# ADMISSIBLE BALANCED PAIRS OVER FORMAL TRIANGULAR MATRIX RINGS 

Lixin Mao


#### Abstract

Suppose that $T=\left(\begin{array}{cc}A & 0 \\ U & B\end{array}\right)$ is a formal triangular matrix ring, where $A$ and $B$ are rings and $U$ is a $(B, A)$-bimodule. Let $\mathfrak{C}_{1}$ and $\mathfrak{C}_{2}$ be two classes of left $A$-modules, $\mathfrak{D}_{1}$ and $\mathfrak{D}_{2}$ be two classes of left $B$-modules. We prove that $\left(\mathfrak{C}_{1}, \mathfrak{C}_{2}\right)$ and $\left(\mathfrak{D}_{1}, \mathfrak{D}_{2}\right)$ are admissible balanced pairs if and only if $\left(\mathbf{p}\left(\mathfrak{C}_{1}, \mathfrak{D}_{1}\right), \mathbf{h}\left(\mathfrak{C}_{2}, \mathfrak{D}_{2}\right)\right)$ is an admissible balanced pair in $T$-Mod. Furthermore, we describe when $\left(\mathfrak{P}_{\mathfrak{D}_{1}}^{\mathfrak{C}_{1}}, \mathfrak{I}_{\mathfrak{D}_{2}}^{\mathfrak{C}_{2}}\right)$ is an admissible balanced pair in $T$-Mod. As a consequence, we characterize when $T$ is a left virtually Gorenstein ring.


## 1. Introduction

Let $A$ and $B$ be rings and $U$ be a $(B, A)$-bimodule. The ring $T=\left(\begin{array}{ll}A & 0 \\ U & B\end{array}\right)$ is known as a formal triangular matrix ring or generalized triangular matrix ring with usual matrix addition and multiplication. Formal triangular matrix rings play an important role in ring theory and the representation theory of algebras. This kind of rings are often used to construct examples and counterexamples. As a consequence of the classical results by Green [11], the module category over the formal triangular matrix ring $T$ can be, via some functors, reconstructed from the categories of modules over $A$ and $B$. Using these functors, one can describe classes of modules over the formal triangular matrix ring $T$ from the corresponding classes of modules over $A$ and $B$. So the properties of formal triangular matrix rings and modules over them make the theory of rings and modules more abundant and concrete, and have deserved more and more interest (see $[1,8],[11-16])$.

On the other hand, the concepts of preenvelopes and precovers (approximations) of modules were introduced independently in the early eighties of the 20th century by Enochs [5] and Auslander-Smalø [2]. Let $\mathfrak{C}$ be a class of left $R$ modules and $M$ be a left $R$-module. Recall that a homomorphism $\phi: M \rightarrow C$

[^0]with $C \in \mathfrak{C}$ is a $\mathfrak{C}$-preenvelope of $M[5]$ if for any homomorphism $f: M \rightarrow C^{\prime}$ with $C^{\prime} \in \mathfrak{C}$, there is a homomorphism $g: C \rightarrow C^{\prime}$ such that $g \phi=f$. Dually we have the definition of a $\mathfrak{C}$-precover. The class $\mathfrak{C}$ is called a (resp. epic) precovering class of the category $R$-Mod of left $R$-modules if every left $R$-module has a (resp. epic) $\mathfrak{C}$-precover. The class $\mathfrak{C}$ is called a (resp. monic) preenveloping class of the category $R$-Mod if every left $R$-module has a (resp. monic) $\mathfrak{C}$-preenvelope. Using precovering classes and preenveloping classes, Enochs and Jenda [6] introduced the notion of a balanced functor, which plays an important role in relative homological algebra. In [4], Chen called a pair ( $\mathfrak{F}, \mathfrak{L}$ ) of classes of left $R$-modules a balanced pair if the functor $\operatorname{Hom}_{R}(-,-)$ is right balanced on $R$-Mod $\times R$-Mod by $\mathfrak{F} \times \mathfrak{L}$ in the sense of [6]. We use ${ }_{R} \mathcal{P}$ and $R_{R} \mathcal{I}$ to denote the classes of projective left $R$-mdules and injective left $R$-mdules, respectively. It is well known that $\left({ }_{R} \mathcal{P},{ }_{R} \mathcal{I}\right)$ is a balanced pair, which is called the classical balanced pair. In general, the concept of a balanced pair inherits many similar properties from the classical one (see [4]) and so has gained attention in recent years in the context of relative homological algebra.

In this paper, we will investigate how to construct balanced pairs over a formal triangular matrix ring $T=\left(\begin{array}{cc}A & 0 \\ U & B\end{array}\right)$. Let $\mathfrak{C}_{1}$ and $\mathfrak{C}_{2}$ be two classes of left $A$-modules, $\mathfrak{D}_{1}$ and $\mathfrak{D}_{2}$ be two classes of left $B$-modules. We prove that $\left(\mathfrak{C}_{1}, \mathfrak{C}_{2}\right)$ and $\left(\mathfrak{D}_{1}, \mathfrak{D}_{2}\right)$ are admissible balanced pairs if and only if $\left(\mathbf{p}\left(\mathfrak{C}_{1}, \mathfrak{D}_{1}\right), \mathbf{h}\left(\mathfrak{C}_{2}, \mathfrak{D}_{2}\right)\right)$ is an admissible balanced pair in $T$-Mod (see Theorem 2.2). Moreover, we describe when $\left(\mathfrak{P}_{\mathfrak{D}_{1}}^{\mathfrak{C}_{1}}, \mathfrak{I}_{\mathfrak{D}_{2}}^{\mathfrak{C}_{2}}\right)$ is an admissible balanced pair in $T$-Mod (see Theorem 2.5). As an application, we characterize when $T$ is a left virtually Gorenstein ring (see Theorem 2.8).

Throughout this paper, all rings are nonzero associative rings with identity and all modules are unitary. For a ring $R$, we write $R$ - $\operatorname{Mod}($ resp. $\operatorname{Mod}-R)$ for the category of left (resp. right) $R$-modules. ${ }_{R} M$ (resp. $M_{R}$ ) denotes a left (resp. right) $R$-module. All classes of modules are assumed to be closed under isomorphisms and contain 0 .

Next let us recall some basic facts about formal triangular matrix rings. $T=\left(\begin{array}{cc}A & 0 \\ U & B\end{array}\right)$ always means a formal triangular matrix ring, where $A$ and $B$ are rings and $U$ is a $(B, A)$-bimodule. By [11, Theorem 1.5], the category $T$-Mod of left $T$-modules is equivalent to the category $\Omega$ whose objects are triples $M=\binom{M_{1}}{M_{2}}_{\varphi^{M}}$, where $M_{1} \in A$-Mod, $M_{2} \in B$-Mod and $\varphi^{M}: U \otimes_{A} M_{1} \rightarrow M_{2}$ is a $B$-morphism, and whose morphisms from $\binom{M_{1}}{M_{2}}_{\varphi^{M}}$ to $\binom{N_{1}}{N_{2}}_{\varphi^{N}}$ are pairs $\binom{f_{1}}{f_{2}}$ such that $f_{1} \in \operatorname{Hom}_{A}\left(M_{1}, N_{1}\right), f_{2} \in \operatorname{Hom}_{B}\left(M_{2}, N_{2}\right)$ satisfying that the following diagram is commutative:


Given a triple $M=\binom{M_{1}}{M_{2}}_{\varphi^{M}}$ in $\Omega$, we will denote by $\widetilde{\varphi^{M}}$ the $A$-morphism from $M_{1}$ to $\operatorname{Hom}_{B}\left(U, M_{2}\right)$ given by $\widetilde{\varphi^{M}}(x)(u)=\varphi^{M}(u \otimes x)$ for each $u \in U$ and $x \in M_{1}$. In the rest of the paper we will identify $T$-Mod with this category $\Omega$ and, whenever there is no possible confusion, we will omit the morphism $\varphi^{M}$.

Note that a sequence $0 \rightarrow\binom{M_{1}^{\prime}}{M_{2}^{\prime}}_{\varphi^{M^{\prime}}} \rightarrow\binom{M_{1}}{M_{2}}_{\varphi^{M}} \rightarrow\binom{M_{1}^{\prime \prime}}{M_{2}^{\prime \prime}}_{\varphi^{M^{\prime \prime}}} \rightarrow 0$ of left $T$-modules is exact if and only if the two sequences $0 \rightarrow M_{1}^{\prime} \rightarrow M_{1} \rightarrow M_{1}^{\prime \prime} \rightarrow 0$ and $0 \rightarrow M_{2}^{\prime} \rightarrow M_{2} \rightarrow M_{2}^{\prime \prime} \rightarrow 0$ are exact.

Recall that the product category $A$-Mod $\times B$-Mod is defined as follows: An object of $A$-Mod $\times B$-Mod is a pair $(M, N)$ with $M \in A$-Mod and $N \in B$-Mod, a morphism from $(M, N)$ to $\left(M^{\prime}, N^{\prime}\right)$ is a pair $(f, g)$ with $f \in \operatorname{Hom}_{A}\left(M, M^{\prime}\right)$ and $g \in \operatorname{Hom}_{B}\left(N, N^{\prime}\right)$. There are some functors between the category $T$-Mod and the product category $A$-Mod $\times B$-Mod as follows:
(1) $\mathbf{p}: A$-Mod $\times B$-Mod $\rightarrow T$-Mod is defined as follows: For each object $\left(M_{1}, M_{2}\right)$ of $A$-Mod $\times B$-Mod, let $\mathbf{p}\left(M_{1}, M_{2}\right)=\binom{M_{1}}{\left(U \otimes_{A} M_{1}\right) \oplus M_{2}}$ with the obvious map and for any morphism $\left(f_{1}, f_{2}\right)$ in $A$-Mod $\times B$-Mod, let $\mathbf{p}\left(f_{1}, f_{2}\right)=\binom{f_{1}}{\left(U \otimes A f_{1}\right) \oplus f_{2}}$.
(2) $\mathbf{h}: A$-Mod $\times B$-Mod $\rightarrow T$-Mod is defined as follows: For each object $\left(M_{1}, M_{2}\right)$ of $A$-Mod $\times B$-Mod, let $\mathbf{h}\left(M_{1}, M_{2}\right)=\left(\underset{M_{2}}{M_{1} \oplus \operatorname{Hom}_{B}\left(U, M_{2}\right)}\right)$ with the obvious map and for any morphism $\left(f_{1}, f_{2}\right)$ in $A$ - $\operatorname{Mod} \times B$-Mod, let $h\left(f_{1}, f_{2}\right)=$ $\left(f_{1} \oplus \operatorname{Hom}_{f_{2}}\left(U, f_{2}\right)\right)$.
(3) $\mathbf{q}: T$-Mod $\rightarrow A$-Mod $\times B$-Mod is defined, for each left $T$-module $\binom{M_{1}}{M_{2}}_{\varphi^{M}}$ as $\mathbf{q}\binom{M_{1}}{M_{2}}_{\varphi^{M}}=\left(M_{1}, M_{2}\right)$, and for each morphism $\binom{f_{1}}{f_{2}}$ in $T$-Mod as $\mathbf{q}\binom{f_{1}}{f_{2}}=\left(f_{1}, f_{2}\right)$.

It is easy to see that $\mathbf{p}$ is a left adjoint of $\mathbf{q}$ and $\mathbf{h}$ is a right adjoint of $\mathbf{q}$.

## 2. Admissible balanced pairs over formal triangular matrix rings

Let $\mathfrak{F}$ and $\mathfrak{L}$ be two classes of left $R$-modules. Following [6], a complex $\cdots \rightarrow$ $A_{1} \rightarrow A_{0} \rightarrow A^{0} \rightarrow A^{1} \rightarrow \cdots$ of left $R$-modules is called $\operatorname{Hom}_{R}(\mathfrak{F},-)$-exact if the induced sequence $\cdots \rightarrow \operatorname{Hom}_{R}\left(C, A_{1}\right) \rightarrow \operatorname{Hom}_{R}\left(C, A_{0}\right) \rightarrow \operatorname{Hom}_{R}\left(C, A^{0}\right) \rightarrow$ $\operatorname{Hom}_{R}\left(C, A^{1}\right) \rightarrow \cdots$ is exact for any $C \in \mathfrak{F}$, and it is called $\operatorname{Hom}_{R}(-, \mathfrak{L})$-exact if the induced sequence $\cdots \rightarrow \operatorname{Hom}_{R}\left(A^{1}, D\right) \rightarrow \operatorname{Hom}_{R}\left(A^{0}, D\right) \rightarrow \operatorname{Hom}_{R}\left(A_{0}, D\right) \rightarrow$ $\operatorname{Hom}_{R}\left(A_{1}, D\right) \rightarrow \cdots$ is exact for any $D \in \mathfrak{L}$. A complex $\cdots \rightarrow A_{1} \rightarrow A_{0} \rightarrow$ $M \rightarrow 0$ of left $R$-modules with each $A_{i} \in \mathfrak{F}$ is called a left $\mathfrak{F}$-resolution of $M$ if it is $\operatorname{Hom}_{R}(\mathfrak{F},-)$-exact. Dually, a complex $0 \rightarrow M \rightarrow A^{0} \rightarrow A^{1} \rightarrow \cdots$ of left $R$-modules with each $A^{i} \in \mathfrak{L}$ is called a right $\mathfrak{L}$-resolution of $M$ if it is $\operatorname{Hom}_{R}(-, \mathfrak{L})$-exact. Obviously, $\mathfrak{F}$ is a precovering class if and only if each left $R$-module has a left $\mathfrak{F}$-resolution, $\mathfrak{L}$ is a preenveloping class if and only if each left $R$-module has a right $\mathfrak{L}$-resolution.

A pair $(\mathfrak{F}, \mathfrak{L})$ of classes of left $R$-modules is called a balanced pair [4] if the following conditions are satisfied: (1) $\mathfrak{F}$ is a precovering class and $\mathfrak{L}$ is a preenveloping class; (2) for each left $R$-module $M$, there is a left $\mathfrak{F}$-resolution which is $\operatorname{Hom}_{R}(-, \mathfrak{L})$-exact; (3) for each left $R$-module $M$, there is a right $\mathfrak{L}$-resolution which is $\operatorname{Hom}_{R}(\mathfrak{F},-)$-exact.

A balanced pair $(\mathfrak{F}, \mathfrak{L})$ is called admissible [4] provided that $\mathfrak{F}$ is an epic precovering class and $\mathfrak{L}$ is a monic preenveloping class.

Lemma 2.1. Let $\mathfrak{F}$ be an epic precovering class and $\mathfrak{L}$ be a monic preenveloping class in $R$-Mod. Then the following conditions are equivalent:
(1) $(\mathfrak{F}, \mathfrak{L})$ is an admissible balanced pair.
(2) An exact sequence in $R$-Mod is $\operatorname{Hom}_{R}(\mathfrak{F},-)$-exact if and only if it is $\operatorname{Hom}_{R}(-, \mathfrak{L})$-exact.
(3) For each left $R$-module $M$, there are two exact sequences $0 \rightarrow K \rightarrow$ $F \rightarrow M \rightarrow 0$ and $0 \rightarrow M \rightarrow L \rightarrow G \rightarrow 0$ with $F \in \mathfrak{F}$ and $L \in \mathfrak{L}$, which are both $\operatorname{Hom}_{R}(\mathfrak{F},-)$-exact and $\operatorname{Hom}_{R}(-, \mathfrak{L})$-exact.
Proof. It is easy by [4, Proposition 2.2] or [7, Lemma 3.1].
Let $\mathfrak{C}$ be a class of left $A$-modules and $\mathfrak{D}$ be a class of left $B$-modules. We write $\mathbf{p}(\mathfrak{C}, \mathfrak{D})=\left\{\mathbf{p}\left(M_{1}, M_{2}\right): M_{1} \in \mathfrak{C}, M_{2} \in \mathfrak{D}\right\}$ and $\mathbf{h}(\mathfrak{C}, \mathfrak{D})=\left\{\mathbf{h}\left(M_{1}, M_{2}\right):\right.$ $\left.M_{1} \in \mathfrak{C}, M_{2} \in \mathfrak{D}\right\}$.

Let $\mathfrak{C}_{1}$ and $\mathfrak{C}_{2}$ be two classes of left $A$-modules, $\mathfrak{D}_{1}$ and $\mathfrak{D}_{2}$ be two classes of left $B$-modules. We first characterize when $\left(\mathbf{p}\left(\mathfrak{C}_{1}, \mathfrak{D}_{1}\right), \mathbf{h}\left(\mathfrak{C}_{2}, \mathfrak{D}_{2}\right)\right)$ is an admissible balanced pair in $T$-Mod.

Theorem 2.2. Let $\mathfrak{C}_{1}$ and $\mathfrak{C}_{2}$ be two classes of left $A$-modules, $\mathfrak{D}_{1}$ and $\mathfrak{D}_{2}$ be two classes of left B-modules. The following conditions are equivalent:
(1) $\left(\mathfrak{C}_{1}, \mathfrak{C}_{2}\right)$ and $\left(\mathfrak{D}_{1}, \mathfrak{D}_{2}\right)$ are admissible balanced pairs.
(2) $\left(\boldsymbol{p}\left(\mathfrak{C}_{1}, \mathfrak{D}_{1}\right), \boldsymbol{h}\left(\mathfrak{C}_{2}, \mathfrak{D}_{2}\right)\right)$ is an admissible balanced pair.

Proof. (1) $\Rightarrow(2)$ By Lemma 2.1, for any left $T$-module $M=\binom{M_{1}}{M_{2}}_{\varphi^{M}}$, there is an exact sequence $0 \rightarrow K_{1} \xrightarrow{\lambda_{7}} F_{1} \xrightarrow{f_{1}} M_{1} \rightarrow 0$ with $F_{1} \in \mathfrak{C}_{1}$ which is $\operatorname{Hom}_{A}\left(\mathfrak{C}_{1},-\right)$-exact and $\operatorname{Hom}_{A}\left(-, \mathfrak{C}_{2}\right)$-exact. Also there is an exact sequence $0 \rightarrow N \xrightarrow{\iota} F_{2} \xrightarrow{\gamma} M_{2} \rightarrow 0$ with $F_{2} \in \mathfrak{D}_{1}$ which is $\operatorname{Hom}_{B}\left(\mathfrak{D}_{1},-\right)$-exact and $\operatorname{Hom}_{B}\left(-, \mathfrak{D}_{2}\right)$-exact.

Define $f_{2}:\left(U \otimes_{A} F_{1}\right) \oplus F_{2} \rightarrow M_{2}$ by $f_{2}\left(u \otimes x_{1}, x_{2}\right)=\varphi^{M}\left(u \otimes f_{1}\left(x_{1}\right)\right)+\gamma\left(x_{2}\right)$ for $u \in U, x_{1} \in F_{1}, x_{2} \in F_{2}$. Then $f_{2}$ is clearly an epimorphism. So we get an epimorphism $\binom{f_{1}}{f_{2}}: \mathbf{p}\left(F_{1}, F_{2}\right) \rightarrow M$. Let $K=\binom{K_{1}}{K_{2}}_{\varphi^{K}}=\operatorname{ker}\binom{f_{1}}{f_{2}}$. Then we get the exact sequence

$$
0 \rightarrow K \xrightarrow{\binom{\lambda_{1}}{\lambda_{2}}} \mathbf{p}\left(F_{1}, F_{2}\right) \xrightarrow{\binom{f_{1}}{f_{2}}} M \rightarrow 0
$$

with $\mathbf{p}\left(F_{1}, F_{2}\right) \in \mathbf{p}\left(\mathfrak{C}_{1}, \mathfrak{D}_{1}\right)$. Let $\mathbf{p}\left(C_{1}, D_{1}\right) \in \mathbf{p}\left(\mathfrak{C}_{1}, \mathfrak{D}_{1}\right)$. Then we get the epi$\operatorname{morphism}\left(f_{1}\right)_{*}: \operatorname{Hom}_{A}\left(C_{1}, F_{1}\right) \rightarrow \operatorname{Hom}_{A}\left(C_{1}, M_{1}\right)$. Let $i: F_{2} \rightarrow\left(U \otimes_{A} F_{1}\right) \oplus F_{2}$
be the injection. Then $\gamma=f_{2} i$. Since $\gamma_{*}: \operatorname{Hom}_{B}\left(D_{1}, F_{2}\right) \rightarrow \operatorname{Hom}_{B}\left(D_{1}, M_{2}\right)$ is an epimorphism, we obtain that $\left(f_{2}\right)_{*}: \operatorname{Hom}_{B}\left(D_{1},\left(U \otimes_{A} F_{1}\right) \oplus F_{2}\right) \rightarrow$ $\operatorname{Hom}_{B}\left(D_{1}, M_{2}\right)$ is an epimorphism. From the following commutative diagram:

we infer that $0 \rightarrow K \rightarrow \mathbf{p}\left(F_{1}, F_{2}\right) \rightarrow M \rightarrow 0$ is $\operatorname{Hom}_{T}\left(\mathbf{p}\left(\mathfrak{C}_{1}, \mathfrak{D}_{1}\right)\right.$, - )-exact.
There is the following commutative diagram with exact rows and columns:


Let $\mathbf{h}\left(C_{2}, D_{2}\right) \in \mathbf{h}\left(\mathfrak{C}_{2}, \mathfrak{D}_{2}\right)$. Applying $\operatorname{Hom}_{B}\left(-, D_{2}\right)$ to the above commutative diagram, we have the following commutative diagram with exact rows:


Notice that $\iota^{*}$ is an epimorphism, so $\lambda_{2}^{*}$ is an epimorphism by the Snake lemma. Also $\lambda_{1}^{*}: \operatorname{Hom}_{A}\left(F_{1}, C_{2}\right) \rightarrow \operatorname{Hom}_{A}\left(K_{1}, C_{2}\right)$ is an epimorphism. Thus the commutative diagram:

implies that $0 \rightarrow K \rightarrow \mathbf{p}\left(F_{1}, F_{2}\right) \rightarrow M \rightarrow 0$ is $\operatorname{Hom}_{T}\left(-, \mathbf{h}\left(\mathfrak{C}_{2}, \mathfrak{D}_{2}\right)\right)$-exact.
On the other hand, there are two exact sequences $0 \rightarrow M_{1} \xrightarrow{\theta} X \xrightarrow{\rho}$ $Q \rightarrow 0$ with $X \in \mathfrak{C}_{2}$ which is $\operatorname{Hom}_{A}\left(\mathfrak{C}_{1},-\right)$-exact and $\operatorname{Hom}_{A}\left(-, \mathfrak{C}_{2}\right)$-exact, and $0 \rightarrow M_{2} \xrightarrow{g_{2}} Y \xrightarrow{\pi_{2}} L_{2} \rightarrow 0$ with $Y \in \mathfrak{D}_{2}$ which is $\operatorname{Hom}_{B}\left(\mathfrak{D}_{1},-\right)$-exact
and $\operatorname{Hom}_{B}\left(-, \mathfrak{D}_{2}\right)$-exact. Define $g_{1}: M_{1} \rightarrow X \oplus \operatorname{Hom}_{B}(U, Y)$ by $g_{1}(x)=$ $\left(\theta(x), \operatorname{Hom}_{B}\left(U, g_{2}\right) \widetilde{\varphi^{M}}(x)\right)$ for $x \in M_{1}$. Since $g_{1}$ is clearly a monomorphism, we get a monomorphism $\binom{g_{1}}{g_{2}}: M \rightarrow \mathbf{h}(X, Y)$. Let $L=\binom{L_{1}}{L_{2}}_{\varphi^{L}}=\operatorname{coker}\binom{g_{1}}{g_{2}}$. Then we get the exact sequence
with $\mathbf{h}(X, Y) \in \mathbf{h}\left(\mathfrak{C}_{2}, \mathfrak{D}_{2}\right)$. Let $j: X \oplus \operatorname{Hom}_{B}(U, Y) \rightarrow X$ be the projection. Then $\theta=j g_{1}$. Let $\mathbf{h}\left(C_{2}, D_{2}\right) \in \mathbf{h}\left(\mathfrak{C}_{2}, \mathfrak{D}_{2}\right)$. Since $\theta^{*}: \operatorname{Hom}_{A}\left(X, C_{2}\right) \rightarrow$ $\operatorname{Hom}_{A}\left(M_{1}, C_{2}\right)$ is an epimorphism, we obtain the epimorphism $g_{1}^{*}: \operatorname{Hom}_{A}(X \oplus$ $\left.\operatorname{Hom}_{B}(U, Y), C_{2}\right) \rightarrow \operatorname{Hom}_{A}\left(M_{1}, C_{2}\right)$. Also $g_{2}^{*}: \operatorname{Hom}_{B}\left(Y, D_{2}\right) \rightarrow \operatorname{Hom}_{B}\left(M_{2}, D_{2}\right)$ is an epimorphism. Thus from the following commutative diagram:

we infer that $0 \rightarrow M \rightarrow \mathbf{h}(X, Y) \rightarrow L \rightarrow 0$ is $\operatorname{Hom}_{T}\left(-, \mathbf{h}\left(\mathfrak{C}_{2}, \mathfrak{D}_{2}\right)\right)$-exact.
Let $\mathbf{p}\left(C_{1}, D_{1}\right) \in \mathbf{p}\left(\mathfrak{C}_{1}, \mathfrak{D}_{1}\right)$. Applying $\operatorname{Hom}_{A}\left(C_{1},-\right)$ to the following commutative diagram with exact rows and columns:

we have the following commutative diagram with exact rows:


Notice that $\rho_{*}$ is an epimorphism, so $\left(\pi_{1}\right)_{*}$ is an epimorphism by the Snake lemma. Also $\left(\pi_{2}\right)_{*}: \operatorname{Hom}_{B}\left(D_{1}, Y\right) \rightarrow \operatorname{Hom}_{B}\left(D_{1}, L_{2}\right)$ is an epimorphism. So the commutative diagram:

implies that $0 \rightarrow M \rightarrow \mathbf{h}(X, Y) \rightarrow L \rightarrow 0$ is $\operatorname{Hom}_{T}\left(\mathbf{p}\left(\mathfrak{C}_{1}, \mathfrak{D}_{1}\right)\right.$, -)-exact.
Thus $\left(\mathbf{p}\left(\mathfrak{C}_{1}, \mathfrak{D}_{1}\right), \mathbf{h}\left(\mathfrak{C}_{2}, \mathfrak{D}_{2}\right)\right)$ is an admissible balanced pair by Lemma 2.1.
$(2) \Rightarrow(1)$ We first prove that $\left(\mathfrak{C}_{1}, \mathfrak{C}_{2}\right)$ is an admissible balanced pair. For any left $A$-module $M_{1}$, by Lemma 2.1, there is an exact sequence $0 \rightarrow J \rightarrow$ $\mathbf{p}\left(X_{1}, X_{2}\right) \rightarrow \mathbf{h}\left(M_{1}, 0\right) \rightarrow 0$ with $\mathbf{p}\left(X_{1}, X_{2}\right) \in \mathbf{p}\left(\mathfrak{C}_{1}, \mathfrak{D}_{1}\right)$ and $J=\binom{J_{1}}{J_{2}}_{\varphi^{J}}$, which is $\operatorname{Hom}_{T}\left(\mathbf{p}\left(\mathfrak{C}_{1}, \mathfrak{D}_{1}\right)\right.$, -$)$-exact and $\operatorname{Hom}_{T}\left(-, \mathbf{h}\left(\mathfrak{C}_{2}, \mathfrak{D}_{2}\right)\right)$-exact. Let $C_{1} \in$ $\mathfrak{C}_{1}$ and $C_{2} \in \mathfrak{C}_{2}$. Then we get two commutative diagrams with exact rows:

and


So $0 \rightarrow J_{1} \rightarrow X_{1} \rightarrow M_{1} \rightarrow 0$ is $\operatorname{Hom}_{A}\left(\mathfrak{C}_{1},-\right)$-exact and $\operatorname{Hom}_{B}\left(-, \mathfrak{C}_{2}\right)$-exact.
On the other hand, by Lemma 2.1, there is an exact sequence

$$
0 \rightarrow \mathbf{h}\left(M_{1}, 0\right) \rightarrow \mathbf{h}\left(Y_{1}, Y_{2}\right) \xrightarrow{\binom{\phi}{\theta}} E \rightarrow 0
$$

with $\mathbf{h}\left(Y_{1}, Y_{2}\right) \in \mathbf{h}\left(\mathfrak{C}_{2}, \mathfrak{D}_{2}\right)$ and $E=\binom{E_{1}}{E_{2}}_{\varphi^{E}}$, which is $\operatorname{Hom}_{T}\left(\mathbf{p}\left(\mathfrak{C}_{1}, \mathfrak{D}_{1}\right)\right.$,-)exact and $\operatorname{Hom}_{T}\left(-, \mathbf{h}\left(\mathfrak{C}_{2}, \mathfrak{D}_{2}\right)\right)$-exact. It is obvious that $\theta: Y_{2} \rightarrow E_{2}$ is an isomorphism. For $C_{1} \in \mathfrak{C}_{1}$ and $C_{2} \in \mathfrak{C}_{2}$, we get the following commutative diagrams with exact rows:

and


Also, there is the following commutative diagram with exact rows and columns:


Applying $\operatorname{Hom}_{A}\left(-, C_{2}\right)$ and $\operatorname{Hom}_{A}\left(C_{1},-\right)$ to the above diagram, we obtain that $0 \rightarrow M_{1} \rightarrow Y_{1} \rightarrow Q \rightarrow 0$ is $\operatorname{Hom}_{A}\left(-, \mathcal{C}_{2}\right)$-exact and get the following commutative diagram with exact rows:


Notice that $\phi_{*}$ is an epimorphism, so $\rho_{*}$ is an epimorphism. Thus $0 \rightarrow M_{1} \rightarrow$ $Y_{1} \rightarrow Q \rightarrow 0$ is $\operatorname{Hom}_{A}\left(\mathcal{C}_{1},-\right)$-exact.

It follows that $\left(\mathfrak{C}_{1}, \mathfrak{C}_{2}\right)$ is an admissible balanced pair by Lemma 2.1. By a similar proof, $\left(\mathfrak{D}_{1}, \mathfrak{D}_{2}\right)$ is an admissible balanced pair.

Remark 2.3. In the proof of $(2) \Rightarrow(1)$ in Theorem 2.2 , we may also obtain that $\left(\mathfrak{D}_{1}, \mathfrak{D}_{2}\right)$ is an admissible balanced pair by applying [9, Corollary 2.4]. In fact, let $f=(0, B) \otimes_{T}-, i=\mathbf{p}(0,-), g=\operatorname{Hom}_{T}\left(\binom{0}{B},-\right), r=\mathbf{h}(-, 0), e=$ $\operatorname{Hom}_{T}\left(\binom{A}{U},-\right), l=\mathbf{p}(-, 0)$. Then by [9, Lemma 3.2], we get the recollement

If $\left(\mathbf{p}\left(\mathfrak{C}_{1}, \mathfrak{D}_{1}\right), \mathbf{h}\left(\mathfrak{C}_{2}, \mathfrak{D}_{2}\right)\right)$ is an admissible balanced pair in $T$-Mod, then by [9, Corollary 2.4], $\left(\mathfrak{D}_{1}, \mathfrak{D}_{2}\right)=\left(f\left(\mathbf{p}\left(\mathfrak{C}_{1}, \mathfrak{D}_{1}\right)\right), g\left(\mathbf{h}\left(\mathfrak{C}_{2}, \mathfrak{D}_{2}\right)\right)\right)$ is an admissible balanced pair in $B$-Mod.

Let $\mathfrak{C}$ be a class of left $A$-modules and $\mathfrak{D}$ be a class of left $B$-modules. We will denote by $\mathfrak{P}_{\mathfrak{D}}^{\mathfrak{C}}$ the class of left $T$-modules $\left\{\binom{M_{1}}{M_{2}}_{\varphi^{M}}: M_{1} \in \mathfrak{C}\right.$ and
$M_{2} / \operatorname{im}\left(\varphi^{M}\right) \in \mathfrak{D}, \varphi^{M}$ is a monomorphism $\}$, denote by $\mathfrak{I}_{\mathfrak{D}}^{\mathcal{C}}$ the class of left $T$ modules $\left\{\binom{M_{1}}{M_{2}}_{\varphi^{M}}: \operatorname{ker}\left(\widetilde{\varphi^{M}}\right) \in \mathfrak{C}\right.$ and $M_{2} \in \mathfrak{D}, \widetilde{\varphi^{M}}$ is an epimorphism $\}$ and denote by $\mathfrak{A}_{\mathfrak{D}}^{\mathfrak{C}}$ the class of left $T$-modules $\left\{\binom{M_{1}}{M_{2}}_{\varphi^{M}}: M_{1} \in \mathfrak{C}\right.$ and $\left.M_{2} \in \mathfrak{D}\right\}$.

Let $\mathfrak{C}_{1}$ and $\mathfrak{C}_{2}$ be two classes of left $A$-modules, $\mathfrak{D}_{1}$ and $\mathfrak{D}_{2}$ two classes of left $B$-modules. Next we study when $\left(\mathfrak{P}_{\mathfrak{D}_{1}}^{\mathfrak{C}_{1}}, \mathfrak{I}_{\mathfrak{D}_{2}}^{\mathfrak{C}_{2}}\right)$ is an admissible balanced pair.

Proposition 2.4. Let $\mathfrak{C}_{1}$ and $\mathfrak{C}_{2}$ be two classes of left $A$-modules, $\mathfrak{D}_{1}$ and $\mathfrak{D}_{2}$ be two classes of left B-modules. If $\left(\mathfrak{P}_{\mathfrak{D}_{1}}^{\mathfrak{C}_{1}}, \mathfrak{I}_{\mathfrak{D}_{2}}^{\mathfrak{C}_{2}}\right)$ is an admissible balanced pair, then $\left(\mathfrak{C}_{1}, \mathfrak{C}_{2}\right)$ and $\left(\mathfrak{D}_{1}, \mathfrak{D}_{2}\right)$ are admissible balanced pairs.

Proof. We first prove that $\left(\mathfrak{C}_{1}, \mathfrak{C}_{2}\right)$ is an admissible balanced pair. For any left $A$-module $M_{1}$, by Lemma 2.1, there is an exact sequence $0 \rightarrow J \rightarrow$ $X \rightarrow \mathbf{h}\left(M_{1}, 0\right) \rightarrow 0$ with $X=\binom{X_{1}}{X_{2}}_{\varphi^{X}} \in \mathfrak{P}_{\mathfrak{D}_{1}}^{\mathfrak{C}_{1}}$ and $J=\binom{J_{1}}{J_{2}}_{\varphi^{J}}$, which is $\operatorname{Hom}_{T}\left(\mathfrak{P}_{\mathfrak{D}_{1}}^{\mathfrak{C}_{1}},-\right)$-exact and $\operatorname{Hom}_{T}\left(-, \mathfrak{I}_{\mathfrak{D}_{2}}^{\mathfrak{C}_{2}}\right)$-exact. Let $C_{1} \in \mathfrak{C}_{1}$ and $C_{2} \in \mathfrak{C}_{2}$. Note that $\mathbf{p}\left(\mathfrak{C}_{1}, \mathfrak{D}_{1}\right) \subseteq \mathfrak{P}_{\mathfrak{D}_{1}}^{\mathfrak{C}_{1}}$ and $\mathbf{h}\left(\mathfrak{C}_{2}, \mathfrak{D}_{2}\right) \subseteq \mathfrak{I}_{\mathfrak{D}_{2}}^{\mathfrak{C}_{2}}$, hence we get the following commutative diagrams with exact rows:

and


So $0 \rightarrow J_{1} \rightarrow X_{1} \rightarrow M_{1} \rightarrow 0$ is $\operatorname{Hom}_{A}\left(\mathfrak{C}_{1},-\right)$-exact and $\operatorname{Hom}_{A}\left(-, \mathfrak{C}_{2}\right)$ exact. On the other hand, by Lemma 2.1, there is an exact sequence $0 \rightarrow$ $\mathbf{h}\left(M_{1}, 0\right) \rightarrow Y \xrightarrow{\binom{\phi}{\Theta}} E \rightarrow 0$ with $Y=\binom{Y_{1}}{Y_{2}}_{\varphi^{Y}} \in \mathfrak{I}_{\mathfrak{D}_{2}}^{\mathfrak{C}_{2}}$ and $E=\binom{E_{1}}{E_{2}}_{\varphi^{E}}$, which is $\operatorname{Hom}_{T}\left(\mathfrak{P}_{\mathfrak{D}_{1}}^{\mathfrak{C}_{1}},-\right)$-exact and $\operatorname{Hom}_{T}\left(-, \mathfrak{I}_{\mathfrak{D}_{2}}^{\mathfrak{C}_{2}}\right)$-exact. Note that $\theta: Y_{2} \rightarrow E_{2}$ is an isomorphism. For $C_{1} \in \mathfrak{C}_{1}$ and $C_{2} \in \mathfrak{C}_{2}$, we have the following commutative diagrams with exact rows:

and


Applying $\operatorname{Hom}_{A}\left(-, C_{2}\right)$ and $\operatorname{Hom}_{A}\left(C_{1},-\right)$ to the following commutative diagram with exact rows and columns:

we obtain that $0 \rightarrow M_{1} \rightarrow \operatorname{ker}\left(\widetilde{\varphi^{Y}}\right) \rightarrow Q \rightarrow 0$ is $\operatorname{Hom}_{A}\left(-, \mathcal{C}_{2}\right)$-exact and get the following commutative diagram with exact rows:


Since $\phi_{*}$ is an epimorphism, $\rho_{*}$ is an epimorphism. Thus $0 \rightarrow M_{1} \rightarrow \operatorname{ker}\left(\widetilde{\varphi^{Y}}\right) \rightarrow$ $Q \rightarrow 0$ is $\operatorname{Hom}_{A}\left(\mathcal{C}_{1},-\right)$-exact. So $\left(\mathfrak{C}_{1}, \mathfrak{C}_{2}\right)$ is an admissible balanced pair by Lemma 2.1. By a similar proof, $\left(\mathfrak{D}_{1}, \mathfrak{D}_{2}\right)$ is an admissible balanced pair.

Given a class $\mathfrak{G}$ of left $R$-modules, we recall that a monomorphism $\alpha: M \rightarrow$ $N$ with $N \in \mathfrak{G}$ is a special $\mathfrak{G}$-preenvelope of $M$ [6] if $\operatorname{Ext}_{R}^{1}(\operatorname{coker}(\alpha), C)=0$ for all $C \in \mathfrak{G}$. Dually we have the definition of a special $\mathfrak{G}$-precover. Write $\mathfrak{G}^{\perp}=\left\{X: \operatorname{Ext}_{R}^{1}(C, X)=0\right.$ for all $\left.C \in \mathfrak{G}\right\}$ and ${ }^{\perp} \mathfrak{G}=\left\{L: \operatorname{Ext}^{1}(L, C)=\right.$ 0 for all $C \in \mathfrak{G}\}$. A pair $(\mathfrak{F}, \mathfrak{G})$ of classes of left $R$-modules is called a cotorsion pair [10] if $\mathfrak{F}^{\perp}=\mathfrak{G}$ and $\mathfrak{F}={ }^{\perp} \mathfrak{G}$. A cotorsion pair ( $\mathfrak{F}$, $\mathfrak{G}$ ) is called complete [10] if every left $R$-module has a special $\mathfrak{G}$-preenvelope, equivalently, every left $R$-module has a special $\mathfrak{F}$-precover by [10, Lemma 2.2.6]. A cotorsion pair ( $\mathfrak{F}$, $\mathfrak{G})$ is called hereditary [10] if whenever $0 \rightarrow L^{\prime} \rightarrow L \rightarrow L^{\prime \prime} \rightarrow 0$ is exact with
$L, L^{\prime \prime} \in \mathfrak{F}$, then $L^{\prime}$ is also in $\mathfrak{F}$, or equivalently, if $0 \rightarrow C^{\prime} \rightarrow C \rightarrow C^{\prime \prime} \rightarrow 0$ is exact with $C^{\prime}, C \in \mathfrak{G}$, then $C^{\prime \prime}$ is also in $\mathfrak{G}$.

Theorem 2.5. Suppose that $\left(\mathfrak{C}_{1}, \mathfrak{C}_{1}^{\perp}\right)$ and $\left({ }^{( } \mathfrak{C}_{2}, \mathfrak{C}_{2}\right)$ are complete hereditary cotorsion pairs in $A$-Mod with $\operatorname{Tor}_{i}^{A}\left(U, \mathfrak{C}_{1}\right)=0$ for any $i \geq 1$, $\left(\mathfrak{D}_{1}, \mathfrak{D}_{1}^{\perp}\right)$ and $\left({ }^{\perp} \mathfrak{D}_{2}, \mathfrak{D}_{2}\right)$ are complete hereditary cotorsion pairs in B-Mod with $\operatorname{Ext}_{B}^{i}\left(U, \mathfrak{D}_{2}\right)$ $=0$ for any $i \geq 1, \mathfrak{C}_{1} \bigcap \mathfrak{C}_{1}^{\perp} \subseteq{ }^{\perp} \mathfrak{C}_{2}, \mathfrak{C}_{2} \bigcap^{\perp} \mathfrak{C}_{2} \subseteq \mathfrak{C}_{1}^{\perp}, \mathfrak{D}_{1} \bigcap \mathfrak{D}_{1}^{\perp} \subseteq{ }^{\perp} \mathfrak{D}_{2}$ and $\mathfrak{D}_{2} \bigcap^{\perp} \mathfrak{D}_{2} \subseteq \mathfrak{D}_{1}^{\perp}$. The following conditions are equivalent:
(1) $\left(\mathfrak{C}_{1}, \mathfrak{C}_{2}\right)$ and $\left(\mathfrak{D}_{1}, \mathfrak{D}_{2}\right)$ are admissible balanced pairs.
(2) $\left(\mathfrak{P}_{\mathfrak{D}_{1}}^{\mathfrak{C}_{1}}, \mathfrak{T}_{\mathfrak{D}_{2}}^{\mathfrak{C}_{2}}\right)$ is an admissible balanced pair.
(3) $\mathfrak{C}_{1}^{\perp}={ }^{\perp} \mathfrak{C}_{2}^{2}$ and $\mathfrak{D}_{1}^{\perp}={ }^{\perp} \mathfrak{D}_{2}$.
(4) $\left(\mathfrak{P}_{\mathfrak{D}_{1}}^{\mathfrak{C}_{1}}\right)^{\perp}={ }^{\perp} \mathfrak{I}_{\mathfrak{D}_{2}}^{\mathfrak{C}_{2}}$.

Proof. (1) $\Rightarrow(3)$ Since $\left(\mathfrak{C}_{1}, \mathfrak{C}_{2}\right)$ is an admissible balanced pair, $\left(\mathfrak{C}_{1}, \mathfrak{C}_{1}^{\perp}\right)$ and $\left({ }^{\perp} \mathfrak{C}_{2}, \mathfrak{C}_{2}\right)$ are complete hereditary cotorsion pairs, $\mathfrak{C}_{1} \cap \mathfrak{C}_{1}^{\perp} \subseteq{ }^{\perp} \mathfrak{C}_{2}, \mathfrak{C}_{2} \bigcap^{\perp} \mathfrak{C}_{2} \subseteq$ $\mathfrak{C}_{1}^{\perp}$, we have $\mathfrak{C}_{1}^{\perp}={ }^{\perp} \mathfrak{C}_{2}$ by [7, Corollary 4.8]. Similarly, since $\left(\mathfrak{D}_{1}, \mathfrak{D}_{2}\right)$ is an admissible balanced pair, $\left(\mathfrak{D}_{1}, \mathfrak{D}_{1}^{\perp}\right)$ and $\left({ }^{\perp} \mathfrak{D}_{2}, \mathfrak{D}_{2}\right)$ are complete hereditary cotorsion pairs, $\mathfrak{D}_{1} \bigcap \mathfrak{D}_{1}^{\perp} \subseteq{ }^{\perp} \mathfrak{D}_{2}, \mathfrak{D}_{2} \bigcap^{\perp} \mathfrak{D}_{2} \subseteq \mathfrak{D}_{1}^{\perp}$, we have $\mathfrak{D}_{1}^{\perp}={ }^{\perp} \mathfrak{D}_{2}$.
$(3) \Rightarrow(2)$ Since $\left(\mathfrak{C}_{1}, \mathfrak{C}_{1}^{\perp}\right)$ and ( $\left.\mathfrak{D}_{1}, \mathfrak{D}_{1}^{\perp}\right)$ are complete hereditary cotorsion pairs with $\operatorname{Tor}_{i}^{A}\left(U, \mathfrak{C}_{1}\right)=0$ for any $i \geq 1$, $\left(\mathfrak{P}_{\mathfrak{D}_{1}}^{\mathfrak{C}_{1}}, \mathfrak{A}_{\mathfrak{D}_{1}^{\perp}}^{\mathfrak{C}_{1}^{\perp}}\right)$ is a complete hereditary cotorsion pair by [15, Theorem 5.6(1)]. Since $\left({ }^{\perp} \mathfrak{C}_{2}, \mathfrak{C}_{2}\right)$ and $\left({ }^{\perp} \mathfrak{D}_{2}, \mathfrak{D}_{2}\right)$ are complete hereditary cotorsion pairs with $\operatorname{Ext}_{B}^{i}\left(U, \mathfrak{D}_{2}\right)=0$ for any $i \geq 1$, $\left(\mathfrak{A}_{\perp_{\mathfrak{D}_{2}}}^{\perp}, \mathfrak{I}_{\mathfrak{D}_{2}}^{\mathfrak{C}_{2}}\right)$ is a complete hereditary cotorsion pair by [15, Theorem 5.6(2)]. Since $\mathfrak{A}_{\mathfrak{D}_{1}^{\perp}}^{\mathfrak{C}_{1}^{\perp}}=\mathfrak{A}_{+\mathfrak{D}_{2}}^{\perp} \mathfrak{C}_{2}$ by (3), $\left(\mathfrak{P}_{\mathfrak{D}_{1}}^{\mathfrak{C}_{1}}, \mathfrak{T}_{\mathfrak{D}_{2}}^{\mathfrak{C}_{2}}\right)$ is an admissible balanced pair by [4, Proposition 2.6] or [7, Proposition 4.2].
$(2) \Rightarrow(1)$ follows from Proposition 2.4.
$(3) \Leftrightarrow(4)$ By [15, Theorem 4.2], $\left(\mathfrak{P}_{\mathfrak{D}_{1}}^{\mathfrak{C}_{1}}\right)^{\perp}=\mathfrak{A}_{\mathfrak{D}_{1}^{\perp}}^{\mathfrak{C}_{1}^{\perp}}$ and ${ }^{\perp} \mathfrak{I}_{\mathfrak{D}_{2}}^{\mathfrak{C}_{2}}=\mathfrak{A}_{\perp \mathfrak{D}_{2}}^{\perp}$. $\mathfrak{C}_{2}$ So $\left(\mathfrak{P}_{\mathfrak{D}_{1}}^{\mathfrak{C}_{1}}\right)^{\perp}={ }^{\perp} \mathfrak{J}_{\mathfrak{D}_{2}}^{\mathfrak{C}_{2}}$ if and only if $\mathfrak{C}_{1}^{\perp}={ }^{\perp} \mathfrak{C}_{2}$ and $\mathfrak{D}_{1}^{\perp}={ }^{\perp} \mathfrak{D}_{2}$.

Corollary 2.6. Let $R$ be a ring, $T(R)=\left(\begin{array}{c}R \\ R\end{array} R_{R}\right),\left(\mathfrak{C}_{1}, \mathfrak{C}_{1}^{\perp}\right)$ and $\left({ }^{\perp} \mathfrak{C}_{2}, \mathfrak{C}_{2}\right)$ be complete hereditary cotorsion pairs in $R$-Mod. The following conditions are equivalent:
(1) $\left(\mathfrak{C}_{1}, \mathfrak{C}_{2}\right)$ is an admissible balanced pair, $\mathfrak{C}_{1} \bigcap \mathfrak{C}_{1}^{\perp} \subseteq{ }^{\perp} \mathfrak{C}_{2}$, $\mathfrak{C}_{2} \bigcap^{\perp} \mathfrak{C}_{2} \subseteq \mathfrak{C}_{1}^{\perp}$.
(2) $\left(\mathfrak{P}_{\mathfrak{C}_{1}}^{\mathfrak{C}_{1}}, \mathfrak{I}_{\mathfrak{C}_{2}}^{\mathcal{C}_{2}}\right)$ is an admissible balanced pair in $T(R)$-Mod.
(3) $\mathfrak{C}_{1}^{\perp}={ }^{\perp} \mathfrak{C}_{2}$.
(4) $\left(\mathfrak{P}_{\mathfrak{C}_{1}}^{\mathfrak{C}_{1}}\right)^{\perp}={ }^{\perp} \mathfrak{I}_{\mathfrak{C}_{2}}^{\mathfrak{C}_{2}}$.

Proof. (4) $\Leftrightarrow(3) \Rightarrow(1) \Rightarrow(2)$ follow from Theorem 2.5 by letting $\mathfrak{D}_{1}=\mathfrak{C}_{1}$ and $\mathfrak{D}_{2}=\mathfrak{C}_{2}$.
$(2) \Rightarrow(3)$ Let $M \in{ }^{\perp} \mathfrak{C}_{2}$. For $X=\binom{X_{1}}{X_{2}}_{\varphi^{x}} \in \mathfrak{I}_{\mathfrak{C}_{2}}^{\mathfrak{C}_{2}}$, we get the following commutative diagram with the second row exact:


So the exact sequence $0 \rightarrow \mathbf{p}(0, M) \rightarrow \mathbf{p}(M, 0) \rightarrow \mathbf{h}(M, 0) \rightarrow 0$ is $\operatorname{Hom}_{T}\left(-, \mathfrak{I}_{\mathfrak{C}_{2}}^{\mathfrak{C}_{2}}\right)$-exact. By Lemma 2.1, it is also $\operatorname{Hom}_{T}\left(\mathfrak{P}_{\mathfrak{C}_{1}}^{\mathfrak{C}_{1}},-\right)$-exact. For $N \in \mathfrak{C}_{1}$, there is an exact sequence $0 \rightarrow K_{1} \xrightarrow{\lambda} K_{2} \rightarrow N \rightarrow 0$ with $K_{2}$ projective. Let $K=\binom{K_{1}}{K_{2}}_{\lambda}$. Then $K \in \mathfrak{P}_{\mathfrak{C}_{1}}^{\mathfrak{C}_{1}}$. Note that $\mathbf{p}(M, 0) \cong \mathbf{h}(0, M)$. Hence $\operatorname{Hom}_{T}(K, \mathbf{h}(0, M)) \rightarrow \operatorname{Hom}_{T}(K, \mathbf{h}(M, 0)) \rightarrow 0$ is exact. So $\operatorname{Hom}_{R}\left(K_{2}, M\right) \rightarrow$ $\operatorname{Hom}_{R}\left(K_{1}, M\right) \rightarrow 0$ is exact. Hence $M \in N^{\perp}$. Thus ${ }^{\perp} \mathfrak{C}_{2} \subseteq \mathfrak{C}_{1}^{\perp}$.

Let $F \in \mathfrak{C}_{1}^{\perp}$. For $Y=\binom{Y_{1}}{Y_{2}}_{\varphi^{Y}} \in \mathfrak{P}_{\mathfrak{C}_{1}}^{\mathfrak{C}_{1}}$, we get the following commutative diagram with the second row exact:


So the exact sequence $0 \rightarrow \mathbf{p}(0, F) \rightarrow \mathbf{h}(0, F) \rightarrow \mathbf{h}(F, 0) \rightarrow 0$ is $\operatorname{Hom}_{T}\left(\mathfrak{P}_{\mathfrak{C}_{1}}^{\mathfrak{C}_{1}},-\right)$ exact. By Lemma 2.1, it is also $\operatorname{Hom}_{T}\left(-, \mathfrak{I}_{\mathfrak{C}_{2}}^{\mathfrak{C}_{2}}\right)$-exact. For $G \in \mathfrak{C}_{2}$, there is an exact sequence $0 \rightarrow G \rightarrow L_{1} \xrightarrow{\rho} L_{2} \rightarrow 0$ with $L_{1}$ injective. Let $L=$ $\binom{L_{1}}{L_{2}}_{\rho}$. Then $L \in \mathfrak{J}_{\mathfrak{C}_{2}}^{\mathcal{C}_{2}}$. Note that $\mathbf{p}(F, 0) \cong \mathbf{h}(0, F)$. Thus $\operatorname{Hom}_{T}(\mathbf{p}(F, 0), L) \rightarrow$ $\operatorname{Hom}_{T}(\mathbf{p}(0, F), L) \rightarrow 0$ is exact. $\operatorname{So~}_{\operatorname{Hom}_{R}\left(F, L_{1}\right) \rightarrow \operatorname{Hom}_{R}\left(F, L_{2}\right) \rightarrow 0 \text { is exact. }}^{\text {. }}$ Hence $F \in{ }^{\perp} G$ and so $\mathfrak{C}_{1}^{\perp} \subseteq{ }^{\perp} \mathfrak{C}_{2}$.

It follows that $\mathfrak{C}_{1}^{\perp}={ }^{\perp} \mathfrak{C}_{2}$.
Finally, as an application, we consider the balanced pairs of Gorenstein $T$ modules.

Recall that a left $R$-module $M$ is Gorenstein projective [6] if there is an exact sequence $\cdots \rightarrow P^{-2} \rightarrow P^{-1} \rightarrow P^{0} \rightarrow P^{1} \rightarrow \cdots$ of projective left $R$-modules with $M=\operatorname{ker}\left(P^{0} \rightarrow P^{1}\right)$, which remains exact after applying $\operatorname{Hom}_{R}(-, P)$ for any projective left $R$-module $P$.

Dually, a left $R$-module $N$ is called Gorenstein injective [6] if there is an exact sequence $\cdots \rightarrow E^{-2} \rightarrow E^{-1} \rightarrow E^{0} \rightarrow E^{1} \rightarrow \cdots$ of injective left $R$-modules with $N=\operatorname{ker}\left(E^{0} \rightarrow E^{1}\right)$, which remains exact after applying $\operatorname{Hom}_{R}(E,-)$ for any injective left $R$-module $E$.

We denote by ${ }_{R} \mathcal{G P}$ (resp. ${ }_{R} \mathcal{G \mathcal { I }}$ ) the class of Gorenstein projective (resp. Gorenstein injective) left $R$-modules.

Suppose that $U_{A}$ has finite flat dimension and ${ }_{B} U$ has finite projective dimension. By [16, Remarks 3.11 and 4.11], a left $T$-module $M=\binom{M_{1}}{M_{2}}_{\varphi^{M}}$ is Gorenstein projective if and only if $M_{1}$ is a Gorenstein projective left $A$-module, $M_{2} / \operatorname{im}\left(\varphi^{M}\right)$ is a Gorenstein projective left $B$-module and $\varphi^{M}$ is a monomorphism; $M=\binom{M_{1}}{M_{2}}_{\varphi^{M}}$ is Gorenstein injective if and only if $M_{2}$ is a Gorenstein injective left $B$-module, $\operatorname{ker}\left(\widetilde{\varphi^{M}}\right)$ is a Gorenstein injective left $A$-module and $\stackrel{\varphi^{M}}{ }$ is an epimorphism.

Corollary 2.7. Suppose that $U_{A}$ has finite flat dimension and ${ }_{B} U$ has finite projective dimension. If $\left({ }_{T} \mathcal{G} \mathcal{P},{ }_{T} \mathcal{G} \mathcal{I}\right)$ is an admissible balanced pair, then $\left({ }_{A} \mathcal{G} \mathcal{P}\right.$, $\left.{ }_{A} \mathcal{G I}\right)$ and $\left({ }_{B} \mathcal{G P},{ }_{B} \mathcal{G \mathcal { I }}\right)$ are admissible balanced pairs.

Proof. It is an immediate consequence of Proposition 2.4.
Recall that a ring $R$ is left virtually Gorenstein [3] if $\left({ }_{R} \mathcal{G P}\right)^{\perp}={ }^{\perp}\left({ }_{R} \mathcal{G \mathcal { I }}\right)$. Such rings were first introduced and studied in the context of representation theory of artin algebras by Beligiannis and Reiten. Examples of virtually Gorenstein rings include Iwanaga-Gorenstein rings and artin algebras of finite representation type.

Theorem 2.8. Suppose that $U_{A}$ is flat and ${ }_{B} U$ is projective, $A$ and $B$ are left noetherian rings with finite left self-injective dimensions. The following conditions are equivalent:
(1) $\left({ }_{A} \mathcal{G \mathcal { P }},{ }_{A} \mathcal{G} \mathcal{I}\right)$ and $\left({ }_{B} \mathcal{G \mathcal { P }},{ }_{B} \mathcal{G} \mathcal{I}\right)$ are admissible balanced pairs.
(2) $\left({ }_{T} \mathcal{G P},{ }_{T} \mathcal{G \mathcal { I }}\right)$ is an admissible balanced pair.
(3) $\left(\boldsymbol{p}\left({ }_{A} \mathcal{G} \mathcal{P},{ }_{B} \mathcal{G} \mathcal{P}\right), \boldsymbol{h}\left({ }_{A} \mathcal{G I},{ }_{B} \mathcal{G} \mathcal{I}\right)\right)$ is an admissible balanced pair.
(4) $A$ and $B$ are left virtually Gorenstein rings.
(5) $T$ is a left virtually Gorenstein ring.

Proof. Because $A$ and $B$ are left noetherian rings with finite left self-injective dimensions, all projective left $A$-modules and projective left $B$-modules have finite injective dimensions. By [18, Theorem 4.2], $\left({ }_{A} \mathcal{G} \mathcal{P},\left({ }_{A} \mathcal{G} \mathcal{P}\right)^{\perp}\right)$ and $\left({ }_{B} \mathcal{G} \mathcal{P}\right.$, $\left.\left({ }_{B} \mathcal{G P}\right)^{\perp}\right)$ are complete hereditary cotorsion pairs. Also by [17, Theorem 5.6], $\left({ }^{\perp}\left({ }_{A} \mathcal{G I}\right),{ }_{A} \mathcal{G I}\right)$ and $\left({ }^{\perp}\left({ }_{B} \mathcal{G I}\right),{ }_{B} \mathcal{G I}\right)$ are complete hereditary cotorsion pairs. By [7, p. 78], we have ${ }_{A} \mathcal{G P} \bigcap\left({ }_{A} \mathcal{G P}\right)^{\perp}={ }_{A} \mathcal{P} \subseteq{ }^{\perp}\left({ }_{A} \mathcal{G I}\right),{ }_{A} \mathcal{G I} \bigcap^{\perp}\left({ }_{A} \mathcal{G I}\right)=$ ${ }_{A} \mathcal{I} \subseteq\left({ }_{A} \mathcal{G P}\right)^{\perp},{ }_{B} \mathcal{G P} \bigcap\left({ }_{B} \mathcal{G \mathcal { P }}\right)^{\perp}={ }_{B} \mathcal{P} \subseteq{ }^{\perp}\left({ }_{B} \mathcal{G} \mathcal{I}\right)$ and ${ }_{B} \mathcal{G \mathcal { I }} \bigcap^{\perp}\left({ }_{B} \mathcal{G I}\right)={ }_{B} \mathcal{I} \subseteq$ $\left({ }_{B} \mathcal{G} \mathcal{I}\right)^{\perp}$. Thus the result follows immediately from Theorems 2.2 and 2.5.

Corollary 2.9. Let $R$ be a left noetherian ring with finite left self-injective dimension and $T(R)=\left(\begin{array}{l}R \\ R\end{array}\right.$
(1) $\left({ }_{R} \mathcal{G P},{ }_{R} \mathcal{G \mathcal { I }}\right)$ is an admissible balanced pair.
(2) $\left.{ }_{T(R)} \mathcal{G} \mathcal{P},{ }_{T(R)} \mathcal{G} \mathcal{I}\right)$ is an admissible balanced pair.
(3) $\left(\boldsymbol{p}\left({ }_{R} \mathcal{G} \mathcal{P},{ }_{R} \mathcal{G} \mathcal{P}\right), \boldsymbol{h}\left({ }_{R} \mathcal{G \mathcal { I }},{ }_{R} \mathcal{G \mathcal { I }}\right)\right)$ is an admissible balanced pair.
(4) $R$ is a left virtually Gorenstein ring.
(5) $T(R)$ is a left virtually Gorenstein ring.

## References

[1] J. Asadollahi and S. Salarian, On the vanishing of Ext over formal triangular matrix rings, Forum Math. 18 (2006), no. 6, 951-966. https://doi.org/10.1515/FORUM. 2006. 048
[2] M. Auslander and S. O. Smalø, Preprojective modules over Artin algebras, J. Algebra 66 (1980), no. 1, 61-122. https://doi.org/10.1016/0021-8693(80)90113-1
[3] A. Beligiannis and I. Reiten, Homological and homotopical aspects of torsion theories, Mem. Amer. Math. Soc. 188 (2007), no. 883, viii+207 pp. https://doi.org/10.1090/ memo/0883
[4] X. Chen, Homotopy equivalences induced by balanced pairs, J. Algebra 324 (2010), no. 10, 2718-2731. https://doi.org/10.1016/j.jalgebra.2010.09.002
[5] E. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), no. 3, 189-209. https://doi.org/10.1007/BF02760849
[6] E. E. Enochs and O. M. G. Jenda, Relative homological algebra, De Gruyter Expositions in Mathematics, 30, Walter de Gruyter \& Co., Berlin, 2000. https://doi.org/10.1515/ 9783110803662
[7] S. Estrada, M. A. Pérez, and H. Zhu, Balanced pairs, cotorsion triplets and quiver representations, Proc. Edinb. Math. Soc. (2) 63 (2020), no. 1, 67-90. https://doi.org/ 10.1017/s0013091519000270
[8] R. M. Fossum, P. A. Griffith, and I. Reiten, Trivial extensions of abelian categories, Lecture Notes in Mathematics, Vol. 456, Springer-Verlag, Berlin, 1975.
[9] X. Fu, Y. Hu, and H. Yao, The resolution dimensions with respect to balanced pairs in the recollement of abelian categories, J. Korean Math. Soc. 56 (2019), no. 4, 1031-1048. https://doi.org/10.4134/JKMS.j180577
[10] R. Göbel and J. Trlifaj, Approximations and endomorphism algebras of modules, De Gruyter Expositions in Mathematics, 41, Walter de Gruyter GmbH \& Co. KG, Berlin, 2006. https://doi.org/10.1515/9783110199727
[11] E. L. Green, On the representation theory of rings in matrix form, Pacific J. Math. 100 (1982), no. 1, 123-138. http://projecteuclid.org/euclid.pjm/1102725383
[12] A. Haghany and K. Varadarajan, Study of formal triangular matrix rings, Comm. Algebra 27 (1999), no. 11, 5507-5525. https://doi.org/10.1080/00927879908826770
[13] , Study of modules over formal triangular matrix rings, J. Pure Appl. Algebra 147 (2000), no. 1, 41-58. https://doi.org/10.1016/S0022-4049(98)00129-7
[14] P. Krylov and A. Tuganbaev, Formal matrices, Algebra and Applications, 23, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-53907-2
[15] L. Mao, Cotorsion pairs and approximation classes over formal triangular matrix rings, J. Pure Appl. Algebra 224 (2020), no. 6, 106271, 21 pp. https://doi.org/10.1016/j. jpaa.2019.106271
[16] , Gorenstein flat modules and dimensions over formal triangular matrix rings, J. Pure Appl. Algebra 224 (2020), no. 4, 106207, 10 pp. https://doi.org/10.1016/j. jpaa.2019.106207
[17] J. Šaroch and J. Šťovíček, Singular compactness and definability for $\Sigma$-cotorsion and Gorenstein modules, Selecta Math. (N.S.) 26 (2020), no. 2, Paper No. 23, 40 pp. https: //doi.org/10.1007/s00029-020-0543-2
[18] J. Wang and L. Liang, A characterization of Gorenstein projective modules, Comm. Algebra 44 (2016), no. 4, 1420-1432. https://doi.org/10.1080/00927872.2015.1027356

## Lixin Mao

Department of Mathematics and Physics
Nanjing Institute of Technology
Nanjing 211167, P. R. China
Email address: maolx2@hotmail.com


[^0]:    Received November 1, 2020; Revised July 27, 2021; Accepted August 19, 2021.
    2010 Mathematics Subject Classification. Primary 16D20, 16D90, 16E05.
    Key words and phrases. Formal triangular matrix ring, balanced pair, cotorsion pair. This work was financially supported by NSFC (11771202). The author wants to express his gratitude to the referee for the very helpful comments and suggestions.

