A NOTE ON TYPES OF NOETHERIAN LOCAL RINGS

KISUK LEE

ABSTRACT. In this note we investigate some results which concern the types of local rings. In particular it is shown that if the type of a quasi-unmixed local ring A is less than or equal to depth A+1, and $\hat{A}_{\mathfrak{p}}$ is Cohen-Macaulay for every prime $\mathfrak{p}\neq\hat{\mathfrak{m}}$, then A is Cohen-Macaulay. (This implies the previously known result: if \hat{A} satisfies (S_{n-1}) , where n is the type of a ring A, then A is Cohen-Macaulay.)

1. Backgrounds

Throughout this paper, we assume that (A, \mathfrak{m}) is a commutative Noetherian local ring of dimension d, and M is a finitely generated A-module. We also assume that all modules are unitary.

For a prime ideal $\mathfrak p$ of A, the *i*-th Bass number of M at $\mathfrak p$, denoted $\mu_i(\mathfrak p,M)$, is defined to be $\dim_{k(\mathfrak p)} \operatorname{Ext}_{A_{\mathfrak p}}^i(k(\mathfrak p),M_{\mathfrak p})$, where $k(\mathfrak p)=A_{\mathfrak p}/\mathfrak p A_{\mathfrak p}$: we set $\mu_i(A)=\mu_i(\mathfrak m,A)$ for brevity. The type of A, denoted by r(A), is defined to be $\mu_d(A)$. One of the interesting studies on the types of rings is to investigate the conditions which make A Cohen-Macaulay when a type of A is known.

Gorenstein rings were characterized by Bass ([2]) as Cohen-Macaulay rings A with r(A) = 1. Vasconcelos ([15]) conjectured that the condition r(A) = 1 is sufficient for A to be Gorenstein, i.e., the condition "A is Cohen-Macaulay" can be omitted. In [5], Foxby proved this conjecture for essentially equicharacteristic rings using a version of the Intersection Theorem. The conjecture was proven in general by Roberts ([14]): he showed that local rings of type one are Cohen-Macaulay, (and hence Gorenstein) using a minimal free resolution of a dualizing complex:

Received February 14, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 13C14, 13C15, 13D07, 13D45, 13H10. Key words and phrases: Cohen-Macaulay ring, type of a ring, Gorenstein ring, Serre's condition.

This was supported by 2001 Sookmyung Women's University Research Grant.

THEOREM 1. ([14]) Let A be a Noetherian local ring of dimension d. If r(A) = 1, then A is Gorenstein.

By modifying Roberts' argument, Costa, Huneke and Miller showed the following:

THEOREM 2. ([4]) Let A be a local ring whose completion is a domain. If r(A) = 2, then A is Cohen-Macaulay.

Expecting the above might be the best possible, they gave two examples: a complete equidimensional local ring of type two that is not Cohen-Macaulay, and a complete reduced local ring of type two that is not Cohen-Macaulay. Afterward, the following question was posed:

Does there exist a complete, equidimensional, reduced local ring A with r(A) = 2 that is not Cohen-Macaulay?

However, Marley ([9]) answered this question in negative by proving the following theorem: we note here that a complete equidimensional reduced local ring is unmixed since a ring is reduced if and only if it satisfies conditions $(R_0) + (S_1)$ ([10]).

THEOREM 3. ([9]) Let A be an unmixed local ring of type two. Then A is Cohen-Macaulay.

Marley also asked that if a complete local ring of type n satisfies Serre's condition (S_{n-1}) , then it is Cohen-Macaulay: if n=1 (resp. n=2), then the answer is 'yes' by Roberts' theorem (resp. by Marley's theorem). Kawasaki answered this question in the affirmative when rings contains a field and $n \geq 3$. He used a result of Brun's ([3]) which was proved using a big-Cohen-Macaulay module. Marley question was proved in general by Aoyama ([1]) using Kawasaki's idea.

THEOREM 4. ([1]) Let $n \geq 3$ be an integer. If $r(A) \leq n$ and \hat{A} is (S_{n-1}) , then A is Cohen-Macaulay.

In [8], Kawasaki conjectured the following which is still open:

CONJECTURE. ([8]) Let A be a complete unmixed local ring of type n. If $A_{\mathfrak{p}}$ is Cohen-Macaulay for all \mathfrak{p} in Spec(A) such that $ht(\mathfrak{p}) < n$, then A is Cohen-Macaulay.

We note that the condition " $A_{\mathfrak{p}}$ is Cohen-Macaulay for all \mathfrak{p} in Spec(A) such that $ht(\mathfrak{p}) < n$ " is weaker than (S_{n-1}) , and that if A is complete and (S_2) , then A is unmixed; hence Conjecture implies Theorem 4.

If $r(A) > \dim A$ in the above conjecture, then the conjecture trivially holds. The other case, i.e., when $r(A) \leq \dim A$, seems difficult to be established. In Section 2, we consider the rings with $r(A) \leq \operatorname{depth} A + 1$, and extra conditions.

2. Main theorem

We first pose the following question, which is motivated by the proof of Aoyama's theorem (Theorem 4).

PROBLEM 2.1. Let (A, \mathfrak{m}) be a complete unmixed Noetherian local ring. If $r(A) \leq \operatorname{depth} A + 1$, where r(A) is the type of A, then is A Cohen-Macaulay?, or equivalently, if A is not Cohen-Macaulay, then $r(A) \geq \operatorname{depth} A + 2$?

We recall that A is equidimensional if $\dim A/\mathfrak{p} = \dim A$ for every minimal prime \mathfrak{p} of A. A is said to be quasi-unmixed (or formally equidimensional) if its completion \hat{A} is equidimensional, and to be unmixed if $\dim \hat{A}/\mathfrak{p} = \dim \hat{A}$ for all $\mathfrak{p} \in Ass(\hat{A})$.

A finite A-module M is said to satisfy a Serre's condition (S_t) if depth $M_{\mathfrak{p}} \geq \min\{t, \dim M_{\mathfrak{p}}\}$ for every prime \mathfrak{p} in Supp(M).

PROPOSITION 2.2. Assume that Problem 2.1 is true. Then the following hold:

- (1) (Aoyama's result) Let $n \geq 3$ be an integer. If $r(A) \leq n$ and \hat{A} is (S_{n-1}) , then A is Cohen-Macaulay.
- (2) (Marley's result) Let A be an unmixed local ring of type two. Then A is Cohen-Macaulay.

Proof. For (1), we may assume that A is complete. Since A is (S_2) , A is unmixed. If A is not Cohen-Macaulay, then depth $A \leq r(A) - 2$ by assumption. Thus depth $A < r(A) - 1 \leq n - 1$ which contradicts that A is (S_{n-1}) . Hence A is Cohen-Macaulay.

For (2), we may also assume that A is complete. Suppose that A is not Cohen-Macaulay. If r(A) = 2, then depth $A \le r(A) - 2 = 0$, and so $m \in Ass(A)$. Since A is unmixed, dim A = 0, which implies that A is Cohen-Macaulay.

With some extra conditions, we answer Problem 2.1 in the affirmative using the techniques of the proof of Aoyama's theorem.

THEOREM 2.3. Let (A, \mathfrak{m}) be a quasi-unmixed Noetherian local ring of dimension d such that $r(A) \leq \operatorname{depth} A + 1$. Suppose that $\hat{A}_{\mathfrak{p}}$ is Cohen-Macaulay for every prime $\mathfrak{p} \neq \hat{\mathfrak{m}}$. Then A is Cohen-Macaulay.

Proof. We may assume that A is complete. Suppose that A is not Cohen-Macaulay and depth A = t < d. Let

$$(I^{\bullet}, \phi^{\bullet}): 0 \to A \to I^0 \to I^1 \to \cdots \to I^i \to \cdots,$$

be a minimal injective resolution of A, where $I^i = \bigoplus_{\mathfrak{p} \in \operatorname{Spec}(A)} E(A/\mathfrak{p})^{\mu_i(\mathfrak{p})}$. By applying $\operatorname{Hom}_A(-, E(A/\mathfrak{m}))$ to $H^0_{\mathfrak{m}}(I^{\bullet})$ (= $\lim_{\longrightarrow} \operatorname{Hom}_A(A/\mathfrak{m}^r, I^{\bullet})$), we have

$$(F_{\bullet}, f_{\bullet}): \cdots \to A^{\mu_i(\mathfrak{m})} \xrightarrow{f_{i-1}} A^{\mu_{i-1}(\mathfrak{m})} \to \cdots \to A^{\mu_{t+1}(\mathfrak{m})} \to A^{\mu_t(\mathfrak{m})} \to 0.$$

We note that the *i*-th homology of F_{\bullet} is $H^i_{\mathfrak{m}}(A)^{\vee}$, where $(-)^{\vee}$ denotes the Matlis dual.

Since $A_{\mathfrak{p}}$ is Cohen-Macaulay for all primes $\mathfrak{p} \neq \mathfrak{m}$, we can show that $H_i(F_{\bullet})_{\mathfrak{p}} = 0$ for $i \neq d$. Indeed, since A is complete, $A \cong S/J$ such that (S, \mathfrak{m}_S) is a Gorenstein local ring, J is an ideal of S and dim $S = \dim A$. Hence by local duality

$$H^i_{\mathfrak{m}}(A)^{\vee} \cong H^i_{\mathfrak{m}_S}(A)^{\vee} \cong \operatorname{Ext}_S^{d-i}(A,S).$$

For a prime ideal $\mathfrak{p}(\neq \mathfrak{m})$ of A, since $A_{\mathfrak{p}}$ is Cohen-Macaulay and $S_{\mathfrak{p}_s}$ is Gorenstein, it follows that

$$\operatorname{Ext}_S^j(A,S) \otimes S_{\mathfrak{p}_s} \cong \operatorname{Ext}_{S_{\mathfrak{p}_s}}^j(A_{\mathfrak{p}},S_{\mathfrak{p}_s}) = 0 \text{ if } j \neq \dim S_{\mathfrak{p}_s} - \dim A_{\mathfrak{p}}.$$

We note that $\dim S_{\mathfrak{p}_s} = \dim A_{\mathfrak{p}}$ since A is quasi-unmixed and $\dim S = \dim A$. Thus it is obtained that $H_i(F_{\bullet} \otimes A_{\mathfrak{p}}) = 0$ if $i \neq d$ since

$$H_i(F_{\bullet} \otimes A_{\mathfrak{p}}) \cong H_i(F_{\bullet}) \otimes A_{\mathfrak{p}} \cong H_{\mathfrak{m}}^i(A)^{\vee} \otimes A_{\mathfrak{p}}$$

$$\cong \operatorname{Ext}_S^{d-i}(A,S) \otimes S_{\mathfrak{p}_s} \cong \operatorname{Ext}_{S_{\mathfrak{p}_s}}^{d-i}(A_{\mathfrak{p}},S_{\mathfrak{p}_s}).$$

Thus $(F_d \to F_{d-1} \to \cdots \to F_t \to 0) \otimes A_{\mathfrak{p}}$ is exact and so split. Now we assume that depth A = t < d-1 (see Lemma 2.4 below for the case of t = d-1: we know $\ell(H^{d-1}_{\mathfrak{m}}(A)) < \infty$ since $Supp(H_{d-1}(F_{\bullet})) = \{\mathfrak{m}\}$, and $H_{d-1}(F_{\bullet})$ is finitely generated), and follow the procedure of Aoyama's proof. Let

$$G_{\bullet}: 0 \to G_{d-t} \xrightarrow{g_{d-t}} G_{d-t-1} \to \cdots \to G_1 \xrightarrow{g_1} G_0,$$

where $G_i = \operatorname{Hom}_A(F_{d-i}, A)$, and $g_i = \operatorname{Hom}_A(f_{d-i}, A)$. For $j = 1, \dots, d-t$, let $r_j = \sum_{i=j}^{d-t} \operatorname{rank}(G_i)$ and I_j the ideal generated by the r_j -minors of g_j . Then it can be shown $\operatorname{rank}(F_d) - r_1 > 1$, and $r_1 \geq t$. Thus we have

$$r(A) = \mu_d(\mathfrak{m}) = rank(F_d) > r_1 + 1 \ge t + 1 = \operatorname{depth} A + 1 \ge r(A),$$
 which is a contradiction. Hence A is Cohen-Macaulay.

PROPOSITION 2.4. (Lemma 2.4) Let (A, \mathfrak{m}) be a Noetherian local ring of dimension d, and depth A = d-1 (and so A is not Cohen-Macaulay). Suppose $\ell(H_{\mathfrak{m}}^{d-1}(A)) < \infty$. Then $r(A) \geq \operatorname{depth} A + 2$.

Proof. We may assume that A is complete. Suppose to the contrary that $r(A) < \operatorname{depth} A + 2$. As in the proof of Theorem 2.3, let

$$(I^{\bullet}, \phi^{\bullet}): 0 \to A \to I^0 \to I^1 \to \cdots \to I^i \to \cdots$$

be a minimal injective resolution of A. By applying $\operatorname{Hom}_A(-, E(A/\mathfrak{m}))$ to $H^0_{\mathfrak{m}}(I^{\bullet})$ (= $\lim_{\longrightarrow} \operatorname{Hom}_A(A/\mathfrak{m}^r, I^{\bullet})$), we have

$$(F_{\bullet}, f_{\bullet}): \cdots \longrightarrow A^{\mu_d(\mathfrak{m})} \xrightarrow{f_{d-1}} A^{\mu_{d-1}(\mathfrak{m})} \longrightarrow 0.$$

We note that $Supp(H_{d-1}(F_{\bullet})) = \{m\}$ since

$$\ell(H_{d-1}(F_{\bullet})) = \ell((H_{\mathfrak{m}}^{d-1}(A))^{\vee}) = \ell(H_{\mathfrak{m}}^{d-1}(A)) < \infty.$$

Thus if I_1 is an ideal generated by the maximal minors of f_{d-1} , then I_1 is \mathfrak{m} -primary since $(F_d \to F_{d-1} \to 0) \otimes_A A_{\mathfrak{p}}$ is exact for all primes $\mathfrak{p} \neq \mathfrak{m}$. By Theorem 13.10 in [10] and the assumption, we know that

$$d = \text{ht } I_1 \le rank(F_d) - rank(F_{d-1}) + 1 \le r(A) \le \text{depth } A + 1 = d.$$

Hence $d=r(A)=rank(F_d)$, and $rank(F_{d-1})=1$. Thus $H_{d-1}(F_{\bullet})=A/(x_1,\cdots,x_d)A$, where $x_1,\cdots,x_d\in\mathfrak{m}$. Since $\ell(H_{d-1}(F_{\bullet}))<\infty, x_1,\cdots,x_d$ is a system of parameters of A. Note that $(x_1,\cdots,x_d)\subseteq Ann$ $(H^{d-1}_{\mathfrak{m}}(A))$ since $H^{d-1}_{\mathfrak{m}}(A)=(H_{d-1}(F_{\bullet}))^{\vee}=(A/(x_1,\cdots,x_d)A)^{\vee}$. Thus by Lemma 2.(c) in [11], $H^{d-1}_{\mathfrak{m}}(A)\cong H_1(K_{\bullet}(\underline{x}))$ since $\ell(H^{d-1}_{\mathfrak{m}}(A))<\infty$. Since depth A=d-1, we have $H_i(K_{\bullet}(\underline{x}))=0$ for all i>1. Hence

$$e(\underline{x}; A) = \ell(A/\underline{x}) - \ell(H_1(K_{\bullet}(\underline{x}))) = \ell(A/\underline{x}) - \ell((A/\underline{x})^{\vee}) = 0,$$
 which is a contradiction. Hence $r(A) \ge \operatorname{depth} A + 2.$

REMARK 2.5. In the above lemma, the condition $\ell(H_{\mathfrak{m}}^{d-1}(A)) < \infty$ can be replaced by ' \hat{A} satisfies Serre condition (S_{d-1}) ' since $\ell(H_{\mathfrak{m}}^{d-1}(A))$ $< \infty$ if and only if \hat{A} is equidimensional and (S_{d-1}) ([7]).

REMARK 2.6. The author later learned that Theorem 2.3 was shown by Kawasaki in the case when A contains a field ([8, Proposition 3.3 (3)]). A finitely generated module M is called a module with finite local cohomologies if $H^i_{\mathfrak{m}}(M)$ has a finite length for every $i \neq \dim M$. It is known ([6 or 8]) that if M is a module with finite local cohomologies, then M is equidimensional and $M_{\mathfrak{p}}$ is Cohen-Macaulay for every prime $\mathfrak{p} \neq \mathfrak{m}$ (the converse also holds if A is a homomorphic image of a Cohen-Macaulay ring). This fact and Theorem 2.3 give us the following corollary:

COROLLARY 2.7. Let A be a Noetherian local ring (not necessarily containing a field). If A is a non-Cohen-Macaulay ring with finite local cohomologies, then $r(A) \ge \operatorname{depth} A + 2$.

Proof. We may assume that A is complete. Then A is quasi-unmixed, and for a prime $\mathfrak{p} \neq \hat{\mathfrak{m}}$ $\hat{A}_{\mathfrak{p}}$ is Cohen-Macaulay. Thus by Theorem 2.3. the conclusion follows.

Theorem 4 (Aoyama) is also obtained from Theorem 2.3. We first remind that if A is quasi-unmixed, then (i) $A_{\mathfrak{p}}$ is quasi-unmixed for every prime \mathfrak{p} of A, and (ii) A/I is equidimensional if and only if A/I is quasi-unmixed for an ideal I of A ([10, Theorem 31.6]). Then we have the following:

LEMMA 2.8. Let (A, \mathfrak{m}) be a quasi-unmixed Noetherian local ring of dimension d. Suppose A is a homomorphic image of a Cohen-Macaulay ring. Then $A_{\mathfrak{p}}$ is Cohen-Macaulay for every prime $\mathfrak{p} \neq \mathfrak{m}$ if and only if $\hat{A}_{\mathfrak{p}}$ is Cohen-Macaulay for every $\mathfrak{p} \neq \hat{\mathfrak{m}}$.

Proof. If A is quasi-unmixed, then A is equidimensional by the above note, and so together with the assumptions A is a ring with finite local cohomologies by Remark 2.6. Thus \hat{A} is also a ring with finite local cohomologies since $H^i_{\mathfrak{m}}(A) \cong H^i_{\hat{\mathfrak{m}}}(\hat{A})$ for each i. Hence $\hat{A}_{\mathfrak{p}}$ is Cohen-Macaulay for every $\mathfrak{p} \neq \hat{\mathfrak{m}}$.

The converse also holds similarly again using Remark 2.6 since \hat{A} is equidimensional and \hat{A} is a homomorphic image of a Cohen-Macaulay ring.

For a finitely generated A-module M, it is known ([13]) that if $ht(\mathfrak{q/p})$ = t for primes \mathfrak{p} and \mathfrak{q} , then $\mu_i(\mathfrak{p}, M) \leq \mu_{i+t}(\mathfrak{q}, M)$. Using this fact, it is easy to obtain that if dim $M_{\mathfrak{p}}$ + dim A/\mathfrak{p} = dim M, then $r(M_{\mathfrak{p}}) \leq r(M)$. (Let dim M = s and dim $A/\mathfrak{p} = t$, i.e., $ht(\mathfrak{m/p}) = t$. Then dim $M_{\mathfrak{p}} = t$

s-t, and $r(M_{\mathfrak{p}})=\mu_{s-t}(\mathfrak{p},M)\leq \mu_s(\mathfrak{m},M)=r(M)$.) In particular, $r(A_{\mathfrak{p}})\leq r(A)$ for a prime \mathfrak{p} if A is unmixed and catenary.

COROLLARY 2.9. ([1]) Let $n \geq 3$ be an integer. If $r(A) \leq n$ and \hat{A} is (S_{n-1}) , then A is Cohen-Macaulay.

Proof. We may assume that A is complete. Since A is (S_2) and catenary, A is unmixed ([12]). Suppose that A is not Cohen-Macaulay. If $A_{\mathfrak{p}}$ is Cohen-Macaulay for each prime $\mathfrak{p} \neq \mathfrak{m}$, then by Theorem 2.3, depth A < r(A) - 1, which implies depth A < n - 1. This contradicts that A is (S_{n-1}) , and hence A is Cohen-Macaulay.

Suppose that $A_{\mathfrak{p}}$ is not Cohen-Macaulay for some prime $\mathfrak{p} \neq \mathfrak{m}$, but $A_{\mathfrak{q}}$ is Cohen-Macaulay for every prime $\mathfrak{q} \subsetneq \mathfrak{p}$. Since A is quasi-unmixed, $A_{\mathfrak{p}}$ is also quasi-unmixed by Theorem 31.6 in [10]. We note that since A is complete, A is a homomorphic image of a Cohen-Macaulay local ring, and so is $A_{\mathfrak{p}}$ (since $R \to A \to 0$ implies $R_{\mathfrak{p}} \to A_{\mathfrak{p}} \to 0$). Thus $\hat{A}_{\mathfrak{p}}\mathfrak{q}'$ is Cohen-Macaulay for every prime \mathfrak{q}' which is not maximal in $\hat{A}_{\mathfrak{p}}$ by Lemma 2.8. Since A is (S_{n-1}) , unmixed, and catenary, we have

$$r(A_{\mathfrak{p}}) \le r(A) \le n \le \operatorname{depth} A_{\mathfrak{p}} + 1.$$

Thus $A_{\mathfrak{p}}$ is Cohen-Macaulay by Theorem 2.3, which is a contradiction. This completes the proof.

References

- [1] Y. Aoyama, Complete local (S_{n-1}) rings of type $n \geq 3$ are Cohen-Macaulay, Proc. Japan Acard. **70**, Ser. A (1994), 80–83.
- [2] H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28.
- [3] W. Bruns, The Evans-Griffith syzygy theorem and Bass numbers, Proc. Amer. Math. Soc. 115 (1992), 939-946.
- [4] D. Costa, C. Huneke, and M. Miller, Complete local domains of type two are Cohen-Macaulay, Bull. London Math. Soc. 17 (1985), 29-31.
- [5] H. B. Foxby, On the μ^i in a minimal injective resolution II, Math. Scand. 41 (1977), 19-44.
- [6] M. Hermann, S. Ikeda, and U. Orbanz, Equimultiplicity and blowing up, Springer-Verlag, Berlin, Heidelberg, and New York, 1988.
- [7] C. Huneke, A characterization of locally Macaulay completions, Pacific J. Math. 94 (1981), no. 1, 131–138.
- [8] T. Kawasaki, Local rings of relatively small type are Cohen-Macaulay, Proc. Amer. Math. Soc. 122 (1994), 703–709.
- [9] T. Marley, Unmixed local rings of type two are Cohen-Macaulay, Bull. London Math. Soc. 23 (1991), 43–45.
- [10] H. Matsumura, Commutative ring theory, Camb. Study Adv. Math. 8, Cambridge, 1986.

- [11] J. Koh, A note on the first non-vanishing local cohomology module, J. London Math. Soc. 32 (1985), no. 2, 229–235.
- [12] T. Ogma, Existence of dualizing complexes, J. Math. Kyoto Univ. 24 (1984), 27-48.
- [13] P. Roberts, Homological invariants of modules over commutative rings, Sém. Math. Sup., Presses Univ. Montréal, Montréal, 1980.
- [14] _____, Rings of type 1 are Gorenstein, Bull. London Math. Soc. **15** (1983). 48–50.
- [15] W. V. Vasconcelos, Divisor theory in module categories, Math. Studies 14, North Holland Publ. Co., Amsterdam, 1975.

DEPARTMENT OF MATHEMATICS, SOOKMYUNG WOMEN'S UNIVERSITY, SEOUL, KOREA E-mail: kilee@sookmyung.ac.kr