Y1 ⊕HomB(U, Y2), C2) // HomA(M1, C2) // 0.
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Also, there is the following commutative diagram with exact rows and columns:

0

��

0

��

0

��
0 // M1

��

// Y1

��

ρ // Q

��

// 0

0 // M1

��

// Y1 ⊕HomB(U, Y2)

��

φ // E1

��

// 0

0 // 0

��

// HomB(U, Y2)

��

θ∗ // HomB(U,E2)

��

// 0

0 0 0

Applying HomA(−, C2) and HomA(C1,−) to the above diagram, we obtain
that 0 → M1 → Y1 → Q → 0 is HomA(−, C2)-exact and get the following
commutative diagram with exact rows:

0 // HomA(C1, Y1) //

ρ∗

��

HomA(C1, Y1 ⊕HomB(U, Y2))

φ∗

��

// HomA(C1,HomB(U, Y2))

∼=
��

0 // HomA(C1, Q) // HomA(C1, E1) // HomA(C1,HomB(U,E2)).

Notice that φ∗ is an epimorphism, so ρ∗ is an epimorphism. Thus 0 → M1 →
Y1 → Q→ 0 is HomA(C1,−)-exact.

It follows that (C1,C2) is an admissible balanced pair by Lemma 2.1. By a
similar proof, (D1,D2) is an admissible balanced pair. �

Remark 2.3. In the proof of (2) ⇒ (1) in Theorem 2.2, we may also obtain
that (D1,D2) is an admissible balanced pair by applying [9, Corollary 2.4]. In
fact, let f = (0, B) ⊗T −, i = p(0,−), g = HomT (( 0

B ) ,−), r = h(−, 0), e =
HomT ((AU ) ,−), l = p(−, 0). Then by [9, Lemma 3.2], we get the recollement

B−Mod
i // T−Mod

g
oo

foo
e // A−Mod.
roo

loo

If (p(C1,D1),h(C2,D2)) is an admissible balanced pair in T -Mod, then by
[9, Corollary 2.4], (D1,D2) = (f(p(C1,D1)), g(h(C2,D2))) is an admissible
balanced pair in B-Mod.

Let C be a class of left A-modules and D be a class of left B-modules.
We will denote by PC

D the class of left T -modules {
(
M1

M2

)
ϕM

: M1 ∈ C and
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M2/im(ϕM ) ∈ D, ϕM is a monomorphism}, denote by ICD the class of left T -

modules {
(
M1

M2

)
ϕM

: ker(ϕ̃M ) ∈ C and M2 ∈ D, ϕ̃M is an epimorphism} and

denote by AC
D the class of left T -modules {

(
M1

M2

)
ϕM

: M1 ∈ C and M2 ∈ D}.
Let C1 and C2 be two classes of left A-modules, D1 and D2 two classes of left

B-modules. Next we study when (PC1

D1
, IC2

D2
) is an admissible balanced pair.

Proposition 2.4. Let C1 and C2 be two classes of left A-modules, D1 and D2

be two classes of left B-modules. If (PC1

D1
, IC2

D2
) is an admissible balanced pair,

then (C1,C2) and (D1,D2) are admissible balanced pairs.

Proof. We first prove that (C1,C2) is an admissible balanced pair. For any
left A-module M1, by Lemma 2.1, there is an exact sequence 0 → J →
X → h(M1, 0) → 0 with X =

(
X1

X2

)
ϕX
∈ PC1

D1
and J =

(
J1
J2

)
ϕJ

, which is

HomT (PC1

D1
,−)-exact and HomT (−, IC2

D2
)-exact. Let C1 ∈ C1 and C2 ∈ C2.

Note that p(C1,D1) ⊆ PC1

D1
and h(C2,D2) ⊆ IC2

D2
, hence we get the following

commutative diagrams with exact rows:

HomT (p(C1, 0), X)

∼=
��

// HomT (p(C1, 0),h(M1, 0))

∼=
��

// 0

HomA(C1, X1) // HomA(C1,M1) // 0

and

HomT (X,h(C2, 0))

∼=
��

// HomT (J,h(C2, 0))

∼=
��

// 0

HomA(X1, C2) // HomA(J1, C2) // 0.

So 0 → J1 → X1 → M1 → 0 is HomA(C1,−)-exact and HomA(−,C2)-
exact. On the other hand, by Lemma 2.1, there is an exact sequence 0 →

h(M1, 0)→ Y

(
φ
θ

)
→ E → 0 with Y =

(
Y1

Y2

)
ϕY
∈ IC2

D2
and E =

(
E1

E2

)
ϕE

, which is

HomT (PC1

D1
,−)-exact and HomT (−, IC2

D2
)-exact. Note that θ : Y2 → E2 is an

isomorphism. For C1 ∈ C1 and C2 ∈ C2, we have the following commutative
diagrams with exact rows:

HomT (p(C1, 0), Y )

∼=
��

// HomT (p(C1, 0), E)

∼=
��

// 0

HomA(C1, Y1)
φ∗ // HomA(C1, E1) // 0
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and

HomT (Y,h(C2, 0))

∼=
��

// HomT (h(M1, 0),h(C2, 0))

∼=
��

// 0

HomA(Y1, C2) // HomA(M1, C2) // 0.

Applying HomA(−, C2) and HomA(C1,−) to the following commutative dia-
gram with exact rows and columns:

0

��

0

��

0

��
0 // M1

��

// ker(ϕ̃Y )

��

ρ // Q

��

// 0

0 // M1

��

// Y1

��

φ // E1

��

// 0

0 // 0

��

// HomB(U, Y2)

��

// HomB(U,E2)

��

// 0

0 0 0

we obtain that 0 → M1 → ker(ϕ̃Y ) → Q → 0 is HomA(−, C2)-exact and get
the following commutative diagram with exact rows:

0 // HomA(C1, ker(ϕ̃Y )) //

ρ∗

��

HomA(C1, Y1)

φ∗

��

// HomA(C1,HomB(U, Y2))

∼=
��

0 // HomA(C1, Q) // HomA(C1, E1) // HomA(C1,HomB(U,E2)).

Since φ∗ is an epimorphism, ρ∗ is an epimorphism. Thus 0→M1 → ker(ϕ̃Y )→
Q → 0 is HomA(C1,−)-exact. So (C1,C2) is an admissible balanced pair by
Lemma 2.1. By a similar proof, (D1,D2) is an admissible balanced pair. �

Given a class G of left R-modules, we recall that a monomorphism α : M →
N with N ∈ G is a special G-preenvelope of M [6] if Ext1R(coker(α), C) = 0
for all C ∈ G. Dually we have the definition of a special G-precover. Write
G⊥ = {X : Ext1R(C,X) = 0 for all C ∈ G} and ⊥G = {L : Ext1R(L,C) =
0 for all C ∈ G}. A pair (F, G) of classes of left R-modules is called a cotorsion
pair [10] if F⊥ = G and F = ⊥G. A cotorsion pair (F, G) is called complete
[10] if every left R-module has a special G-preenvelope, equivalently, every left
R-module has a special F-precover by [10, Lemma 2.2.6]. A cotorsion pair (F,

G) is called hereditary [10] if whenever 0 → L
′ → L → L

′′ → 0 is exact with
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L,L
′′ ∈ F, then L

′
is also in F, or equivalently, if 0 → C

′ → C → C
′′ → 0 is

exact with C
′
, C ∈ G, then C

′′
is also in G.

Theorem 2.5. Suppose that (C1,C
⊥
1 ) and (⊥C2,C2) are complete hereditary

cotorsion pairs in A-Mod with TorAi (U,C1) = 0 for any i ≥ 1, (D1,D
⊥
1 ) and

(⊥D2,D2) are complete hereditary cotorsion pairs in B-Mod with ExtiB(U,D2)
= 0 for any i ≥ 1, C1

⋂
C⊥1 ⊆ ⊥C2, C2

⋂⊥C2 ⊆ C⊥1 , D1

⋂
D⊥1 ⊆ ⊥D2 and

D2

⋂⊥D2 ⊆ D⊥1 . The following conditions are equivalent:

(1) (C1,C2) and (D1,D2) are admissible balanced pairs.

(2) (PC1

D1
, IC2

D2
) is an admissible balanced pair.

(3) C⊥1 = ⊥C2 and D⊥1 = ⊥D2.

(4) (PC1

D1
)⊥ = ⊥IC2

D2
.

Proof. (1) ⇒ (3) Since (C1,C2) is an admissible balanced pair, (C1,C
⊥
1 ) and

(⊥C2,C2) are complete hereditary cotorsion pairs, C1

⋂
C⊥1 ⊆ ⊥C2, C2

⋂⊥C2 ⊆
C⊥1 , we have C⊥1 = ⊥C2 by [7, Corollary 4.8]. Similarly, since (D1,D2) is
an admissible balanced pair, (D1,D

⊥
1 ) and (⊥D2,D2) are complete hereditary

cotorsion pairs, D1

⋂
D⊥1 ⊆ ⊥D2, D2

⋂⊥D2 ⊆ D⊥1 , we have D⊥1 = ⊥D2.
(3) ⇒ (2) Since (C1,C

⊥
1 ) and (D1,D

⊥
1 ) are complete hereditary cotorsion

pairs with TorAi (U,C1) = 0 for any i ≥ 1, (PC1

D1
,A

C⊥1
D⊥1

) is a complete hered-

itary cotorsion pair by [15, Theorem 5.6(1)]. Since (⊥C2,C2) and (⊥D2,D2)
are complete hereditary cotorsion pairs with ExtiB(U,D2) = 0 for any i ≥ 1,

(A
⊥C2
⊥D2

, IC2

D2
) is a complete hereditary cotorsion pair by [15, Theorem 5.6(2)].

Since A
C⊥1
D⊥1

= A
⊥C2
⊥D2

by (3), (PC1

D1
, IC2

D2
) is an admissible balanced pair by [4,

Proposition 2.6] or [7, Proposition 4.2].
(2) ⇒ (1) follows from Proposition 2.4.

(3) ⇔ (4) By [15, Theorem 4.2], (PC1

D1
)⊥ = A

C⊥1
D⊥1

and ⊥IC2

D2
= A

⊥C2
⊥D2

. So

(PC1

D1
)⊥ = ⊥IC2

D2
if and only if C⊥1 = ⊥C2 and D⊥1 = ⊥D2. �

Corollary 2.6. Let R be a ring, T (R) = (R 0
R R ), (C1,C

⊥
1 ) and (⊥C2,C2) be

complete hereditary cotorsion pairs in R-Mod. The following conditions are
equivalent:

(1) (C1,C2) is an admissible balanced pair, C1

⋂
C⊥1 ⊆ ⊥C2, C2

⋂⊥C2 ⊆ C⊥1 .

(2) (PC1

C1
, IC2

C2
) is an admissible balanced pair in T (R)-Mod.

(3) C⊥1 = ⊥C2.

(4) (PC1

C1
)⊥ = ⊥IC2

C2
.

Proof. (4)⇔ (3)⇒ (1)⇒ (2) follow from Theorem 2.5 by letting D1 = C1 and
D2 = C2.
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(2) ⇒ (3) Let M ∈ ⊥C2. For X =
(
X1

X2

)
ϕX
∈ IC2

C2
, we get the following

commutative diagram with the second row exact:

HomT (p(M, 0), X)

∼=
��

// HomT (p(0,M), X)

∼=
��

HomR(M,X1) // HomR(M,X2) // Ext1R(M, ker(ϕ̃X)) = 0.

So the exact sequence 0 → p(0,M) → p(M, 0) → h(M, 0) → 0 is

HomT (−, IC2

C2
)-exact. By Lemma 2.1, it is also HomT (PC1

C1
,−)-exact. For

N ∈ C1, there is an exact sequence 0 → K1
λ→ K2 → N → 0 with K2 projec-

tive. Let K =
(
K1

K2

)
λ
. Then K ∈ PC1

C1
. Note that p(M, 0) ∼= h(0,M). Hence

HomT (K,h(0,M)) → HomT (K,h(M, 0)) → 0 is exact. So HomR(K2,M) →
HomR(K1,M)→ 0 is exact. Hence M ∈ N⊥. Thus ⊥C2 ⊆ C⊥1 .

Let F ∈ C⊥1 . For Y =
(
Y1

Y2

)
ϕY
∈ PC1

C1
, we get the following commutative

diagram with the second row exact:

HomT (Y,h(0, F ))

∼=
��

// HomT (Y,h(F, 0))

∼=
��

HomR(Y2, F ) // HomR(Y1, F ) // Ext1R(Y2/im(ϕY ), F ) = 0.

So the exact sequence 0→ p(0, F )→ h(0, F )→ h(F, 0)→ 0 is HomT (PC1

C1
,−)-

exact. By Lemma 2.1, it is also HomT (−, IC2

C2
)-exact. For G ∈ C2, there is

an exact sequence 0 → G → L1
ρ→ L2 → 0 with L1 injective. Let L =(

L1

L2

)
ρ
. Then L ∈ IC2

C2
. Note that p(F, 0) ∼= h(0, F ). Thus HomT (p(F, 0), L)→

HomT (p(0, F ), L)→ 0 is exact. So HomR(F,L1)→ HomR(F,L2)→ 0 is exact.
Hence F ∈ ⊥G and so C⊥1 ⊆ ⊥C2.

It follows that C⊥1 = ⊥C2. �

Finally, as an application, we consider the balanced pairs of Gorenstein T -
modules.

Recall that a left R-module M is Gorenstein projective [6] if there is an exact
sequence · · · → P−2 → P−1 → P 0 → P 1 → · · · of projective left R-modules
with M = ker(P 0 → P 1), which remains exact after applying HomR(−, P ) for
any projective left R-module P .

Dually, a leftR-moduleN is called Gorenstein injective [6] if there is an exact
sequence · · · → E−2 → E−1 → E0 → E1 → · · · of injective left R-modules
with N = ker(E0 → E1), which remains exact after applying HomR(E,−) for
any injective left R-module E.

We denote by RGP (resp. RGI) the class of Gorenstein projective (resp.
Gorenstein injective) left R-modules.
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Suppose that UA has finite flat dimension and BU has finite projective di-
mension. By [16, Remarks 3.11 and 4.11], a left T -module M =

(
M1

M2

)
ϕM

is

Gorenstein projective if and only if M1 is a Gorenstein projective left A-module,
M2/im(ϕM ) is a Gorenstein projective left B-module and ϕM is a monomor-

phism; M =
(
M1

M2

)
ϕM

is Gorenstein injective if and only if M2 is a Gorenstein

injective left B-module, ker(ϕ̃M ) is a Gorenstein injective left A-module and

ϕ̃M is an epimorphism.

Corollary 2.7. Suppose that UA has finite flat dimension and BU has finite
projective dimension. If (TGP, TGI) is an admissible balanced pair, then (AGP,
AGI) and (BGP, BGI) are admissible balanced pairs.

Proof. It is an immediate consequence of Proposition 2.4. �

Recall that a ring R is left virtually Gorenstein [3] if (RGP)⊥ = ⊥(RGI).
Such rings were first introduced and studied in the context of representation
theory of artin algebras by Beligiannis and Reiten. Examples of virtually
Gorenstein rings include Iwanaga-Gorenstein rings and artin algebras of finite
representation type.

Theorem 2.8. Suppose that UA is flat and BU is projective, A and B are
left noetherian rings with finite left self-injective dimensions. The following
conditions are equivalent:

(1) (AGP, AGI) and (BGP, BGI) are admissible balanced pairs.
(2) (TGP, TGI) is an admissible balanced pair.
(3) (p(AGP, BGP),h(AGI, BGI)) is an admissible balanced pair.
(4) A and B are left virtually Gorenstein rings.
(5) T is a left virtually Gorenstein ring.

Proof. Because A and B are left noetherian rings with finite left self-injective
dimensions, all projective left A-modules and projective left B-modules have
finite injective dimensions. By [18, Theorem 4.2], (AGP, (AGP)⊥) and (BGP,
(BGP)⊥) are complete hereditary cotorsion pairs. Also by [17, Theorem 5.6],
(⊥(AGI), AGI) and (⊥(BGI), BGI) are complete hereditary cotorsion pairs.
By [7, p. 78], we have AGP

⋂
(AGP)⊥ = AP ⊆ ⊥(AGI), AGI

⋂⊥(AGI) =

AI ⊆ (AGP)⊥, BGP
⋂

(BGP)⊥ = BP ⊆ ⊥(BGI) and BGI
⋂⊥(BGI) = BI ⊆

(BGI)⊥. Thus the result follows immediately from Theorems 2.2 and 2.5. �

Corollary 2.9. Let R be a left noetherian ring with finite left self-injective
dimension and T (R) = (R 0

R R ). The following conditions are equivalent:

(1) (RGP, RGI) is an admissible balanced pair.
(2) (T (R)GP, T (R)GI) is an admissible balanced pair.
(3) (p(RGP, RGP),h(RGI, RGI)) is an admissible balanced pair.
(4) R is a left virtually Gorenstein ring.
(5) T (R) is a left virtually Gorenstein ring.
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