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OPTIMAL INEQUALITIES FOR THE CASORATI

CURVATURES OF SUBMANIFOLDS OF GENERALIZED

SPACE FORMS ENDOWED WITH SEMI-SYMMETRIC

METRIC CONNECTIONS

Chul Woo Lee, Jae Won Lee, Gabriel-Eduard Vı̂lcu, and Dae Won Yoon

Abstract. In this paper, we prove two optimal inequalities involving the
intrinsic scalar curvature and extrinsic Casorati curvature of submanifolds
of generalized space forms endowed with a semi-symmetric metric con-
nection. Moreover, we also characterize those submanifolds for which the
equality cases hold.

1. Introduction

After Friedmann and Schouten [14] introduced the notion of a semi-symmetr-
ic linear connection on a differentiable manifold, Hayden [16] defined the no-
tion of a semi-symmetric metric connection on a Riemannian manifold. Later,
Yano [41] proved that a Riemannian manifold admits a semi-symmetric met-
ric connection whose curvature tensor vanishes if and only if the Riemannian
manifold is conformally flat. In [18, 19], Imai found several interesting prop-
erties of a Riemannian manifold and a hypersurface of a Riemannian manifold
with a semi-symmetric metric connection. Nakao showed in [30] that a metric
semi-symmetric linear connection on a Riemannian manifold (N, g) induces a
similar connection on a submanifold of (N, g), and he derives equations sim-
ilar to those of Gauss and Codazzi-Mainardi, generalizing the work of Imai
for hypersurfaces. In 2008, Tripathi [37] showed there a complete theory of
connections which unifies the concepts of various metric connections such as a
semi-symmetric metric connection and a quarter-symmetric metric connection
and various non-metric connection such as the Weyl connection and different
kind of semi-symmetric non-metric connections.

On the other hand, the theory of Chen invariants or δ-invariants, initiated
by B.-Y. Chen [7] in a seminal paper published in 1993, is presently one of
the most interesting research topic in differential geometry of submanifolds.
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Chen established optimal inequalities between the main intrinsic invariants
and the main extrinsic invariants of a submanifold in real space forms with any
codimension in [8]. Many interesting results concerned Chen invariants and
inequalities were later obtained for different classes of submanifolds in various
ambient spaces, like complex space forms [3, 9, 10, 11, 17, 22, 27, 31, 36, 38, 42].

Recently, in [28, 29], C. Özgür and A. Mihai proved Chen inequalities for
submanifolds of real, complex, and Sasakian space forms endowed with semi-
symmetric metric connections. Moreover, P. Zhang, L. Zhang and W. Song
[43] obtained Chen-like inequalities for submanifolds of a Riemannian manifold
of quasi-constant curvature endowed with a semi-symmetric metric connection
by using an algebraic approach.

Instead of concentrating on the sectional curvature with the extrinsic squared
mean curvature, the Casorati curvature of a submanifold in a Riemannian man-
ifold was considered as an extrinsic invariant defined as the normalized square
of the length of the second fundamental form. The notion of Casorati curvature
extends the concept of the principal direction of a hypersurface of a Riemann-
ian manifold. Several geometers in [1, 6, 15, 39, 40] found geometrical meaning
and the importance of the Casorati curvature. Therefore, it is of great interest
to obtain optimal inequalities for the Casorati curvatures of submanifolds in
different ambient spaces. Recently, some optimal inequalities involving Caso-
rati curvatures were proved in [12, 13, 23, 34] for submanifolds in ambient space
forms. As a natural prolongation of our research, in this paper we will study
these inequalities for submanifolds in generalized space forms, endowed with
semi-symmetric metric connections.

2. Preliminaries

Let Nm be an m-dimensional Riemannian manifold and ∇̃ a linear connec-
tion on Nm. If the torsion tensor T̃ of ∇̃, defined by

T̃ (X̃, Ỹ ) = ∇̃
X̃
Ỹ − ∇̃

Ỹ
X̃ − [X̃, Ỹ ],

for any vector fields X̃ and Ỹ on Nm, satisfies

T̃ (X̃, Ỹ ) = φ(Ỹ )X̃ − φ(X̃)Ỹ

for a 1-form φ, then the connection ∇̃ is called a semi-symmetric connection.

Let g be a Riemannian metric on Nm. If ∇̃g = 0, then ∇̃ is called a semi-

symmetric metric connection on Nm. Following [41], a semi-symmetric metric

connection ∇̃ on Nm is given by

∇̃
X̃
Ỹ =

˚̃
∇

X̃
Ỹ + φ(Ỹ )X̃ − g(X̃, Ỹ )P,

for any vector fields X̃ and Ỹ on Nm, where
˚̃
∇ denotes the Levi-Civita con-

nection with respect to the Riemannian metric g and P is a vector field defined

by g(P, X̃) = φ(X̃), for any vector field X̃.
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Wewill consider a Riemannian manifoldNm endowed with a semi-symmetric

metric connection ∇̃ and the Levi-Civita connection denoted by
˚̃
∇. Let Mn

be an n-dimensional submanifold of an m-dimensional Riemannian manifold
Nm. On the submanifold Mn, we consider the induced semi-symmetric metric
connection, denoted by ∇ and the induced Levi-Civita connection, denoted by

∇̊. Let R̃ be the curvature tensor of Nm with respect to ∇̃ and
˚̃
R the curvature

tensor of Nm with respect to
˚̃
∇. We also denote by R and R̊ the curvature

tensors of ∇ and ∇̊, respectively, on Mn. The Gauss formulae with respect to
∇ and ∇̊, respectively, can be written as

∇̃XY = ∇XY + h(X,Y ), X, Y ∈ χ(Mn),

˚̃
∇XY = ∇̊XY + h̊(X,Y ), X, Y ∈ χ(Mn),

where h̊ is the second fundamental form of Mn in Nm and h is a (0, 2)-tensor
on Mn. According to the formula (7) from [30], h is also symmetric. One

denotes by H̊ the mean curvature vector of Mn in Nm. Let Nm(c) be a real
space form of constant sectional curvature c endowed with a semi-symmetric

metric connection ∇̃.
From [30], the Gauss equation for the submanifold Mn into the real space

form Nm(c) is

˚̃
R(X,Y, Z,W ) = R̊(X,Y, Z,W ) + g

(
h̊(X,Z), h̊(Y,W )

)
(2.1)

− g
(
h̊(X,W ), h̊(Y, Z)

)
.

The curvature tensor R̃ with respect to the semi-symmetric metric connec-

tion ∇̃ on Nm can be written as (see [19])

R̃(X,Y, Z,W ) =
˚̃
R(X,Y, Z,W )− α(Y, Z)g(X,W )(2.2)

+ α(X,Z)g(Y,W )− α(X,W )g(Y, Z)

+ α(Y,W )g(X,Z)

for any vector fields X , Y , Z, W ∈ χ(Mn), where α is a (0, 2)-tensor field
defined by

α(X,Y ) =
(
˚̃
∇Xφ

)
Y − φ(X)φ(Y ) +

1

2
φ(P )g(X,Y ), ∀ X, Y ∈ χ(Mn).

Let π ⊂ TxM
n, x ∈ Mn, be a 2-plane section. Denote by K(π) the sectional

curvature ofMn with respect to the induced semi-symmetric metric connection
∇. For any orthonormal basis {e1, . . . , en} of the tangent space TxM

n and
{en+1, . . . , em} an orthonormal basis of the normal space T⊥

x M , the scalar
curvature τ at x is defined by

τ(x) =
∑

1≤i<j≤n

K (ei ∧ ej) ,
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and the normalized scalar curvature ρ of M is defined by

ρ =
2τ

n(n− 1)
.

We denote by H the mean curvature vector, that is,

H(x) =
1

n

n∑

i=1

h(ei, ei),

and we also set

hα
ij = g (h(ei, ej), eα) , i, j ∈ {1, . . . , n}, α ∈ {n+ 1, . . . ,m}.

Then, the squared mean curvature of the submanifold M in N is defined by

||H ||2 =
1

n2

m∑

α=n+1

(
n∑

i=1

hα
ii

)2

,

and the squared norm of h over dimension n is denoted by C and is called the
Casorati curvature of the submanifold M . Therefore, we have

C =
1

n

m∑

α=n+1

n∑

i,j=1

(
hα
ij

)2
.

The submanifold M is called invariantly quasi-umbilical if there exist m −
n mutually orthogonal unit normal vectors ξn+1, . . . , ξm such that the shape
operators with respect to all directions ξα have an eigenvalue of multiplicity
n− 1 and that for each ξα the distinguished eigendirection is the same [5].

Suppose now that L is an r-dimensional subspace of TxM , r ≥ 2, and
{e1, . . . , er} is an orthonormal basis of L. Then, the scalar curvature τ(L) of
the r-plane section L is given by

τ(L) =
∑

1≤α<β≤r

K (eα ∧ eβ) ,

and the Casorati curvature C(L) of the subspace L is defined as

C(L) =
1

r

m∑

α=n+1

r∑

i,j=1

(
hα
ij

)2
.

The normalized δ-Casorati curvature δc(n− 1) and δ̂c(n− 1) are given by

[δc(n− 1)]x =
1

2
Cx +

n+ 1

2n
inf{C(L) | L : a hyperplane of TxM},

and

[δ̂c(n− 1)]x = 2Cx −
2n− 1

2n
sup{C(L) | L : a hyperplane of TxM}.
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3. Casorati curvatures of submanifolds in generalized complex

space forms with semi-symmetric metric connections

The concept of generalized complex space form has been introduced by F.
Tricerri and L. Vanhecke [35] as a natural generalization of the notion of com-
plex space form. An almost Hermitian manifold (N, J, g) is said to be a gen-

eralized complex space form if there exist two functions f1 and f2 on N such
that

˚̃
R(X,Y )Z = f1{g(Y, Z)X − g(X,Z)Y }(3.1)

+ f2{g(X, JZ)JY − g(Y, JZ)JX + 2g(X, JY )JZ}

for any vector fields X,Y, Z on N , where
˚̃
R denotes the curvature tensor of N

(see [35]). In such a case, we will write N(f1, f2). Many authors have stud-
ied these manifolds and their submanifolds. For example, one main reference
concerning these spaces is [35], in which F. Tricerri and L. Vanhecke estab-
lished an important obstruction for their existence in dimensions greater than
or equal to 6. In fact, in these dimensions, a generalized complex space form
reduces to a real space form or a complex space form. Moreover, as proved by
R. Lemence [24], the result of F. Tricerri and L. Vanhecke is partially extend-
able to 4-dimensional case under compactness hypothesis. Nevertheless, Olszak
provided some interesting examples of 4-dimensional generalized complex space
forms with non-constant functions in [32].

If N(f1, f2) is a generalized complex space form with a semi-symmetric met-

ric connection ∇̃, then from (2.2) and (3.1), the curvature tensor R̃ of N(f1, f2)
can be expressed as

R̃(X,Y, Z,W )(3.2)

= f1{g(Y, Z)X − g(X,Z)Y }

+ f2{g(X, JZ)JY − g(Y, JZ)JX + 2g(X, JY )JZ}

+ α(X,Z)g(Y,W )− α(X,W )g(Y, Z) + α(Y,W )g(X,Z).

Let Mn (n ≥ 3) be an n-dimensional submanifold of a 2m-dimensional gener-
alized complex space form N(f1, f2). For any tangent vector field X to M , we
put

JX = PX + FX,

where PX and FX are the tangential and normal components of JX , respec-
tively. We define

||P ||2 =

n∑

i,j=1

g2(Jei, ej).

Theorem 3.1. Let Mn be a submanifold of a generalized complex space form

N(f1, f2) with a semi-symmetric metric connection. Then
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(i) The normalized δ-Casorati curvature δC(n− 1) satisfies

ρ ≤ δC(n− 1) + f1 +
3f2

n(n− 1)
||P ||2 −

2

n
trace(α).

Moreover, the equality sign holds if and only if Mn is an invariantly quasi-

umbilical submanifold with trivial normal connection in N(f1, f2), such that

with respect to suitable orthonormal tangent frame {ξ1, . . . , ξn} and normal

orthonormal frame {ξn+1, . . . , ξm}, the shape operators Ar ≡ Aξr , r ∈ {n +
1, . . . ,m}, take the following forms:

An+1 =




a 0 0 · · · 0 0
0 a 0 · · · 0 0
0 0 a · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · a 0
0 0 0 · · · 0 2a




, An+2 = · · · = Am = 0.

(ii) The normalized δ-Casorati curvature δ̂C(n− 1) satisfies

ρ ≤ δ̂C(n− 1) + f1 +
3f2

n(n− 1)
||P ||2 −

2

n
trace(α).

Moreover, the equality sign holds if and only if Mn is an invariantly quasi-

umbilical submanifold with trivial normal connection in N(f1, f2), such that

with respect to suitable orthonormal tangent frame {ξ1, . . . , ξn} and normal

orthonormal frame {ξn+1, . . . , ξm}, the shape operators Ar ≡ Aξr , r ∈ {n +
1, . . . ,m}, take the following forms:

An+1 =




2a 0 0 · · · 0 0
0 2a 0 · · · 0 0
0 0 2a · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2a 0
0 0 0 · · · 0 a




, An+2 = · · · = Am = 0.

Proof. (i) Let x ∈ Mn and {e1, e2, . . . , en} and {en+1, . . . , em} be orthonormal
bases of TxM

n and T⊥
x Mn, respectively. For X = W = ei, Y = Z = ej , i 6= j,

from the equation (3.2), it follows that

(3.3) R̃ (ei, ej, ej , ei) = f1 + 3f2g
2(Jei, ej)− α(ei, ei)− α(ej , ej).

From (3.3) and the Gauss equation with respect to the semi-symmetric metric
connection, we get

f1 + 3f2g
2(Jei, ej)− α(ei, ei)− α(ej , ej)

= R(ei, ej, ej , ei) + g(h(ei, ej), h(ei, ej))− g(h(ei, ei), h(ej , ej)).
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By summation over 1 ≤ i, j ≤ n, it follows from the previous relation that

(3.4) 2τ = n2||H ||2−nC+(n2−n)f1+3f2

n∑

i,j=1

g2(Jei, ej)−2(n−1)trace(α).

We define now the following function, denoted by P , which is a quadratic
polynomial in the components of the second fundamental form:

P =
1

2
n(n− 1)C +

1

2
(n+ 1)(n− 1)C(L)− 2τ + (n2 − n)f1

+ 3f2||P ||2 − 2(n− 1)trace(α).

Without loss of generality, by assuming that L is spanned by e1, . . . , en−1,
it derives that

P =
n+ 1

2

m∑

α=n+1




n∑

i,j=1

(
hα
i,j

)2

+

n+ 1

2

m∑

α=n+1




n−1∑

i,j=1

(
hα
i,j

)2



−

m∑

α=n+1

(
n∑

i=1

hα
ii

)2

and now we obtain easily that

P =

m∑

α=n+1

n−1∑

i=1

[
n (hα

ii)
2
+ (n+ 1) (hα

in)
2
]

(3.5)

+

m∑

α=n+1


2(n+ 1)

n−1∑

i<j=1

(
hα
ij

)2
− 2

n∑

i<j=1

hα
iih

α
jj +

n− 1

2
(hα

nn)
2


 .

From (3.5), it follows that the critical points

hc =
(
hn+1
11 , hn+1

12 , . . . , hn+1
nn , . . . , hm

11, . . . , h
m
nn

)

of P are the solutions of the following system of linear homogeneous equations:

(3.6)





∂P

∂hα
ii

= 2(n+ 1)hα
ii − 2

n∑

k=1

hα
kk = 0,

∂P

∂hα
nn

= (n− 1)hα
nn − 2

n−1∑

k=1

hα
kk = 0,

∂P

∂hα
ij

= 4(n+ 1)hα
ij = 0,

∂P

∂hα
in

= 2(n+ 1)hα
in = 0,

with i, j ∈ {1, . . . , n− 1}, i 6= j and α ∈ {n+ 1, . . . ,m}. Thus, every solution
hc has hα

ij = 0 for i 6= j, and the determinant which corresponds to the first
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two sets of equations of the above system is zero (there exist solutions for non-
totally geodesic submanifolds). Moreover, it is easy to see that the Hessian
matrix of P has the form

H(P) =




H1 0 0

0 H2 0

0 0 H3


 ,

where

H1 =




2n −2 · · · −2 −2
−2 2n · · · −2 −2
...

...
. . .

...
...

−2 −2 · · · 2n −2
−2 −2 · · · −2 n− 1




,

0 denotes the null matrix of corresponding dimensions and H2, H3 are the next
diagonal matrices

H2 = diag (4(n+ 1), 4(n+ 1), . . . , 4(n+ 1)) ,

H3 = diag (2(n+ 1), 2(n+ 1), . . . , 2(n+ 1)) .

Therefore, we find that H(P) has the following eigenvalues:

λ11 = 0, λ22 = n+ 3, λ33 = · · · = λnn = 2(n+ 1),

λij = 4(n+ 1), λin = 2(n+ 1), ∀i, j ∈ {1, . . . , n− 1}, i 6= j.

Therefore, P is parabolic and reaches a minimum P(hc) = 0 for the solution
hc of the system (3.6). It follows P ≥ 0, and hence,

2τ ≤
1

2
n(n−1)C+

1

2
(n+1)(n−1)C(L)+(n2−n)f1+3f2||P ||2−2(n−1)trace(α).

Hence, we deduce that

ρ ≤
1

2
C +

n+ 1

2n
C(L) + f1 +

3f2
n(n− 1)

||P ||2 −
2

n
trace(α)

for every tangent hyperplane L of M . Taking the infimum over all tangent
hyperplanes L, the conclusion trivially follows.

Moreover, we can easily check that the equality sign holds in the theorem if
and only if

(3.7) hα
ij = 0, ∀i, j ∈ {1, . . . , n}, i 6= j and α ∈ {n+ 1, . . . ,m}

and

(3.8) hα
nn = 2hα

11 = · · · = 2hα
n−1 n−1, ∀α ∈ {n+ 1, . . . ,m}.

From (3.7) and (3.8), we conclude that the equality holds if and only if the
submanifold M is invariantly quasi-umbilical with trivial normal connection
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in N , such that with respect to suitable orthonormal tangent and normal or-
thonormal frames, the shape operators take the forms below.

(3.9) An+1 =




2a 0 0 · · · 0 0
0 2a 0 · · · 0 0
0 0 2a · · · 0 0
...

...
...

. . .
...

...
0 0 a · · · 2a 0
0 0 a · · · 0 a




, An+2 = · · · = Am = 0.

(ii) can be proved in a similar way, considering the following quadratic poly-
nomial in the components of the second fundamental form:

Q = 2n(n− 1)C −
1

2
(2n− 1)(n− 1)C(L)− 2τ + (n2 − n)f1 + 3f2||P ||2

− 2(n− 1)trace(α),

where L is a hyperplane of TpM .
Similarly, as in the proof of (i), it follows that Q ≥ 0, and hence,

2τ ≤ 2n(n− 1)C −
1

2
(2n− 1)(n− 1)C(L) + (n2 − n)f1 + 3f2||P ||2

− 2(n− 1)trace(α).

Therefore, we deduce that

ρ ≤ 2C −
2n− 1

2n
C(L) + f1 +

3f2
n(n− 1)

||P ||2 −
2

n
trace(α)

for every tangent hyperplane L of M . Taking the supremum over all tangent
hyperplanes L, the conclusion trivially follows. �

Corollary 3.2. Let Mn be a submanifold of a complex space form N(c) with

a semi-symmetric metric connection. Then

(i) The normalized δ-Casorati curvature δC(n− 1) satisfies

ρ ≤ δC(n− 1) +
c

4
+

3c

4n(n− 1)
||P ||2 −

2

n
trace(α).

(ii) The normalized δ-Casorati curvature δ̂C(n− 1) satisfies

ρ ≤ δ̂C(n− 1) +
c

4
+

3c

4n(n− 1)
||P ||2 −

2

n
trace(α).

4. Casorati curvatures of submanifolds in generalized Sasakian

space forms with semi-symmetric metric connections

A (2m+ 1)-dimensional Riemannian manifold
(
N2m+1, g

)
has an almost

contact metric structure if it admits a (1, 1)-tensor field ϕ, a vector field ξ and
a 1-form η satisfying:

ϕ2X = −X + η(X)ξ, η(ξ) = 1
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g (ϕX,ϕY ) = g(X,Y )− η(X)η(Y ),

g(X, ξ) = η(X),

for any vector fields X , Y over N . Let Φ denotes the fundamental 2-form in
N , given by Φ(X,Y ) = g(X,ϕY ) for all X , Y over N . If Φ = dη, then N is
called a contact metric manifold. The structure of N is called normal if

[ϕ, ϕ] + 2dη ⊗ ξ = 0,

where [ϕ, ϕ] is the Nijenhuis torsion of ϕ. A Sasakian manifold is a normal
contact metric manifold.

In [33], J. A. Oubiña introduced the notion of a trans-Sasakian manifold. An

almost contact metric manifold M̃ is a trans-Sasakian manifold if there exist
two functions α and β on M̃ such that

(4.1) (∇Xφ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX)

for any vector fields X,Y on M̃ . In particular, from (2.2) it is easy to see that
the following equations hold for a trans-Sasakian manifold:

(4.2) ∇Xξ = −αφX + β(X − η(X)ξ), dη = αΦ.

In particular, if β = 0, M̃ is said to be an α-Sasakian manifold. Sasakian
manifolds appear as examples of α-Sasakian manifolds with α = 1.

Another important kind of trans-Sasakian manifolds is that of cosymplectic

manifolds, obtained for α = β = 0. In fact, it can be proved that this definition
is equivalent to M̃ being normal with η and Φ closed forms; cosymplectic
manifolds were defined this way in [4]. From (4.2), we have ∇Xξ = 0.

On the other hand, if α = 0, M̃ is said to be a β-Kenmotsu manifold.
Kenmotsu manifolds, defined in [21], are particular examples with β = 1. Ac-
tually, in [26] J. C. Marrero showed that a trans-Sasakian manifold of dimension
greater or equal than 5 is either α-Sasakian, β-Kenmotsu or cosymplectic.

Given an almost contact metric manifold (N,φ, ξ, η, g), a φ-section of N is
section π ⊆ TpN spanned by X and φX , where X is a unit tangent vector

field orthogonal to ξ. The sectional curvature K̃(π) with respect to a φ-section

π is called a φ-sectional curvature. If a Sasakian manifold M̃ has constant
φ-sectional curvature c, N is called a Sasakian space form and is denoted by
N(c).

On the other hand, the curvature tensor
˚̃
R of a Sasakian space form N(c) is

given by

˚̃
R(X,Y )Z =

c+ 3

4
{g(Y, Z)X − g(X,Z)Y }(4.3)

+
c− 1

4
{g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}

+
c− 1

4
{η(X)η(Z)Y − η(Y )η(Z)X

+ g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ}
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for any tangent vector fields X,Y, Z to N(c). More generally, if the curvature

tensor of an almost contact metric manifold (M̃, φ, ξ, η, g) satisfies

˚̃
R(X,Y )Z = f1{g(Y, Z)X − g(X,Z)Y }(4.4)

+ f2{g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}

+ f3{η(X)η(Z)Y − η(Y )η(Z)X

+ g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ},

f1, f2, f3 being differential functions on N , then M̃ is said to be a generalized

Sasakian space form (see [2]). In such a case, we will write N(f1, f2, f3).
This kind of a manifold appears as a natural generalization of the well-

know Sasakian space forms N(c), which can be obtained as particular cases
of generalized Sasakian space forms, by taking f1 = c+3

4 and f2 = f3 = c−1
4 .

Moreover, we can also find some other trivial examples:

Example 4.1. A cosymplectic space form (i.e., a cosymplectic manifold with
constant φ-sectional curvature c) is a generalized Sasakian space form with
f1 = f2 = f3 = c

4 (see [25]).

Example 4.2. A Kenmotsu space form, i.e., a Kenmotsu manifold with con-
stant φ-sectional curvature c, is a generalized Sasakian space form with f1 =
c−3
4 and f2 = f3 = c+1

4 (see e.g. [21]).

Example 4.3. An almost contact metric manifold is said to be an almost

C(α)-manifold ([20]) if its Riemannian curvature tensor satisfies

˚̃
R(X,Y, Z,W ) =

˚̃
R(X,Y, φZ, φW )+α{g(X,W )g(Y, Z)

− g(X,Z)g(Y,W )+g(X,φZ)g(Y, φW )−g(X,φW )g(Y, φZ)}

for any vector fields X,Y, Z,W on N , where α is a real number. Moreover, if
such a manifold has constant φ-sectional curvature equal to c, then its curvature
tensor is given by

˚̃
R(X,Y )Z =

c+ 3α2

4
{g(Y, Z)X − g(X,Z)Y }(4.5)

+
c− α2

4
{g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}

+
c− α2

4
{η(X)η(Z)Y − η(Y )η(Z)X

+ g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ},

and hence, it is a generalized Sasakian space form with f1 = c+3α2

4 and f2 =

f3 = c−α2

4 .

As we have seen from the previous examples, we found generalized Sasakian
space forms with very different structures.
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If N(f1, f2, f3) is a (2m+1)-dimensional generalized Sasakian space form of
the constant ϕ-sectional curvature c with a semi-symmetric metric connection

∇̃, then from (2.2) and (4.1), the curvature tensor
˚̃
R of N(f1, f2, f3) can be

expressed as

˚̃
R(X,Y, Z,W ) = f1{g(Y, Z)g(X,W )− g(X,Z)g(Y,W )}(4.6)

+ f2{g(X,φZ)g(φY,W )− g(Y, φZ)g(φX,W )

+ 2g(X,φY )g(φZ,W )}

+ f3{η(X)η(Z)g(Y,W )− η(Y )η(Z)g(X,W )

+ η(Y )η(W )g(X,Z)− η(X)η(W )g(Y, Z)}

− α(Y, Z)g(X,W ) + α(X,Z)g(Y,W )

− α(X,W )g(Y, Z) + α(Y,W )g(X,Z).

Let Mn (n ≥ 3) be an n-dimensional submanifold of a (2m+1)-dimensional
generalized Sasakian space form N(f1, f2, f3) of constant ϕ-sectional curvature
c. For any tangent vector field X to M , we put

ϕX = PX + FX,

where PX and FX are tangential and normal components of ϕX , respectively,
and we decompose

ξ = ξ⊤ + ξ⊥,

where ξ⊤ and ξ⊥ denote the tangential part and the normal part of ξ, respec-
tively.

Theorem 4.1. Let Mn be a submanifold of a generalized Sasakian space form

N(f1, f2, f3) with a semi-symmetric metric connection. Then

(i) The normalized δ-Casorati curvature δC(n− 1) satisfies

ρ ≤ δC(n− 1) + f1 +
3f2

n(n− 1)
||P ||2 −

2f3
n

||ξ⊤||2 −
2

n
trace(α).

Moreover, the equality sign holds if and only if Mn is an invariantly quasi-

umbilical submanifold with trivial normal connection in N(f1, f2, f3), such that

with respect to suitable orthonormal tangent frame {ξ1, . . . , ξn} and normal

orthonormal frame {ξn+1, . . . , ξ2m+1}, the shape operators Ar ≡ Aξr , r ∈
{n+ 1, . . . , 2m+ 1}, take the following forms:

An+1 =




a 0 0 · · · 0 0
0 a 0 · · · 0 0
0 0 a · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · a 0
0 0 0 · · · 0 2a




, An+2 = · · · = A2m+1 = 0.
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(ii) The normalized δ-Casorati curvature δ̂C(n− 1) satisfies

ρ ≤ δ̂C(n− 1) + f1 +
3f2

n(n− 1)
||P ||2 −

2f3
n

||ξ⊤||2 −
2

n
trace(α).

Moreover, the equality sign holds if and only if Mn is an invariantly quasi-

umbilical submanifold with trivial normal connection in N(f1, f2, f3), such that

with respect to suitable orthonormal tangent frame {ξ1, . . . , ξn} and normal

orthonormal frame {ξn+1, . . . , ξ2m+1}, the shape operators Ar ≡ Aξr , r ∈
{n+ 1, . . . , 2m+ 1}, take the following forms:

An+1 =




2a 0 0 · · · 0 0
0 2a 0 · · · 0 0
0 0 2a · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2a 0
0 0 0 · · · 0 a




, An+2 = · · · = A2m+1 = 0.

Proof. (i) Let x ∈ Mn and {e1, e2, . . . , en} and {en+1, . . . , e2m+1} be orthonor-
mal bases of TxM

n and T⊥
x Mn, respectively. For X = W = ei, Y = Z = ej ,

i 6= j, from the equation (4.2), it follows that

R̃ (ei, ej, ej , ei) = f1 + 3f2g
2 (Pej , ei)− f3

(
η(ei)

2 + η(ej)
2
)

(4.7)

− α(ei, ei)− α(ej , ej).

From (4.3) and the Gauss equation with respect to the semi-symmetric metric
connection, we get

f1 + 3f2g
2 (Pej , ei)− f3

(
η(ei)

2 + η(ej)
2
)
− α(ei, ei)− α(ej , ej)

= R(ei, ej, ej , ei) + g(h(ei, ej), h(ei, ej))− g(h(ei, ei), h(ej , ej)).

By summation over 1 ≤ i, j ≤ n, it follows from the previous relation that

2τ = n2||H ||2 − nC + n(n− 1)f1(4.8)

+ 3f2||P ||2 − 2(n− 1)f3||ξ
⊤||2 − 2(n− 1)trace(α).

We define now the following function, denoted by P , which is a quadratic
polynomial in the components of the second fundamental form:

P =
1

2
n(n− 1)C +

1

2
(n+ 1)(n− 1)C(L)− 2τ + n(n− 1)f1

+ 3f2||P ||2 − 2(n− 1)f3||ξ
⊤||2 − 2(n− 1)trace(α).

Similarly, as in the proof of Theorem 3.1 it follows that P ≥ 0, and hence,

2τ ≤
1

2
n(n− 1)C +

1

2
(n+ 1)(n− 1)C(L) + n(n− 1)f1

+ 3f2||P ||2 − 2(n− 1)f3||ξ
⊤||2 − 2(n− 1)trace(α).
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Therefore, we deduce that

ρ ≤
1

2
C +

n+ 1

2n
C(L) + f1 +

3f2
n(n− 1)

||P ||2 −
2f3
n

||ξ⊤||2 −
2

n
trace(α)

for every tangent hyperplane L of M . Taking the infimum over all tangent
hyperplanes L, the conclusion trivially follows. Moreover, with the same argu-
ment as in the proof of Theorem 3.1, we conclude that the equality holds if and
only if the submanifold M is invariantly quasi-umbilical with trivial normal
connection in N , such that with respect to suitable orthonormal tangent and
normal orthonormal frames, the shape operators take the desired forms.

(ii) can be proved in a similar way, considering the following quadratic poly-
nomial in the components of the second fundamental form:

Q = 2n(n− 1)C −
1

2
(2n− 1)(n− 1)C(L)− 2τ + n(n− 1)f1

+ 3f2||P ||2 − 2(n− 1)f3||ξ
⊤||2 − 2(n− 1)trace(α),

where L is a hyperplane of TpM . �

Corollary 4.2. We have the following table:

Manifold Inequalities for Casorati curvatures of submanifold M n

N(c) ρ ≤ δC(n− 1) + c+3
4

+ 3(c−1)
4n(n−1)

||P ||2 − c−1
2n

||ξ⊤||2 − 2
n
trace(α)

ρ ≤ δ̂C(n− 1) + c+3
4

+
3(c−1)
4n(n−1)

||P ||2 − c−1
2n

||ξ⊤||2 − 2
n
trace(α)

Ncosy(c) ρ ≤ δC(n− 1) + c
4
+ 3c

4n(n−1)
||P ||2 − c

2n
||ξ⊤||2 − 2

n
trace(α)

ρ ≤ δ̂C(n− 1) + c
4
+ 3c

4n(n−1)
||P ||2 − c

2n
||ξ⊤||2 − 2

n
trace(α)

NKen(c) ρ ≤ δC(n− 1) + c−3
4

+
3(c+1)

4n(n−1)
||P ||2 − c+1

2n
||ξ⊤||2 − 2

n
trace(α)

ρ ≤ δ̂C(n− 1) + c−3
4

+
3(c+1)

4n(n−1)
||P ||2 − c+1

2n
||ξ⊤||2 − 2

n
trace(α)

NC(α)(c) ρ ≤ δC(n− 1) + c+3α2

4
+

3(c−α2)
4n(n−1)

||P ||2 − c−α2

2n
||ξ⊤||2 − 2

n
trace(α)

ρ ≤ δ̂C(n− 1) + c+3α2

4
+

3(c−α2)
4n(n−1)

||P ||2 − c−α2

2n
||ξ⊤||2 − 2

n
trace(α)

where N(c), Ncosy(c), NKen(c) and NC(α)(c) are the Sasakian space form, co-

symplectic space form, Kenmotsu space form and almost C(α)-space form, re-

spectively.
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