NOTE ON GOOD IDEALS IN GORENSTEIN LOCAL RINGS

MEE-KYOUNG KIM

ABSTRACT. Let I be an ideal in a Gorenstein local ring A with the maximal ideal \mathfrak{m} and $d=\dim A$. Then we say that I is a good ideal in A, if I contains a reduction $Q=(a_1,a_2,\cdots,a_d)$ generated by d elements in A and $G(I)=\bigoplus_{n\geq 0}I^n/I^{n+1}$ of I is a Gorenstein ring with a(G(I))=1-d, where a(G(I)) denotes the a-invariant of G(I). Let $S=A[Q/a_1]$ and $P=\mathfrak{m}S$. In this paper, we show that the following conditions are equivalent.

- (1) $I^2 = QI$ and I = Q: I.
- (2) $I^2S = a_1IS$ and $IS = a_1S :_S IS$.
- (3) $I^2S_P = a_1IS_P \text{ and } IS_P = a_1S_P :_{S_P} IS_P.$

We denote by $\mathcal{X}_A(Q)$ the set of good ideals I in \mathcal{X}_A such that I contains Q as a reduction. As a Corollary of this result, we show that

$$I \in \mathcal{X}_A(Q) \iff IS_P \in \mathcal{X}_{S_P}(Q_P).$$

1. Introduction

Let A be a Gorenstein local ring with the maximal ideal \mathfrak{m} and $d=\dim A$. Let I denote an \mathfrak{m} -primary ideal in A. Then we say that I is a good ideal in A if I contains a parameter ideal (c_1, c_2, \cdots, c_d) in A as a reduction and the associated graded ring $G(I)=\bigoplus_{n\geq 0}I^n/I^{n+1}$ of I is a Gorenstein ring with a(G(I))=1-d ([3]), where a(G(I)) denotes the a-invariant of G(I) ([4], Definition (3.1.4)). We denote by \mathcal{X}_A the set of good ideals I in A. The concept of good ideals was first introduced by S. Goto, S. Iai, and K. Watanabe and they intensively studied \mathfrak{m} -primary

Received October 29, 2001. Revised May 8, 2002.

²⁰⁰⁰ Mathematics Subject Classification: Primary 13A30; Secondary 13H10.

Key words and phrases: Rees algebra, associated graded ring, Cohen-Macaulay ring, Gorenstein ring, a-invariant.

This work was supported by Korea Research Foundation Grant (KRF-2000-015-DP0005).

good ideals in a given Gorenstein local ring and gave many inspiring results ([3]).

Let $Q = (a_1, a_2, \dots, a_d)$ be a fixed parameter ideal in A. Let $S = A[Q/a_1]$ and $P = \mathfrak{m}S$. We denote by $\mathcal{X}_A(Q)$ the set of good ideals I in \mathcal{X}_A such that I contains Q as a reduction. With this notation the main result of this paper is stated as follows.

THEOREM 1.1. Let $I \neq A$ be an ideal in A. Suppose that I contains a parameter ideal $Q = (a_1, \dots, a_d)$ as a reduction. Then the following conditions are equivalent.

- (1) $I^2 = QI \text{ and } I = Q:I.$
- (2) $I^2S = a_1IS$ and $IS = a_1S :_S IS$.
- (3) $I^2S_P = a_1IS_P$ and $IS_P = a_1S_P :_{S_P} IS_P$.

COROLLARY 1.2. Let $I \neq A$ be an ideal in A. Suppose that I contains a parameter ideal $Q = (a_1, \dots, a_d)$ as a reduction. Then the following conditions are equivalent.

- (1) $I \in \mathcal{X}_A(Q)$.
- (2) $IS_P \in \mathcal{X}_{S_P}(QS_P)$.

In what follows, let (A, \mathfrak{m}) be a Gorenstein local ring and $d = \dim A$. Let K = Q(A) be the total quotient ring of A. We denote by $\mu_A(*)$ the number of generators and $\ell_A(*)$ the length.

Let $B = \bigoplus_{n \in \mathbb{Z}} B_n$ be a Noetherian graded ring and assume that B contains a unique graded maximal ideal \mathfrak{M} . We denote by $\mathrm{H}^i_{\mathfrak{M}}(*)$ $(i \in \mathbb{Z})$ the $i^{\underline{th}}$ local cohomology functor of B with respect to \mathfrak{M} . For each graded B-module E and $n \in \mathbb{Z}$, let $[\mathrm{H}^i_{\mathfrak{M}}(E)]_n$ denote the homogeneous component of the graded B-module $\mathrm{H}^i_{\mathfrak{M}}$ of degree n. Let E be a graded B-module. For each $n \in \mathbb{Z}$ let E(n) stand for the graded B-module, whose underlying B-module coincides with that of E and whose graduation is given by $[E(n)]_i = E_{n+i}$ for all $i \in \mathbb{Z}$. We refer the reader to [5], [1], or [6] for any unexplained notation or terminology.

2. Preliminaries

Let (A, \mathfrak{m}) be a d-dimensional Gorenstein local ring with $d \geq 2$ and K = Q(A) be the total quotient ring of A. Let $Q = (a_1, \dots, a_d)$ be a fixed parameter ideal for A. Let $S = A[Q/a_1](= \bigcup_{n>0} Q^n/a_1^n)$ and

 $P = \mathfrak{m}S$. Then $A \subseteq S \subseteq K$ and we have the isomorphism

$$S \cong \frac{A[T_2, T_3, \cdots, T_d]}{(a_1 T_2 - a_2, a_1 T_3 - a_3, \cdots, a_1 T_d - a_d)},$$

where T_2, T_3, \dots, T_d denote indeterminates over A. Hence S is a d-dimensional Gorenstein ring, since $a_1T_2 - a_2, a_1T_3 - a_3, \dots, a_1T_d - a_d$ is a regular sequence ([2]). Moreover P is a height 1 prime ideal of S, because $S/P \cong (A/\mathfrak{m})[T_2, T_3, \dots, T_d]$ is a (d-1)-dimensional regular domain, whence S_P is a 1-dimensional Gorenstein local ring. For the proof of our result we need the following lemmas.

LEMMA 2.1. Let $I \neq A$ be an ideal in A. Suppose that I contains Q as a reduction. Then

- (1) IS is a P-primary ideal in S.
- (2) $IS_P \cap A = I$.
- (3) $IS \cap A = I$.
- (4) $\ell_{S_P}(S_P/IS_P) = \ell_A(A/I)$ and $\ell_{S_P}(S_P/QS_P) = \ell_A(A/Q)$.

Proof. Notice that $QS = a_1S$ and $\sqrt{QS} = \sqrt{IS} = P$.

- (1) $S/IS \cong (A/I)[T_2, T_3, \cdots, T_d]$, since $IA[T_2, T_3, \cdots, T_d] \supseteq (a_1T_2 a_2, \cdots, a_1T_d a_d)$. Hence $\mathrm{Ass}_S(S/IS) = \{\mathfrak{m}S\}$, because $\mathrm{Ass}(A[T_2, \cdots, T_d]/IA[T_2, \cdots, T_d]) = \{\mathfrak{m}A[T_2, \cdots, T_d]\}$. Thus IS is a P-primary ideal in S.
- (2) $IS_P \cap S = I$ by (1). Hence we have $IS_P \cap A = (IS_P \cap S) \cap A = I \cap A = I$.
- (3) Let $\alpha \in IS \cap A$ and write $\alpha = \beta \frac{g}{a_1^\ell}$ with $\beta \in I$ and $g \in Q^\ell$ for some $\ell \geq 0$. Since $\alpha \in A$, we get $\alpha a_1^\ell = \beta g \in IQ^\ell = I(a_1^\ell + (a_2, a_3, \cdots, a_d)Q^{\ell-1})$. Now we write $\alpha a_1^\ell = \omega(a_1^\ell + f\sum_{i=2}^d x_i a_i)$ with $\omega \in I$, $f \in Q^{\ell-1}$, and $x_i \in A$ for $i = 2, \cdots, d$. Then $a_1^\ell(\alpha \omega) = \omega f\sum_{i=2}^d x_i a_i \in (a_2, a_3, \cdots, a_d)$ so that $\alpha \omega \in (a_2, a_3, \cdots, a_d) : a_1^\ell = (a_2, a_3, \cdots, a_d)$, since a_1, a_2, \cdots, a_d is a regular sequence. hence $\alpha \in \omega + (a_2, a_3, \cdots, a_d) \in I$. The other inclusion is obvious and hence $IS \cap A = I$.
- (4) We have the following isomorphisms

$$\begin{split} \frac{S_P}{IS_P} &\cong \left(\frac{A[T_2, T_3, \cdots, T_d]}{IA[T_2, T_3, \cdots, T_d]}\right)_{\mathfrak{m}A[T_2, T_3, \cdots, T_d]} \\ &\cong \frac{A[T_2, T_3, \cdots, T_d]_{\mathfrak{m}A[T_2, T_3, \cdots, T_d]}}{IA[T_2, T_3, \cdots, T_d]_{\mathfrak{m}A[T_2, T_3, \cdots, T_d]}}, \end{split}$$

where $\overline{\mathfrak{m}A[T_2,T_3,\cdots,T_d]}=\frac{\mathfrak{m}A[T_2,T_3,\cdots,T_d]}{IA[T_2,T_3,\cdots,T_d]}$. Hence $\ell_{S_P}(S_P/IS_P)=\ell_A$ (A/I), because $A[T_2,T_3,\cdots,T_d]_{\mathfrak{m}A[T_2,T_3,\cdots,T_d]}$ is faithfully flat over A. Similarly, we have $\ell_{S_P}(S_P/QS_P)=\ell_A(A/Q)$. This completes the proof of Lemma (2.1).

LEMMA 2.2. ([3], Proposition (2.2)) Let I be an \mathfrak{m} -primary ideal in A and assume that I contains Q as a reduction. Then the following conditions are equivalent.

- (1) $I \in \mathcal{X}_A$.
- (2) $I^2 = QI$, I = Q:I.
- (3) $I^2 = QI$, $\ell_A(A/I) = \frac{1}{2}\ell_A(A/Q)$.
- (4) $I^3 \subseteq Q^2$ and $I = Q : \tilde{I}$.
- (5) The algebra $R'(I) = \bigoplus_{n \geq 0} I^n t^n$ is a Gorenstein ring and $K_{R'(I)} \cong R'(I)(2-d)$ as graded R'(I)-modules, where $K_{R'(I)}$ denotes the canonical module of R'(I).

If $d \geq 1$, we may add the following.

(6) $I^n = Q^n : I \text{ for all } n \in \mathbb{Z}.$

When this is the case, we have $r(A/I) = \mu_A(I/Q) = \mu_A(I) - d \ge 1$ and $e_I(A) = 2\ell_A(A/I)$, where r(A/I) denotes the Cohen-Macaulay type of A/I and $e_I(A)$ denotes the multiplicity of A with respect to I.

3. Proof of Theorem 1.1

Proof of Theorem 1.1. (1) \Rightarrow (2) Since $QS = a_1S$, we have $I^2S = QIS = a_1IS$. Let $f \in a_1S :_S IS$ with $f \in S$. Then $fx \in a_1S$ with $x \in I$ and write $fx \in a_1(Q^\ell/a_1^\ell)$ for some $\ell \geq 0$, since $S = A[Q/a_1] = \bigcup_{n \geq 0} Q^n/a_1^n$. Since $f \in S$, we have $x \frac{h}{a_1^u} = a_1 \frac{g}{a_1^\ell}$ with $h \in Q^u$ and $g \in Q^\ell$ for some $u \geq 0$. We may assume that $\ell = u$. Hence $xh = a_1g \in Q^{\ell+1}$. Since $x \in I$, we have $h \in Q^{\ell+1} : I = I^{\ell+1} = Q^\ell I$ by Lemma 2.2.(6), whence $f = \frac{h}{a_1^\ell} \in I \frac{Q^\ell}{a_1^\ell} \subseteq IS$. Thus $IS = a_1S :_S IS$.

- $(2) \Rightarrow (3)$ This is clear.
- $(3)\Rightarrow(2)$ Suppose that $I^2S \nsubseteq a_1IS$. Then there exists a prime ideal $\mathfrak{p} \in \mathrm{Ass}_S(S/a_1IS)$ such that $I^2S_{\mathfrak{p}} \nsubseteq a_1IS_{\mathfrak{p}}$. If $\mathfrak{p} = P$, then $I^2S_P = a_1IS_P$, which is impossible. Hence $\mathfrak{p} \supsetneq P$, whence $\mathrm{ht}_S\mathfrak{p} \ge 2$. We look at the exact sequences

(*)
$$0 \to (IS)_{\mathfrak{p}} \xrightarrow{a_1} S_{\mathfrak{p}} \to (S/a_1 IS)_{\mathfrak{p}} \to 0,$$

$$(**) 0 \to (IS)_{\mathfrak{p}} \to S_{\mathfrak{p}} \to (S/IS)_{\mathfrak{p}} \to 0$$

of $S_{\mathfrak{p}}$ -modules. Apply functors $\mathrm{H}^{i}_{\mathfrak{m}}(-)$ to (**) and we have $\mathrm{depth}(IS)_{\mathfrak{p}} \geq 2$, because $S_{\mathfrak{p}}$ is a Gorenstein local ring of $\dim S_{\mathfrak{p}} \geq 2$ and $\mathrm{depth}(S/IS)_{\mathfrak{p}} \geq 1$, since $\mathfrak{p} \supseteq P$ and IS is a P-primary ideal. Now apply functors $\mathrm{H}^{I}_{\mathfrak{m}}(-)$ to (*) and we have $\mathrm{depth}(S/a_{1}IS)_{\mathfrak{p}} \geq 1$, when $\mathfrak{p} \notin \mathrm{Ass}_{S}(S/a_{1}IS)$. This is impossible, because $\mathfrak{p} \in \mathrm{Ass}_{S}(S/a_{1}IS)$ by our assumption. Thus $I^{2}S = a_{1}IS$. Suppose that $IS \subsetneq a_{1}S :_{S}IS$. Then there exists a prime ideal $\mathfrak{q} \in \mathrm{Ass}_{S}(S/IS)$ such that $IS_{\mathfrak{q}} \subsetneq a_{1}S_{\mathfrak{q}} :_{S_{\mathfrak{q}}}IS_{\mathfrak{q}}$. Since $\mathrm{Ass}_{S}(S/IS) = \{\mathfrak{p}\}$, we have $\mathfrak{q} = \mathfrak{p}$. This is a contradiction to our assumption. Hence $IS = a_{1}S :_{S}IS$.

 $(2)\Rightarrow(1)$ $I^2\subseteq I^2S\cap A=a_1IS\cap A\subseteq a_1S\cap A=QS\cap A=Q$, by the similar reason of Lemma 2.1.(3). Hence $I\subseteq Q:I$. By Lemma 2.1 (3), we have

$$I = IS \cap A = (a_1S :_S IS) \cap A$$
$$= (QS :_S IS) \cap A$$
$$\supseteq (Q :_A I)^{ec}$$
$$\supseteq Q :_A I.$$

Hence $I=Q:_AI$. Finally, we want to show that $I^2=QI$. Let $x\in I^2$ and write $x=\sum_{i=1}^d c_ia_i$ with $c_i\in A$, since $I^2\subseteq Q$. Since $x\in I^2\subseteq a_1IS$ and $S=A[Q/a_1]=\cup_{n\geq 0}Q^n/a_1^n$, we have $x\in a_1I(Q^\ell/a_1^\ell)$ for some $\ell\geq 0$, whence we write $x=a_1(y/a_1^\ell)$ where $y\in IQ^\ell$. Then $y/a_1^{\ell-1}=\sum_{i=1}^d c_ia_i$, whence $y=a_1^\ell c_1+a_1^{\ell-1}a_2c_2+\cdots+a_1^{\ell-1}a_dc_d$. Let t be an indeterminate over A. Then

$$yt^{\ell} = c_1(a_1t)^{\ell} + c_2(a_2t)(a_1t)^{\ell-1} + \dots + c_d(a_dt)(a_1t)^{\ell-1} \in A[Qt].$$

Since G(Q) = A[Qt]/QA[Qt] and $G(Q) \cong (A/Q)[T_1, T_2, \cdots T_d]$, where $\overline{a_it} \longmapsto T_i$ for $i = 1, 2, \cdots, d$, we have

$$\overline{c_1(a_1t)^l + c_2(a_2t)(a_1t)^{l-1} + \dots + c_d(a_dt)(a_1t)^{l-1}}$$

$$= \overline{c_1}T_1^l + \overline{c_2}T_2T_1^{l-1} + \dots + \overline{c_d}T_dT_1^{l-1}.$$

Since $y \in IQ^l$, we write

$$y = \sum c_{\alpha} a_1^{\alpha_1} a_2^{\alpha_2} \cdots a_d^{\alpha_d},$$

where $\{\alpha = (\alpha_1, \dots, \alpha_d) | \alpha_1 + \dots + \alpha_d = l \text{ and } 0 \leq \alpha_i \in \mathbb{Z} \}$ and $c_\alpha \in I$. Then $yt^l = \sum c_\alpha (a_1t)^{\alpha_1} (a_2t)^{\alpha_2} \cdots (a_dt)^{\alpha_d}$, whence $yt^l = \sum \overline{c_\alpha} T_1^{\alpha_1} T_2^{\alpha_2} \cdots T_d^{\alpha_d}$ and hence

$$\overline{c_1}T_1^l + \overline{c_2}T_2T_1^{l-1} + \dots + \overline{c_d}T_dT_1^{l-1} = \sum \overline{c_\alpha}T_1^{\alpha_1}T_2^{\alpha_2} \cdots T_d^{\alpha_d}.$$

Thus we have $\overline{c_i} = \overline{c_\alpha}$ for some $\alpha = (\alpha_1, \dots, \alpha_d)$. Since $\overline{c_i} \in A/Q$ and $\overline{c_\alpha} \in I/Q$, we have $c_i - c_\alpha \in Q$, whence $c_i \in c_\alpha + Q \subseteq I$ and hence $x = \sum_{i=1}^d c_i a_i \in QI$. Therefore $I^2 = QI$. This completes the proof of Theorem 1.1.

Proof of Corollary 1.2. Let I contain Q as a reduction. Hence I contains Q as a reduction if and only if $IS_{\mathfrak{p}}$ contains $QS_{\mathfrak{p}}$ as a reduction. Thus

$$I \in \mathcal{X}_A(Q) \Longleftrightarrow IS_{\mathfrak{p}} \in \mathcal{X}_{S_{\mathfrak{p}}}(QS_{\mathfrak{p}})$$

by Theorem 1.1.

References

- W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge studies in advanced mathematics, vol. 39, Cambridge University, Cambridge-New York-Port Chester-Sydney, 1993.
- [2] E. D. Davis, Ideals of the Principal Class, R-Sequences and a Certain Monoidal Transformation, Pac. J. Math. 20 (1967), 197-205.
- [3] S. Goto, S. Iai, and K. Watanabe, Good ideals in Gorenstein local rings, Trans. Amer. Math. Soc. **353** (2001), 2309–2346.
- [4] S. Goto and K. Watanabe, On graded rings, I, J. Math. Soc. Japan 30 (1978), 179-213.
- [5] H. Matsumura, Commutative ring theory, Cambridge University, Cambridge London Sydney, 1986.
- [6] M. Nagata, Local rings, Interscience, 1962.

MEE-KYOUNG KIM, DEPARTMENT OF MATHEMATICS, SUNGKYUNKWAN UNIVERSITY, JANGANGU SUWON, 440-746 KOREA

E-mail: mkkim@math.skku.ac.kr