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NOTE ON GOOD IDEALS IN
GORENSTEIN LOCAL RINGS

MEeE-Kyouncg Kim

ABSTRACT. Let I be an ideal in a Gorenstein local ring A with
the maximal ideal m and d = dim A. Then we say that I is a good
ideal in A, if I contains a reduction Q = (a1,a2, - ,a4) generated
by d elements in A and G(I) = @,>I"/I™t! of I is a Gorenstein
ring with a(G(I)) = 1 —~ d, where a(G(I)) denotes the a-invariant
of G(I). Let S = A[Q/a1] and P = mS. In this paper, we show
that the following conditions are equivalent.

(VD I°P=Qland I=Q: 1.

(2) I?S =a1IS and IS = a15 :5 IS.

(3) I*Sp = a1ISp and ISp = a15p :s,, ISp.
We denote by X4(Q) the set of good ideals I in X4 such that I
contains @ as a reduction. As a Corollary of this result, we show
that

IeX4(Q) < ISp € X5,(QpP).

1. Introduction

Let A be a Gorenstein local ring with the maximal ideal m and d =
dim A. Let I denote an m-primary ideal in A. Then we say that [ is a
good ideal in A if I contains a parameter ideal (c1,ca, -+ ,¢4) in A as a
reduction and the associated graded ring G(I) = @50l /1" of I is a
Gorenstein ring with a(G(I)) = 1 — d ([3]), where a(G(I)) denotes the
a-invariant of G([) ([4], Definition (3.1.4)). We denote by X4 the set of
good ideals I in A. The concept of good ideals was first introduced by S.
Goto, S. Tai, and K. Watanabe and they intensively studied m-primary
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good ideals in a given Gorenstein local ring and gave many inspiring
results ([3]).

Let @ = (a1,az2, - ,aq) be a fixed parameter ideal in A. Let § =
A[Q/a;] and P = mS. We denote by X4(Q) the set of good ideals I in
X4 such that I contains () as a reduction. With this notation the main
result of this paper is stated as follows.

THEOREM 1.1. Let I (# A) be an ideal in A. Suppose that I contains
a parameter ideal Q = (a1, -+ ,a4) as a reduction. Then the following
conditions are equivalent.

(1) I2=QlandI=Q:1.
(2) I2S = a1]S and IS =a15 lg IS.
(3) IQSP = a1]Sp and ISP = alSp ‘Sp ISP.

COROLLARY 1.2. Let I (# A) be an ideal in A. Suppose that I
contains a parameter ideal Q = (ay,--- ,a4) as a reduction. Then the
following conditions are equivalent.

(1) 1€ Xa(Q).
(2) ISp ¢ XSP(QSP).

In what follows, let (4, m) be a Gorenstein local ring and d = dimA.
Let K = Q(A) be the total quotient ring of A. We denote by 4 (*) the
number of generators and £4(*) the length.

Let B = @&,z B, be a Noetherian graded ring and assume that B con-
tains a unique graded maximal ideal 9. We denote by Hi,(x) (i € Z)
the it2 local cohomology functor of B with respect to M. For each
graded B-module E and n € Z, let [Hi,(E)], denote the homogeneous
component of the graded B-module Hi, of degree n. Let E be a graded
B-module. For each n € Z let E(n) stand for the graded B-module,
whose underlying B-module coincides with that of £ and whose grad-
uation is given by [E(n)); = E,4; for all i € Z. We refer the reader to
[5], [1], or [6] for any unexplained notation or terminology.

2. Preliminaries

Let (A,m) be a d-dimensional Gorenstein local ring with d > 2 and
K = Q(A) be the total quotient ring of A. Let Q = (ay, -+ ,aq) be
a fixed parameter ideal for A. Let S = A[Q/a1](= U,>0Q"/al) and
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P =mS. Then A C § C K and we have the isomorphism

g AT, Ts,- - , Ty
(a1Ta — ag,a1T3 — a3, -+ ,01Tg — aq)’
where T5,T3,--+ ,T,; denote indeterminates over A. Hence S is a d-
dimensional Gorenstein ring, since a175 — ag,a1T5 — a3, - ,a1Ty — aq

is a regular sequence ([2]). Moreover P is a height 1 prime ideal of S,
because S/P = (A/m)[T3,T3, -+ ,T4] is a (d — 1)-dimensional regular
domain, whence Sp is a 1-dimensional Gorenstein local ring. For the
proof of our result we need the following lemmas.

LEMMA 2.1. Let I (# A) be an ideal in A. Suppose that I contains
Q as a reduction. Then
(1) IS is a P-primary ideal in S.
(2) ISpNA=1.
(3) ISNA=1.
(4) ESP(SP/ISP) = ZA(A/I) and KSP(SP/QSP) = ZA(A/Q)

Proof. Notice that QS = 0,5 and v/QS = VIS = P.

(1) S/IS = (A/I)[T2,T3, ,Td], since IA[TQ,Tg,"' ,Td] D) (ang —
az, - ,a1Tg — aq). Hence Assg(S/IS) = {mS}, because Ass(A[Tp,- -,
Tyl /TA[Ty, - ,Ty]) = {mA[Ts,--- ,T4)}. Thus IS is a P-primary ideal
in S.

(2) 1ISpNS =1 by (1). Hence we have ISpNA = (ISpNS)NA=
INA=1.

(3) Let & € ISNA and write a = ﬁa% with 8 € I and g € Q* for some £ >

0. Since a € A, we get aaf = Bg € IQ* = I(al + (a2, a3, -+ ,aq)Q¢ ).
Now we write aaf = w(a{+f2f:2 ria;) withw € I, f € Q% and z; €

Afori=2,--- ,d. Then af(a~w)= waszxiai € (az,as, -+ ,aq) S0
that a — w € (az,a3,- - ,aq) : af = (az,a3,--- ,aq), since a1, as,--- ,aq
is a regular sequence. hence a € w + (az,as, - ,a4) € I. The other

inclusion is obvious and hence ISN A = 1.
(4) We have the following isomorphisms

SP ~ ( A[T2aT3a"' 7Td] >
1Sp  \IAT2, T3, T ) a7

~ A[TZ’ T3’ e ’Td]mA[Tz,TB"" ,Td)
IA[TZ,T37 T 7Td]mA[T2,T3;"' T4l ’
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where mA[Ty, T3, - ,Ty] = %i’—%’—tﬂ Hence €5, (Sp/ISp) = L4
(A/I), because A[T2,T3, - ,Talma(rs, 1, T, IS faithfully flat over A.
Similarly, we have £s,(Sp/ QS p) =£4(A/Q). This completes the proof

of Lemma (2.1). O

LeMMA 2.2. ([3], Proposition (2.2)) Let I be an m-primary ideal in
A and assume that I contains () as a reduction. Then the following
conditions are equivalent.

( ) I 6 X4.

2 ’=QLI,I=Q:1I

(3) I = QI, La(A/T) = 3L4(A/Q).

(4) I?’CQ2 and I =Q: 1.

(6) The algebra R'(I) = @,»0I"t" is a Gorenstein ring and Kg/(py =
R/(I)(2 — d) as graded R'(I)-modules, where Kg/(ry denotes the
canonical module of R'(I).

Ifd > 1, we may add the following.

(6) I"=Q": I for allm € Z. ,

When this is the case, we have r(A/I) = pa(I/Q) = pa(I) —d > 1 and
er(A) = 204(A/I), where r(A/I) denotes the Cohen-Macaulay type of
A/I and e;(A) denotes the multiplicity of A with respect to I.

3. Proof of Theorem 1.1

Proof of Theorem 1.1. (1)=(2) Since QS = a5, we have 125 =
QIS = a1IS. Let f € a15 :g IS with f € S. Then fz € a5 with
z € I and write fz € a1(Q%/af) for some £ > 0, since S = A[Q/a1] =
Un>0Q@™/a?. Since f € S, we have m% =a1% withhe Q" andg e Q*
for some v > 0. We may assume that £ = u. Hence zh = a;g9 € QL.
Since z € I, we have h € Q¢! : I = I**! = Q*I by Lemma 2.2.(6),
whence f = —[ € IQT CIS. Thus IS =a;5:51IS.

(2)=(3) This is clear.

(3)=>(2) Suppose that IS ¢ a,1S. Then there exists a prime ideal
p € Asss(S/a118) such that I2S, ¢ a11S,. If p = P, then I2Sp =
a1IS5p, which is impossible. Hence p 2 P, whence htgp > 2. We look
at the exact sequences

*) 0— (IS)p — Sp = (§/a118), —
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**) ] 0— (IS)p — Sy — (§/18)p — 0

of Sy-modules. Apply functors Hf, (—) to (**) and we have depth(IS), >
2, because S, is a Gorenstein local ring of dim S, > 2 and depth(S/1S5),
> 1, since p 2 P and IS is a P-primary ideal. Now apply functors
HL (-) to (*) and we have depth(S/a;:IS), > 1, whenp ¢ Assg(S/a115).
This is impossible, because p € Assg(S/a11S) by our assumption. Thus
I2S = a1IS. Suppose that IS C a1S :g IS. Then there exists a
prime ideal q € Asss(S/IS) such that IS; € a1Sq :s, IS,. Since
Asss(S/IS) = {p}, we have ¢ = p. This is a contradiction to our as-
sumption. Hence IS = a5 :5 IS.

2= I?PCI’SNA=aISNACa1SNA=QSNA=Q, by the
similar reason of Lemma 2.1.(3). Hence I C @ : I. By Lemma 2.1 (3),
we have

I=ISNA=(a1S:sIS)NA
=(QS:sIS)NA
5 (Qua I
2Q:al

Hence I = Q :4 I. Finally, we want to show that I? = QI. Let
z € I? and write z = Ele c;a; with ¢; € A, since I? C Q. Since
z€I?CaiISand S = A[Q/a1] = Up>0Q"/a}, we have z € a1 I1(Q*/af)
for some ¢ > 0, whence we write z = a,(y/a%) where y € IQ*. Then
y/at™t = % cia;, whence y = afc; +ai tager + - + at lagey. Let
t be an indeterminate over A. Then

ytt = c1(art) + ca(agt)(art)*™ + - - + ca(aat)(art) " € A[QH].

Since G(Q) = A[Qt]/QA[Qt] and G(Q) = (A/Q)[T1, T3, - Ty}, where

a;it — T; for i =1,2,--- ,d, we have

cl(alt)l + Cz(agt)(alt)l_l + -+ Cd(adt)(alt)l_l
=Tt + LT o T T

Since y € IQ', we write

— oy G2 (a7
Yy = E Calq (112 "'ad s
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where {a = (a1, ,aq)lor+- +ag=1 and 0 <o € Z} and c, €
I. Then yt' = 3" cy(art)™ (agt)®? - - - (aqt)*¢, whence yt! = > e T7 Ty
---TJ** and hence

ali + LT+ + el Iy =) el Ty - T3

Thus we have ¢ = ¢, for some a = (ay, -+ ,a4). Since ¢ € A/Q and
To € I/Q, we have ¢; — ¢, € @, whence ¢; € ¢, + @ C I and hence
T = 22'1:1 c;a; € QI. Therefore I? = QI. This completes the proof of
Theorem 1.1. O

Proof of Corollary 1.2. Let I contain ) as a reduction. Hence I
contains ) as a reduction if and only if 15, contains @S}, as a reduction.
Thus

I€X4(Q) = IS, € XS,, (QSP)

by Theorem 1.1. [
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