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CONVERGENCE OF SEQUENCES IN GENERALIZED

TOPOLOGICAL SPACES VIA FILTER

Julio C. Ramos-Fernández, Ennis Rosas, and Margot Salas-Brown

Abstract. In this paper a generalization of convergent sequences in con-

nection with generalized topologies and filters is given. Additionally,
properties such as uniqueness, behavior related to continuous functions

are established and notions relative to product spaces.

1. Introduction

The sequences of real numbers play a crucial role in mathematics due to
the assistance provided when proving theorems and topological properties, as
well as in applied mathematics. To name a few instances, sequences are key
regarding the characterization of continuous functions or compact subsets in
metrizable spaces. In applied mathematics, sequences of real numbers are used
extensively in fields such as numerical analysis, scientific computing, and op-
timization. For instance, to prove the existence of solutions related to some
numerical equations through the fixed-point theorem or iterative methods like
the divide and conquer algorithm, in asymptotic notation, which allows esti-
mating the efficiency of an algorithm and they are often used to approximate
solutions to mathematical problems that cannot be solved exactly, such as the
solutions to differential equations or optimization problems [12], the relevance
of the matter cannot be denied.

A broad group of experts in mathematics have made contributions regarding
the generalization of the notion of convergence using many structures such as
ideals, filters, semi-open sets, and generalized topologies [1, 2, 8, 13, 15–19, 21].
These approaches have many applications in different areas of mathematics, for
example, the notion of Painleve-Kuratowski convergence for a sequence of sets
[16] was used to study the convergence of the strict efficient and weak efficient
solution sets [20].

In 1937, Henri Cartan, one of the founders of the Bourbaki group, introduced
the concepts of filter and ultrafilter [5, 6], Bourbaki’s exposition of General
Topology [3] relied heavily on the concepts of filters, ideals, and convergence
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spaces. In fact, these concepts were some of the main cornerstones of Bour-
baki’s approach to mathematics in general, which emphasized the importance
of rigor and abstraction in mathematical reasoning. In 2000, Csaszar [10] in-
troduced the notion of generalized topology as a collection that is stable under
unions, allowing a more flexible notion of openness that includes sets that may
not be open in the traditional sense. Csaszar’s work on generalized topology
has had a significant impact on the field of topology and has led to the devel-
opment of other related structures. In this article, we consider (X,µ) to be
a generalized topological space and F a filter on N and we shall define when
the sequence (xn) in X is µF -convergent to a point x ∈ X. We will show
that by choosing the particular cases of (X,µ) and filters, we could recover
a well-known classical concepts of convergence. We will prove the uniqueness
of the limit when certain separation axioms are assumed and the behavior of
these sequences under continuous functions. We will also give conditions to
establish characterizations of generalized closure in terms of the convergence
of sequences using ultrafilters, and we will also show that to study the conver-
gence of sequences in product of generalized topological spaces using filters, it
is enough to study the convergence of each coordinate sequence.

2. Preliminaries

LetX ̸= ∅ be any set and 2X denote the power set ofX. A subfamily µ of 2X

is said to be a generalized topology (briefly GT) on X if ∅ ∈ µ and µ is closed
under arbitrary union. We call the pair (X,µ) a generalized topological space
(briefly GTS). The elements of µ are called µ-open sets and the complements
are called µ-closed sets. If B ⊂ 2X such that ∅ ∈ B, then all unions of some
elements of B is a GT on X which will be denoted by µ(B) and B is said to
be a base for µ(B). A generalized topology µ is said to be strong if X ∈ µ.
For A ⊆ X, the largest µ-open set contained in A is called the µ-interior of A
and is denoted by iµ(A). The smallest µ-closed set containing A is called the
µ-closure of A and is denoted by cµ(A). In Lemma 2.1 of [9], it is established
that x ∈ cµ(A) in a GTS (X,µ) if and only if U ∩ A ̸= ∅ for every µ-open set
U containing x.

A GTS (X,µ) is called µ-Hausdorff if for any pair of points x, y ∈ X, x ̸= y,
there exist U, V ∈ µ such that x ∈ U , y ∈ V and U ∩ V = ∅. A GTS (X.µ)
is said to be that satisfies the generalized interior nonempty property (briefly
g.i.n.e property) [4] if for any finite collection {Ui}ni=1 of nonempty µ-open sets
such that

⋂n
i=1 Ui ̸= ∅, satisfies iµ (

⋂n
i=1 Ui) ̸= ∅. Let (X,µ) and (Y, λ) be GT

spaces, a function f : (X,µ) → (Y, λ) is said to be (µ, λ)-continuous [10] if the
inverse image of every λ-open subset of Y is a µ-open subset of X. A subset
A of a GTS (X,µ) is called µh-set if for every µ-open set U such that U ̸= ∅
and U ̸= X is true that A ⊂ iµ(A ∪ U). A GTS (X,µ) is called µ-compact if
every µ-open cover has a finite subcover.
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Definition 1. Let X be a nonempty set. A nonempty family F of subsets of
X is a filter on X if it satisfies the following properties:

(1) ∅ /∈ F .
(2) If A,B ∈ F , then A ∩B ∈ F .
(3) If A ∈ F and A ⊆ B, then B ∈ F .

Example 2.1. The following are examples of filters, for more details you can
review [14].

(1) Given an infinite set X, the Frechet filter is defined as Fr = {F ⊂ X :
X − F is finite}.

(2) Given an infinite set X, the principal filter of a nonempty subset A, is
defined as FA = {F ⊂ X : A ⊆ F}. When A is a unitary set {x}, the
principal filter is denoted by Fx.

(3) If I is an ideal on X, then the collection FI = {A ⊂ X : X −A ∈ I}
is a filter on X.

(4) Given a subset A of N, the density of A, denoted by d(A), is defined
as:

d(A) = lim
n→∞

Card (A ∩ {1, 2, . . . , n })
n

.

The collection Fd = {A ⊆ N : d(A) = 1} is a filter on N called density
filter.

Definition 2. If F1 and F2 are two filters on the same set X, F2 is said to be
finer than F1 if F1 ⊂ F2. If also F1 ̸= F2, then F2 is said to be strictly finer
than F1.

We said that a filter F is free if Fr ⊂ F . If a filter is not free, then we said
the filter is fixed. The filter Fd is free because Fr ⊆ Fd and the principal filter
is fixed.

Definition 3. Let X ̸= ∅ be any set and F a filter on X. If a filter F has the
property that there is no filter on X which is strictly finer than a filter F , F
is called an ultrafilter on X.

Observe that ifX is an infinite set, each point x ofX uniquely will determine
an ultrafilter Fx. The free ultrafilters exist only with the help of Zorn’s Lemma.
You can find the proof of the following three results in [7].

Theorem 2.2. Each filter is contained in an ultrafilter.

Theorem 2.3. Let X be a nonempty set. Then each family of subsets of X
that satisfies the finite intersection property is contained in an ultrafilter.

Theorem 2.4. Let X be any set and F a filter on X. Then the following
statements are equivalent:

(1) F is an ultrafilter.
(2) For each subset A of X, either A ∈ F or X −A ∈ F .
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(3) For each subset A of X such that A /∈ F , there exists F ∈ F such that
F ∩A = ∅.

If F is a fixed ultrafilter on an infinite set X, then it is possible to find x ∈ X
such that F = Fx.

We will now consider the very special case of ultrafilters on the set of naturals
numbers, denoted by β(N). Each m ∈ N is identified with its main ultrafilter
Fm, that is, it is possible to create a one-to-one relationship between N and the
unitary ultrafilters on N. So N∗ = β(N)−N can be considered as the collection
of all free ultrafilters on N

3. µF -convergence and some basic properties

In this section, we introduce the notion of a µF -convergent sequence to
a point in a generalized topological space (X,µ) and study some properties
associated with this concept. We start with a lemma that will be used in the
proof of the next results.

Lemma 3.1. Let (X,µ) be a GTS that satisfies g.i.n.e. property such that
every singleton is a µh-set and x ∈ X be a point in the µ-closure of the set
A = {xn : n ∈ N}. If xn ̸= x for all n ∈ N, then the family {{n ∈ N : xn ∈
V } : V ∈ µ; x ∈ V } satisfies the finite intersection property.

Proof. Suppose that the family {{n ∈ N : xn ∈ V } : V ∈ µ; x ∈ V } does not
satisfies the finite intersection property. Then there exists a finite subcollection
{{n ∈ N : xn ∈ Vi} : Vi ∈ µ; x ∈ Vi}ki=1 such that:

k⋂
i=1

{n ∈ N : xn ∈ Vi} = ∅.

It follows that {n ∈ N : xn ∈
⋂k

i=1 Vi} = ∅, and then, for all n ∈ N we have

xn /∈
⋂k

i=1 Vi. Note that iµ

(⋂k
i=1 Vi

)
̸= ∅ because of x ∈

⋂k
i=1 Vi and X

satisfies the g.i.n.e property.

Since iµ

(⋂k
i=1 Vi

)
is non-empty µ-open and every singleton is a µh-set then

iµ

(⋂k
i=1 Vi

⋃
{x}
)
is a µ-open set containing x and

iµ

(
k⋂

i=1

Vi

⋃
{x}

)⋂
A ⊂

(
k⋂

i=1

Vi

⋃
{x}

)⋂
A

=

((
k⋂

i=1

Vi

)⋂
A

)⋃(
{x}

⋂
A
)

= ∅.

Finally, using the fact that xn ̸= x for all n ∈ N, we obtain that x /∈ clµ(A),
which is a contradiction. □
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In generalized topological spaces, the finite intersection of open sets is not
necessarily an open set. The property g.i.n.e. guarantees that even when the
finite intersection of open sets is not open, it is always possible to obtain a non-
empty open set contained in the intersection. The following examples show us
that the hypothesis in the previous lemma can not be removed.

Example 3.2. Let R be the set of all real numbers with the usual topology,
µ = {U ⊂ R : U ⊂ cl (int(U))} and F a filter on N, note that the collection
µ doesn’t have g.i.n.e. property. Consider the sequence (xn) defined as xn :=
(−1)n

n . Then 0 ∈ cµ ({xn : n ∈ N}), consider the family

A = {{n ∈ N : xn ∈ V } : V ∈ µ; 0 ∈ V }.
Note that:

• {n ∈ N : xn ∈ [0, 1/2)} = {2k : k ∈ N} ∈ A.
• {n ∈ N : xn ∈ (−1/3, 0]} = {2k + 1 : k ∈ N} ∈ A.

However

{n ∈ N : xn ∈ [0, 1/2)} ∩ {n ∈ N : xn ∈ (−1/3, 0]} = ∅.
So the family A doesn’t have the finite intersection property.

Example 3.3. Let R be the set of all real numbers,

µ = {∅,R, {0}} ∪ {R− {y} : y ∈ R and y ̸= 0} ,
note that the collection µ satisfies g.i.n.e. property but the singleton don’t are
µh-sets because {0} ∈ µ but is not true that {1} ⊂ iµ({0} ∪ {1}) = {0}.
Consider the sequence (xn) defined as:

xn =

{
2, if n is even,
1, if n is odd.

Then 3 ∈ cµ ({xn : n ∈ N}), consider the family

A = {{n ∈ N : xn ∈ V } : V ∈ µ; 3 ∈ V }.
Note that:

• {n ∈ N : xn ∈ R− {1}} = {2k : k ∈ N} ∈ A.
• {n ∈ N : xn ∈ R− {2}} = {2k + 1 : k ∈ N} ∈ A.

However

{n ∈ N : xn ∈ R− {1}} ∩ {n ∈ N : xn ∈ R− {2}} = ∅.
So the family A doesn’t have the finite intersection property.

Now we shall give our main definition, which provides us with a generaliza-
tion of the notion of convergence sequences.

Definition 4. Let (X,µ) be a GTS and F a filter on N. A sequence (xn) in X
is said to be µF -convergent to a point x ∈ X if for every µ-open set U such that
x ∈ U , {n ∈ N : xn ∈ U} ∈ F . In this case, the point x is called the µF -limit
of (xn) and is denoted by µF -limxn = x.
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Observe that choosing particular cases of generalized topologies and filters,
we recover well known classical concepts of convergence as is shown:

(1) If µ is a topology and F is the Frechet filter Fr, then the µF -convergent
sequences are the convergent sequences in usual sense.

(2) If µ is a metric topology and F is the filter FI for some ideal I on X,
then the µF -convergent sequences are the I-convergent sequences [17].

(3) If µ is a metric topology and F is the density filter Fd, then the µF -
convergent sequences are the statistically convergent sequences [8].

(4) If µ is the collection of semi open sets and F is the filter FI for some
ideal I on X, then the µF -convergent sequences are the S -I-convergent
sequences [13].

(5) If µ is a GT and F is the Frechet filter Fr, then the µF -convergent
sequences are the µ-convergent sequences [19].

(6) If µ is a topology and F is a filter on N, then the µF -convergent se-
quences are the convergent sequences in filter.

Theorem 3.4. Let (X,µ) be a GTS and F a filter on N. If F is a free filter,
then every µ-convergent sequence is a µF -convergent sequence. The converse
is true if F is the Frechet filter.

Proof. Suppose that µ-limxn = x, and choose U ∈ µ such that x ∈ µ. Then
there exists a positive integer n0 such that xn ∈ U for all n ≥ n0. It follows
that: {n ∈ N : n ≥ n0} ⊂ {n ∈ N : xn ∈ U}. Since {n ∈ N : n ≥ n0} ∈ Fr and
F is a free filter, we obtain that {n ∈ N : xn ∈ U} ∈ F and we conclude that
µF -limxn = x.

Conversely, suppose that µFr
-limxn = x, and choose U ∈ µ such that x ∈ µ.

Then {n ∈ N : xn ∈ U} ∈ Fr. So, the set {n ∈ N : xn /∈ U} is finite. Take n0 =
max{n ∈ N : xn /∈ U}. It follows that, if n ≥ n0, then xn ∈ U . In consequence,
we obtain that µ-limxn = x. □

There exists sequences that are µF -convergent but not µ-convergent as we
can see in the next example.

Example 3.5. Let R be the set of all real numbers,

µ = {∅,R, {0}} ∪ {R− {y} : y ∈ R and y ̸= 0}
and Fd the density filter defined in Example 2.1. Consider the sequence (xn)
defined as:

xn =

{
2, n ̸= 2k for all k ∈ N,
1, n = 2k for some k ∈ N.

Note that (xn) does not µ-converge to any element of R. However, µFd
-limxn =

1. Indeed, choose U ∈ µ such that 1 ∈ U , then we analyze the following two
cases:

• If 2 ∈ U , then {n ∈ N : xn ∈ U} = N ∈ Fd.
• If 2 /∈ U , then {n ∈ N : xn ∈ U} = N− {2n : n ∈ N} ∈ Fd.

In both cases, we conclude that µFd
-limxn = x.
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Theorem 3.6. Let (X,µ) be a GTS and F a filter on N. If X is a µ-Hausdorff
space and (xn) is a µF -convergent sequence, then its µF -limit is unique.

Proof. Suppose that µF -lim xn = x and µF -lim xn = y for some x, y ∈ X with
x ̸= y. Then there exist U, V ∈ µ such that x ∈ U , y ∈ V and U ∩ V = ∅.
Using Definition 4, {n ∈ N : xn ∈ U} ∈ F and {n ∈ N : xn ∈ V } ∈ F . It
follows that

{n ∈ N : xn ∈ U ∩ V } = {n ∈ N : xn ∈ U} ∩ {n ∈ N : xn ∈ V } ∈ F .

Since F is a filter on N, then {n ∈ N : xn ∈ U ∩ V } ≠ ∅, in consequence,
there exists a positive integer n0 ∈ {n ∈ N : xn ∈ U∩V }, and then xn0

∈ U∩V ,
contradiction. □

It is widely known that a sequence (xn) in a topological space X converges
to a point x ∈ X if and only if there exists an ultrafilter p ∈ β(N) such that the
sequence converges to x with respect to p. This provides a powerful charac-
terization of convergence using ultrafilters, and allows us to study convergence
properties of sequences in a more abstract and general way. The next theorem
shows us that the reciprocal proposition of the aforementioned statement is
true in generalized topological spaces.

Theorem 3.7. Let (X,µ) be a GTS and F a filter on N. If (xn) is a sequence
on X such that x = µF -lim xn for some x ∈ X, then x ∈ clµ ({xn : n ∈ N}).

Proof. Suppose that x = µF -lim xn. Denote by A = {xn : n ∈ N} and consider
that x /∈ clµ(A), then there exists U ∈ µ such that x ∈ U and then U ∩A = ∅.
Since {n ∈ N : xn ∈ U} ∈ F and U ∩ A = ∅, then {n ∈ N : xn ∈ U} = ∅ ∈ F .
The last one is a contradiction, therefore x ∈ clµ(A). □

Corollary 3.8. Let (X,µ) be a GTS, F a filter on N and A ⊂ X. If (xn) is
a sequence on A such that x = µF -lim xn for some x ∈ X, then x ∈ clµ(A).

Proof. It is a direct consequence of Theorem 3.7. □

Unlike what happens in topological spaces, we need to include additional
hypothesis to ensure that the reciprocal of Theorem 3.7 comes to be true.

Theorem 3.9. Let (X,µ) be a GTS that satisfies the g.i.n.e. property, every
singleton is a µh-set, and x ∈ X such that xn ̸= x for all n ∈ N. If x ∈
clµ ({xn : n ∈ N}), then there exists an ultrafilter p ∈ β(N) such that x = µp-
lim xn.

Proof. Suppose that x ∈ clµ ({xn : n ∈ N}). Then by Lemma 3.1, the following
family

A = {{n ∈ N : xn ∈ V } : V ∈ µ, x ∈ V }
satisfies the finite intersection property, and then by Theorem 2.3, there exists
an ultrafilter p ∈ β(N) such that x = µp-lim xn. □



908 RAMOS-FERNÁNDEZ, ROSAS, AND SALAS-BROWN

The following result concerns the stability of convergence of sequences un-
der continuous functions, although the proof is very simple, it is included for
completeness.

Theorem 3.10. Let (X,µ) and (Y, λ) be two GTS, let f : (X,µ) → (Y, λ) be a
(µ, λ)-continuous function, and let F be a filter on N. If x = µF -lim xn, then
f(x) = λF -lim f(xn).

Proof. Suppose that x = µF -limxn and let V be a λ-open set such that f(x) ∈
V . Since f is (µ, λ)-continuous f−1(V ) ∈ µ and x ∈ f−1(V ), therefore,

{n ∈ N : f(xn) ∈ V } = {n ∈ N : xn ∈ f−1(V )} ∈ F .

In consequence, f(x) = λF -lim f(xn). □

The following example shows that the converse of the above theorem need
not be true.

Example 3.11. Let R be the set of all real numbers,

µ = {∅,R, {0}} ∪ {R− {y} : y ∈ R and y ̸= 0} ,
F any filter and consider the sequence (xn), where xn = n. The function
f : (R, µ) → (R, µ) defined as f(x) = 0 is (µ, µ)-continuous. Observe that for
all U ∈ µ, 0 ∈ µ and then f(0) = 0. It is clear that:

{n ∈ N : f(xn) ∈ U} = N ∈ F .

So, f(0) = µF -lim f(xn). However, (xn) does not µF -converge to 0. Indeed,
{0} ∈ µ and

{n ∈ N : xn ∈ {0}} = ∅ /∈ F .

And this conclude the example.

In generalized compact topological spaces, it can be guaranteed that for any
sequence, it converges to a point for every ultrafilter.

Theorem 3.12. Let (X,µ) be a GTS such that X is a µ-compact space and
(xn) a sequence with infinite rank on X, then for all p ∈ N∗ there exists x ∈ X
such that x = µp-lim xn.

Proof. Let X be a µ-compact space; let (xn) be a sequence with infinite rank on
X and let p ∈ N∗. Consider the family of all µ-closed subsets of X described
as follows: A = {clµ({xn : n ∈ A}) : A ∈ p}. It is easy to see that A
satisfies the finite intersection property. In fact, take clµ({xn : n ∈ A1}) and
clµ({xn : n ∈ A2}) ∈ A, since A1, A2 ∈ p, then A1 ∩ A2 ∈ p and therefore,
A1 ∩A2 ̸= ∅. Note that:

∅ ≠ {xn : n ∈ A1 ∩A2}
⊆ clµ ({xn : n ∈ A1} ∩ {xn : n ∈ A2})
⊂ clµ ({xn : n ∈ A1}) ∩ clµ ({xn : n ∈ A2}) .

Now using the µ-compactness ofX, we obtain that
⋂

A∈p clµ({xn : n ∈ A}) ̸= ∅.
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Now take x ∈
⋂

A∈p clµ({xn : n ∈ A}). We want to prove that x = µp-lim
xn. In order to do that, consider the following sets V ∈ µ, such that x ∈ V and
{n ∈ N : xn ∈ V }. Since for each A ∈ p, we have that x ∈ clµ({xn : n ∈ A}),
then V ∩ {xn : n ∈ A} ̸= ∅, that is {n ∈ N : xn ∈ V } ∩ A ̸= ∅ for all A ∈ p.
Using Theorem 2.4, we obtain that {n ∈ N : xn ∈ V } ∈ p, and then x = µp-lim
xn. □

Now we will show that our notion of convergence can be extended to the
product of generalized topological spaces, and that convergence is determined
by the convergence of each coordinate. Let ∆ ̸= ∅ be an index set and for each
α ∈ ∆ and let (Xα, µα) be a strong GTS. We said that a set Gα satisfies the
Pα property if Gα ∈ µα and Gα = Xα except for finitely many values of α ∈ ∆.
With this notation we can define the following collection:

B = {Πα∈∆Gα : Gα satisfies the Pα property} .

The GT µ having B as a basis is the generalized product topology of X =
Πα∈∆Xα. In Proposition 2.7 of [11], it is established that µ is strong and each
projection πα is (µ, µα)-continuous.

Theorem 3.13. Let (X,µ) be the product GT, where X = Πα∈∆Xα; let
(Xα, µα) be a strong GTS for each α ∈ ∆, let F be a filter on N and let
(xn) be a sequence in X. Then x = µF -lim xn if and only if πα(x) = µF -lim
πα(xn) for every α ∈ ∆.

Proof. Suppose that x = µF -lim xn. Since πα : X → Xα is (µ, µα)-continuous
for every α ∈ ∆, it follows from Theorem 3.10 that πα(x) = µF -lim πα(xn) for
every α ∈ ∆.

Reciprocally, take any µ-open set W such that x ∈ W , then there exists a
neighborhood basic B such that x ∈ B ⊂ W . It is clear that

B = π−1
α1

(Uα1) ∩ · · · ∩ π−1
αm

(Uαm
),

where for each i, 1 ≤ i ≤ m; xαi ∈ Uαi . Since παi(x) = µF -lim παi(xn), then

{n ∈ N : παi
(xn) ∈ Uαi

} ∈ F .

Therefore,

{n ∈ N : xn ∈ B} = {n ∈ N : πα1(xn) ∈ Uαn} ∩ · · · ∩ {n ∈ N : παm(xn) ∈ Uαm}
∈ F .

Due to {n ∈ N : xn ∈ B} ⊂ {n ∈ N : xn ∈ W}, we conclude that

{n ∈ N : xn ∈ W} ∈ F ,

and the proof of the theorem is complete. □
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4. Conclusions

We have introduced the notion of µF -convergent sequences in the sense
of generalized topology and filter. An example of µF -convergent but not
µ-convergent sequence was presented, showing thus that this new notion is
more general than the notion of convergent sequence in generalized topological
spaces. The uniqueness of the limit was proved under the assumption of certain
separation axioms. Conditions were established to characterize the generalized
closure in terms of ultrafilters.

Acknowledgment. The authors would like to thank the referees for her/his
valuable comments and suggestions to improve this paper.
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[16] A. A. Khan, C. Tammer, and C. Zălinescu, Set-Valued Optimization, Vector Optimiza-
tion, Springer, Heidelberg, 2015. https://doi.org/10.1007/978-3-642-54265-7

https://doi.org/10.4064/fm-66-2-185-193
https://doi.org/10.4067/s0716-09172017000400739
https://doi.org/10.4067/s0716-09172017000400739
https://doi.org/10.1006/jmaa.1996.0027
https://doi.org/10.1006/jmaa.1996.0027
https://doi.org/10.1023/A:1006572725660
https://doi.org/10.1023/A:1019713018007
https://doi.org/10.1007/s10474-008-8074-x
https://doi.org/10.1155/2014/453912
https://doi.org/10.1155/2014/453912
https://doi.org/10.36045/j.bbms.210512
https://doi.org/10.36045/j.bbms.210512
https://doi.org/10.1007/978-3-642-54265-7


CONVERGENCE OF SEQUENCES IN GENERALIZED TOPOLOGICAL SPACES 911
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