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ON THE GEOMETRY OF THE MANIFOLD MFEX,,

Ki-Jo Yoo

ABSTRACT. A generalized even-dimensional Riemannian manifold
defined by the M E-connection which is both Einstein and of the
form (3.3) is called an even-dimensional M E-manifold and we de-
note it by MEX3,,. The purpose of this paper is to study a nec-
essary and sufficient condition that there is an M E-connection, to
derive the useful properties of some tensors, and to investigate a
representation of the M E-vector in MEXoy,.

1. Introduction

In Appendix II to his last book Einstein [3] proposed a new unified
field theory that would include both gravitation and electromagnetism.
Although the intent of this theory is physical, its exposition is mainly
geometrical. It may be characterized as a set of geometrical postulates
for the space-time X,. However, the geometrical consequences of these
postulates were not developed very far by Einstein. Characterizing Ein-
stein’s unified field theory as a set of geometrical postulates for Xy,
Hlavaty [4] gave its mathematical foundation for the first time. Gen-
eralizing X, to an n-dimensional generalized Riemannian manifold X,
was considered and studied by Hlavaty [4], Wrede (7], and Mishra [6].

Recently, Chung [2] introduced the concept of n-dimensional SE-
manifold, imposing the semi-symmetric condition on X,,, which is sim-
ilar to Yano (8] and Imai’s [5] semi-symmetric metric connection, and
found a unique representation of n-dimensional Einstein’s connection in
a beautiful and surveyable form.

In the present paper, we first introduce some preliminary notations,
concepts and results which are needed in this paper. In the next we
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show that a necessary and sufficient condition for the existence of M E-

connection, a representation of M E-vector, and some relations which
hold in MEX,,,.

2. Preliminaries

This section is a brief collection of the basic concepts, notations, and
results, which are needed in our further considerations in the present
paper. It based on the results and symbolisms of Chung [2] and Hlavaty
[4].

Let X5, (n > 1) be a generalized even-dimensional Riemannian man-
ifold referred to a real coordinate system z¥, which obeys coordinate
transformation ¥ — Z" for which

(2.1) Det (%) # 0,

where, here and in the sequel, Greek indices are used for the holonomics
components of tensor in X»,. They take the valves 1,2,---  n and follow
the summation convention.

The manifold X, is endowed with a general real non-symmetric ten-
sor g, which may be decomposed into its symmetric part hy, and
skew-symmetric part kx,:

(223) gru = h)\,u + k)\/,n

where

(2.2b) g = Det(grn,) #0, b= Det(hy,) #0, €= Det(ky,) #0.
Hence we may define a unique tensor h*¥ by

(2.3) hauh™ =6,

The tensor hy, and R will serve for raising and/or lowering indices
of tensor in Xo, in the usual manner.

The manifold X5, is assumed to be connected by a general real con-
nection I'y | with the following transformation rule:

9 4 — _3@" ozP oz o A2
(2.4) A= gz \az7 ozn LA T Bramn )
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The connection I'} 4 is called an Finstein’s connection if it satisfied the
following Einstein’s equation:

N 0
(25&) awg)\u - Fg\lwgaﬂ - Pwﬂg)‘a =0 (aw - @) ’
or equivalently,

(25b) Dwg)\p. = ZSw,uagkaa

where D, denotes the symbolic vector of the covariant derivative with
respect to I'y ,, and

v v 1 v v
(26) Swlt = wp] = 5 (pr. - F,uw)

is a torsion tensor of I'} .
The following quantities will be frequently used in our subsequent
considerations:

(27) 9=7 k= g

(2.8) Ok = 8%, @gyv = =D, ok, v,
(2.9) Ko=1, Kp= ki, “kay® - ko1,
(2.10) Koy = Vakuy + Vikow + Vikop,

where V,, is the symbolic vector of the covariant derivative with respect

to the Christoffel symbol { )\V’u} defined by h,.

It has been shown that the following relations hold in X», [1].

2n
(2.11) Det(Mhay +kxu) =h Y KM%, (M is a real number),
s=0
2n
(2_12) ZKS(2n+p—s)k>\u =0, (p=0,1,2,---).

s=0
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Here and in what follows, the indices s and t are assumed to take the
values 0,2,4,6,--- in the specified range.

It has been shown Hlavaty [4] that if the equations (2.5) admit a
solution I'{, , it must be of the form

Ap?
(2.13) X, = { Ayu} + Sae” + U”sp,
where
(2.14) U au = 207 Sa3P ks,

3. The M E-connection in MEX,,

In this section, we first investigate the M F-connection I'y,, and an
even-dimensional M E-manifold defined by the M E-connection I'j ,. We
also find a necessary and sufficient condition for the existence of M E-
connection and some relations which hold in M EX,,,.

We use the following abbreviation for an arbitrary real vector A, and
an arbitrary tensor X* defined by

(3.1&) (p)A)\=(p)k)\aAa (p=0,1,2,"')7
(3.1b) P47 = (—1)PPg,A* (p=0,1,2,---),
(32&) (O)X)\U = XAV) KP)XAV = (p)k)\ach (p = 1) 2’ 3a Tt )7

(3.2b) X =X, X
DEFINITION 3.1. The Einstein’s connection I'} L which takes the form
v V v v
(3.3) Ap = { )\,U«} + 205X, — 295, X7,

for a non-null vector X¥, is called an M E-connection. In the represen-
tation of M E-connection. the vector X* will be called an M E-vector.
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DEFINITION 3.2. A generalized even-dimensional Riemannian man-
ifold X5, connected by M E-connection is called an even-dimensional
M E-manifold and denoted by M EXs,.

LEMMA 3.3. If there is a M E-connection in M EX,,, the torsion

tensor S»,"” and the tensor U" y, are given by
(3.4) San” = 200Xy — 2k , XY,
(3.5) UY au = 260, X ) — 2R, X7

Proof. Substituting (3.3) into (2.6) and using (2.2a), we have the
relation (3.4). In virtue of (2.2a), (2.13), (3.3), and (3.4), we obtain the
relation (3.5). O

THEOREM 3.4. If there is an M FE-connection I}, in MEX,,, then
it must be of the form:

(3.6) I¥, = { A”M } + 205X, — 2k XY + 2k (X“) +20x, ) :

Proof. Substituting (3.4) into (2.14), we have

(3.7) UY i = 2k(3" Xy + 4k (3 ko X

Substituting (3.4) and (3.7) into (2.13), we obtain the relation (3.6). U

THEOREM 3.5. A necessary and sufficient condition that there is an
M E-connection I'§ u on MEXs,,, is that the following condition is satis-
fied:

(3.8) Viks, =2 (hw[uxﬂ + 2k Xy + Pk X, + 2<2>kw[k<1>xﬂl) ‘

Proof. Suppose that there exists an M E-connection. Then by Theo-
rem 3.4, it is given by (3.6). Substituting (3.6) into (2.5a) and making
use of (2.2a), (2.8), and (3.2a) we obtained (3.8) by a long computation.

Conversely, suppose that the statement (3.8) holds. Now, we define
a connection by (3.6) with the vector X, satisfying (3.8). Then this
connection is clearly Einstein since it satisfies (2.5a) in virtue of our
assumption (3.8). On the other hand, the Einstein’s connection is of the
form (3.3) in virtue of (2.12), (3.4), and (3.5). Therefore, this connection
is an M E-connection. a
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LEMMA 3.6. In M EX,,, the following relations hold:

(3.92) K] = Vokuu,
(39b) K[wu]u = Kwp.u-
Proof. The relations (3.9) immediately follow from (2.10). O

LEMMA 3.7. The following relation holds in ME Xy :

(310)  Kup = 4 (b X1 = ko Xy + Pk X + 2k, D X))

Proof. Substituting (3.8) into (2.10), we have the relation (3.10). O

THEOREM 3.8. In M EX,,, the following relations hold:

(3.11a) S Xy = —2ky, X,
(3.11b) Sy Xt = X, XV — 84X + 20X, X7,
(3.11c) Stk =-Wx, - 3Bx,.

Proof. Making use of (3.1a), (3.2), and (3.4), we have the relations
(3.11). O

THEOREM 3.9. The following relations hold in M EXs,:
(3.12a) U\ X, = QX(A(l)X“) +40x,Mx,,

(3.12b) U ko = =2 (P ko X + 2P k0 DX, ) -

Proof. The relations (3.12) result from (2.8), (3.1), (3.2), and (3.7).0
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THEOREM 3.10. The torsion vector Sx(= Sxo*) and the vector Uy (=
U®.») may be given by

(3.13a) Sy =(1-n)X»—-2WMX,,
(3.13b) Uy =Wx,+23Xx,.

Proof. The relations (3.13) follow from (3.4) and (3.7), putting u =
v = o and making use of (2.8) and (3.1). - O

LEMMA 3.11. The following relations hold in M E X5,,:

(314&) S[wp,]l/ = Swul/y
(3.14b) Sutur] = hup Xy + 2k Xy,
(3.14c) Stwmr] = —2kupXy).

Proof. Multiplying h,. to the torsion tensor S,,* and making use of
(3.4), we have the following relation:

(3.15) 28 = 4h,,[wX#] — 4k, Xy
The relations (3.14) are a direct consequence of (3.15). O

LEMMA 3.12. In MEXs,, the tensor U"), satisfies the following
conditions:

(3.16&) U[w)\]u = ke <Xlt + 2(1)X#) + ku[w (X/\] + 2(1)X)\]) ,
(3.16b) U = 0,

(3.160) U(w)\u) =0.

Proof. Multiplying h,. to both sides of (3.7) and using (3.1), we
obtain the following relation:

(3.17) Uore = —ko3 X, — 2k M X .
The relations (3.16) immediately follow from (3.17). O
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4. The M E-vector in M EX,,

In this section, we introduce a representation of the M E-vector X
which holds in an even-dimensional M E-manifold with a certain special
condition imposed on gy,

We need a tensor F), defined by
(4.1) Py, = ks — 2@ky,.

LEMMA 4.1. The tensor Fy, is of rank n if and only if the tensor
field gy, satisfied the following condition:

2n
(4.2) > 2°K, #0.
s=0

Proof. The tensor Fy, may be written as
1
(43) F)\u = 219)\a(§h/uﬁ + kﬂﬂ)haﬁ'

In virtue of (2.11) and (4.3), we obtain the following relation:
2n 1 1 2n
__ 92n “\2n—s | = _ s .
(4.4) Det(Fy,) = 2™t (b SXZ:OKS(z) ) 5 E§2 K,

Our assertion (4.2) follows from (2.2b) and (4.4). O
By Lemma 4.1, there exists a unique inverse tensor G* defined by
(4.5) GNFyy = G" Fux = 6%,

THEOREM 4.2. In MEXs,,, the M E-vector X,, may be given by the
following representation:

(4.6) X, = ——;—Gw"‘aa(log 9).
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Proof. Multiplying *¢g**, defined by

(4.7) "9 gan = 9" gur = 8,
to both sides of (2.5b), we have
(4.8) Oulog g —2I'S, = 25,.".

On the other hand, multiply A** to both sides of the symmetric part of
(2.5b) and making use of (2.2), (2.8), and (3.4) to obtain

(49)  8ulog h—20% =28,,% —2 (kwa + 2(2>kw‘1) X,

Subtraction of (4.9) from (4.8) and making use of (2.7) and (4.1) gives
the following relation:

(4.10) Bulog g =2 (kwa + 2(2)kw°‘) Xo = —2F,,X".

The representation (4.6) immediately follows by multiplying G* to both
sides of (4.10) using (4.5) and by multiplying h,,» for the result again.[]

REMARK 4.3. In virtue of Theorem 4.2, our investigation of the M E-
vector in M E Xy, is reduced to the study of the tensor G,”. In order
to know that the M F-vector it is necessary and sufficient to know an
explicit representation of G,” in terms of gy,.

In our further considerations, we need the abbreviation (» X** for an
t
arbitrary tensor X*¥ and notations K
(411)  OxM=xw  ExM=Er xov (p=1,23,..),

; 11
(412) Ks == Z Z ng_t.
t=0

The following relations are immediate consequences of (4.11) and

(4.12):
(4.13a) Pl @D Xy = (PO X (3=1,2,3,--.),
(4.13b) (p)k/\w(q)qu — (;D+q)X)‘u,
(4.14a)
i 1 f 1 1 f 1 1 1
K = - K = — K — K = — K —K R e
0= 2 4(24‘4), 4 4(4+4 2+16>’ )

(4.14b) K, = % (K + 1%3_2) .
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THEOREM 4.4. In M EX,,, the tensor ®)@G,Y satisfies the following
recurrence relation:

(4.15) CVGY + K DG + - 4 Ko s P G + K2 GV = 0.

Proof. Multiplying G** to both sides of (2.12) and using (4.11), we
obtain the relation (4.15). O

LEMMA 4.5. The following relation holds in M EXa,:
1
(416&) (p+2)qu + §(p+1)Gwy + ‘;‘(p)kwu =0 (p = 07 1a 2a T )7

(4.16b)
1 1 1
WDgv==2-@2qgv_ -2 v, 23 v =3.45.---).
Gw 4 Gw 2 kw + 4 kw (q ) 757 )

Proof. Substituting (4.1) into (4.5) and making use of (2.3) gives
(4.17) 230G, + WG, + 68 =0.

The relation (4.16a) may be obtained by multiplying %(p)kw“ to both
sides of (4.17). Using (4.16a) twice, the relation (4.16b) follows as in the
following way:

1 1
@Wag, )y =-—-Vg v ~@2p v
2 ) ¢

1 1
— i (@g vy @3 u) _ 2@ v
4 ( Gw + w 2 kw

1 1 1
=—@2gv_—@2p v, @3 v
4 “ 2 vt 4 v
0

LEMMA 4.6. If the tensor G_ " satisfies the following equation in
MEX,,

(418) A(z)GwV -+ BGwV + Awu = 07
then the tensor G ¥ must be of the form
(4.19) B(A+4B)G.,” = 2AB6Y, + A%k,” — (A+4B)A,” —24AMA,",

where A, B, and A,” are functions of gy,,.
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Proof. Substituting of (4.17) into (4.18) for ?)G," gives
(4.20) AMG,Y =2BG,Y — ASY, + 2A,7.

Multiplying kx“ to both sides of (4.20) and making use of (4.11), we
have

(4.21) ADG v =2BVGY — Ak,” +2WAY.

Substitution (4.17) into (4.21) for DG, again gives
A A
(4.22) (5 + 2BYNG,Y = —5 0 + Ak, — 2MAY.

Consequently, the relation (4.19) follows by eliminating the tensor
MG, from (4.20) and (4.22). O

Now, we are ready to prove the following main theorem in the present
section, which present a representation of the tensor G, .

THEOREM 4.7. In an even-dimensional M E-manifold M EXs,,, the
tensor GG, may be given by

1 f 1
(423) G, =— (kag + 2k, — (1)Aw”) Kon-a = A",
%K o,
where
2n—4 ¢
(4.24) A = Y0 Ko (—20nm2m9p,y 4 nsmag,v)
s=0

Proof. Substituting (4.16b) into (4.15) for * G, and using (4.14),
we have

t t
K _2(2n—2) kwu + (2n—-3) kwu + 4K (2n~2) G.?
(4.250) 0 ( ) 2

+ -+ K2n—2(2)Gwy + K2nGwV =0.

Substituting again for ?»~2 G, ¥ into (4.25a) from (4.16b) gives
(4.25b)

If(g (_2(2n—2)kwl/ " (2n—3)kwu) " f(2 (_2(2n—4)kwu n (2n—5)kwu)

+
+ 4K4(2n_4)GwV + -+ KZn—Z(z)GwV + KZnGwV =0.
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After "—;2 steps of successive repeated substitution for (DG, we have
in virtue of (4.24)

+
(4'25C) 4K2n—2(2)GwV + K2nGo” + ALY = 0.

Comparison of (4.18) with (4.25¢) gives

+
(426) A = 4K2n_2, B= Kgn = k

Consequently, the relation (4.23) follows by substituting (4.26) into
(4.19) and making use of (4.14b). O

Now that we have obtained a representation of G,,* in Theorem 4.7,
it is possible for us to represent the M E-vector X, in terms of gy, by
only substituting (4.23) into (4.6).

THEOREM 4.8. In M EXs,, the M E-vector X, may be given by
(4.27)

1
X, = -

4k K oy,

r t
((k(Sﬁ + 2k, — WAL Kon 2 — AwaKZn) 04 (log g).

REMARK 4.9. In virtue of (2.8), (4.11), (4.13), (4.14b), and (4.24),
we may represent the last two terms on the right-hand side of (4.27) as
follows:

¥
- (I)AwaK2n—2 - 2Awai{2n
2n—4
— z IT(S (2k2n_2(2n—1—s)kwa + k(2n—2—s)kwa _2k2n(2n—3—s)kwa) )

s=0

Therefore, we know that the M E-vector X, representation in terms of
Grp-
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