• Title/Summary/Keyword: Generalized connection

Search Result 125, Processing Time 0.023 seconds

GEOMETRIC INEQUALITIES FOR WARPED PRODUCTS SUBMANIFOLDS IN GENERALIZED COMPLEX SPACE FORMS

  • Mohd Aquib;Mohd Aslam;Michel Nguiffo Boyom;Mohammad Hasan Shahid
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.179-193
    • /
    • 2023
  • In this article, we derived Chen's inequality for warped product bi-slant submanifolds in generalized complex space forms using semisymmetric metric connections and discuss the equality case of the inequality. Further, we discuss non-existence of such minimal immersion. We also provide various applications of the obtained inequalities.

CONVERGENCE OF SEQUENCES IN GENERALIZED TOPOLOGICAL SPACES VIA FILTER

  • Julio C. Ramos-Fernandez;Ennis Rosas;Margot Salas-Brown
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.901-911
    • /
    • 2023
  • In this paper a generalization of convergent sequences in connection with generalized topologies and filters is given. Additionally, properties such as uniqueness, behavior related to continuous functions are established and notions relative to product spaces.

ON THE GEOMETRY OF THE MANIFOLD MEX2n

  • Yoo, Ki-Jo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.3
    • /
    • pp.475-487
    • /
    • 2003
  • A generalized even-dimensional Riemannian manifold defined by the ME-connection which is both Einstein and of the form (3.3) is called an even-dimensional ME-manifold and we denote it by $MEX_{2n}$. The purpose of this paper is to study a necessary and sufficient condition that there is an ME-connection, to derive the useful properties of some tensors, and to investigate a representation of the ME-vector in $MEX_{2n}$.

GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE TRANS-SASAKIAN MANIFOLD WITH AN (ℓ, m)-TYPE METRIC CONNECTION

  • Jin, Dae Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.615-632
    • /
    • 2019
  • We study generic lightlike submanifolds M of an indefinite trans-Sasakian manifold ${\bar{M}}$ or an indefinite generalized Sasakian space form ${\bar{M}}(f_1,f_2,f_3)$ endowed with an $({\ell},m)$-type metric connection subject such that the structure vector field ${\zeta}$ of ${\bar{M}}$ is tangent to M.

SOME EQUATIONS ON THE SUBMANIFOLDS OF A MANIFOLD GSXn

  • So, Keumsook
    • Korean Journal of Mathematics
    • /
    • v.6 no.2
    • /
    • pp.281-289
    • /
    • 1998
  • On a generalized Riemannian manifold $X_n$, we may impose a particular geometric structure by the basic tensor field $g_{\lambda\mu}$ by means of a particular connection ${\Gamma}{_\lambda}{^\nu}_{\mu}$. For example, Einstein's manifold $X_n$ is based on the Einstein's connection defined by the Einstein's equations. Many recurrent connections have been studied by many geometers, such as Datta and Singel, M. Matsumoto, and E.M. Patterson. The purpose of the present paper is to study some relations between a generalized semisymmetric $g$-recurrent manifold $GSX_n$ and its submanifold. All considerations in this present paper deal with the general case $n{\geq}2$ and all possible classes.

  • PDF

OPTIMAL INEQUALITIES FOR THE CASORATI CURVATURES OF SUBMANIFOLDS OF GENERALIZED SPACE FORMS ENDOWED WITH SEMI-SYMMETRIC METRIC CONNECTIONS

  • LEE, CHUL WOO;LEE, JAE WON;VILCU, GABRIEL-EDUARD;YOON, DAE WON
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1631-1647
    • /
    • 2015
  • In this paper, we prove two optimal inequalities involving the intrinsic scalar curvature and extrinsic Casorati curvature of submanifolds of generalized space forms endowed with a semi-symmetric metric connection. Moreover, we also characterize those submanifolds for which the equality cases hold.

THE STUDY ON THE EINSTEIN'S CONNECTION IN 5-DIMENSIONAL ES-MANIFOLD FOR THE SECOND CLASS

  • Hwang, In Ho
    • Korean Journal of Mathematics
    • /
    • v.26 no.1
    • /
    • pp.43-51
    • /
    • 2018
  • The manifold $^{\ast}g-ESX_n$ is a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor $^{\ast}g^{{\lambda}{\nu}}$ through the ES-connection which is both Einstein and semi-symmetric. The purpose of the present paper is to derive a new set of powerful recurrence relations and to prove a necessary and sufficient condition for a unique Einstein's connection to exist in 5-dimensional $^{\ast}g-ESX_5$ and to display a surveyable tnesorial representation of 5-dimensional Einstein's connection in terms of the unified field tensor, employing the powerful recurrence relations in the second class.

ON THE *g-ME-CONNECTION AND THE *g-ME-VECTOR IN *g-MEXn

  • Yoo, Ki-Jo
    • Honam Mathematical Journal
    • /
    • v.30 no.4
    • /
    • pp.603-616
    • /
    • 2008
  • A generalized n-dimensional Riemannian manifold $X_n$ on which the differential geometric structure is imposed by the unified field tensor $^*g^{{\lambda}{\nu}}$, satisfying certain conditions, through the $^*g$-ME-connection which is both Einstein's equation and of the form(3.1) is called $^*g$-ME-manifold and we denote it by $^*g-MEX_n$. In this paper, we prove a necessary and sufficient condition for the existence of $^*g$-ME-connection and derive a surveyable tensorial representation of the $^*g$-ME-connection and the $^*g$-ME-vector in $^*g-MEX_n$.

EIGHT-DIMENSIONAL EINSTEIN'S CONNECTION FOR THE SECOND CLASS I. THE RECURRENCE RELATIONS IN 8-g-UFT

  • CHUNG, KYUNG TAE;HAN, SOO KYUNG;HWANG, IN HO
    • Honam Mathematical Journal
    • /
    • v.26 no.4
    • /
    • pp.509-532
    • /
    • 2004
  • Lower dimensional cases of Einstein's connection were already investigated by many authors for n = 2, 3, 4, 5, 6, 7. This paper is the first part of the following series of two papers, in which we obtain a surveyable tensorial representation of 8-dimensional Einstein's connection in terms of the unified field tensor, with main emphasis on the derivation of powerful and useful recurrence relations which hold in 8-dimensional Einstein's unified field theory(i.e., 8-g-UFT): I. The recurrence relations in 8-g-UFT II. The Einstein's connection in 8-g-UFT All considerations in these papers are restricted to the second class only, since the case of the first class are done in [1], [2] and the case of the third class, the simplest case, was already studied by many authors.

  • PDF

ON GENERALIZED SHEN'S SQUARE METRIC

  • Amr Soleiman;Salah Gomaa Elgendi
    • Korean Journal of Mathematics
    • /
    • v.32 no.3
    • /
    • pp.467-484
    • /
    • 2024
  • In this paper, following the pullback approach to global Finsler geometry, we investigate a coordinate-free study of Shen square metric in a more general manner. Precisely, for a Finsler metric (M, L) admitting a concurrent π-vector field, we study some geometric objects associated with ${\widetilde{L}}(x, y)={\frac{(L+{\mathfrak{B}}^2)}L}$ in terms of the objects of L, where ${\mathfrak{B}}$ is the associated 1-form. For example, we find the geodesic spray, Barthel connection and Berwald connection of ${\widetilde{L}}(x,y)$. Moreover, we calculate the curvature of the Barthel connection of ${\tilde{L}}$. We characterize the non-degeneracy of the metric tensor of ${\widetilde{L}}(x,y)$.