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GENERIC LIGHTLIKE SUBMANIFOLDS OF AN

INDEFINITE TRANS-SASAKIAN MANIFOLD WITH

AN (`,m)-TYPE METRIC CONNECTION

Dae Ho Jin

Abstract. We study generic lightlike submanifolds M of an indefinite
trans-Sasakian manifold M̄ or an indefinite generalized Sasakian space

form M̄(f1, f2, f3) endowed with an (`,m)-type metric connection subject

such that the structure vector field ζ of M̄ is tangent to M .

1. Introduction

A linear connection ∇̄ on a semi-Riemannian manifold (M̄, ḡ) is said to be
a symmetric connection of type (`, m) if its torsion tensor T̄ satisfies

(1.1) T̄ (X̄, Ȳ ) = `{θ(Ȳ )X̄ − θ(X̄)Ȳ }+m{θ(Ȳ )JX̄ − θ(X̄)JȲ },

where ` and m are smooth functions, J is a tensor field of type (1, 1) and θ is a
1-form associated with a smooth vector field ζ by θ(X̄) = ḡ(X̄, ζ). Moreover, if
∇̄ is a metric connection, i.e., it satisfies ∇̄ḡ = 0, then ∇̄ is called a symmetric
metric connection of type (`, m) or an (`, m)-type metric connection.

The notion of (`,m)-type metric connection ∇̄ on indefinite almost contact
manifolds M̄ was introduced by Jin [9]. In case (`,m) = (1, 0): ∇̄ becomes
a semi-symmetric metric connection, introduced by Hayden [6] and Yano [15].
In case (`,m) = (0, 1): ∇̄ becomes a quarter-symmetric metric connection,
introduced by Yano-Imai [16]. We shall assume that (`,m) 6= (0, 0) and the
vector field ζ is a unit spacelike one, without loss of generality.

A lightlike submanifold M of an indefinite almost contact manifold M̄ , with
an indefinite almost contact structure J , is called an generic submanifold [10]
if there exists a screen distribution S(TM) such that

(1.2) J(S(TM)⊥) ⊂ S(TM),
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where S(TM)⊥ denotes the orthogonal complement of S(TM) in the tangent
bundle TM̄ of M̄ such that TM̄ = S(TM) ⊕orth S(TM)⊥. The notion of
generic lightlike submanifolds was studied by several authors [5, 7, 8, 12].

Remark 1.1. Denote by ∇̃ the Levi-Civita connection of a semi-Riemannian
manifold (M̄, ḡ) with respect to ḡ. It is known [9] that a linear connection ∇̄
on M̄ is an (`,m)-type metric connection if and only if it satisfies

(1.3) ∇̄X̄ Ȳ = ∇̃X̄ Ȳ + `{θ(Ȳ )X̄ − ḡ(X̄, Ȳ )ζ} −mθ(X̄)JȲ .

In this paper, we study generic lightlike submanifolds of an indefinite trans-
Sasakian manifold M̄ = (M̄, ζ, θ, J, ḡ) endowed with an (`, m)-type metric
connection subject to the following two conditions: (1) the tensor field J and
the 1-form θ, defined by (1.1), are identical with the indefinite trans-Sasakian
structure tensor J and the structure 1-form θ of M̄ , respectively, and (2) the
structure vector field ζ of M̄ is tangent to M .

2. (`,m)-type metric connections

An odd-dimensional semi-Riemannian manifold (M̄, ḡ) is called an indefinite
almost contact metric manifold if there exists a set {J, ζ, θ, ḡ}, where J is a
(1, 1)-type tensor field, ζ is a vector field and θ is a 1-form such that

(2.1) J2X̄ = −X̄ + θ(X̄)ζ, ḡ(JX̄, JȲ ) = ḡ(X̄, Ȳ )− εθ(X̄)θ(Ȳ ), θ(ζ) = 1,

where ε = 1 or −1 according as ζ is spacelike or timelike respectively. The set
{J, ζ, θ, ḡ} is called an indefinite almost contact metric structure of M̄ .

From (2.1), we show that

Jζ = 0, θ ◦ J = 0, θ(X̄) = εḡ(X̄, ζ), ḡ(JX̄, Ȳ ) = −ḡ(X̄, JȲ ).

In the entire discussion of this article, we shall assume that the structure
vector field ζ is a spacelike one, i.e., ε = 1, without loss of generality.

Definition. An indefinite almost contact metric manifold M̄ is said to be an
indefinite trans-Sasakian manifold [14] if, for the Levi-Civita connection ∇̃,
there exist two smooth functions α and β such that

(∇̃X̄J)Ȳ = α{ḡ(X̄, Ȳ )ζ − θ(Ȳ )X̄}+ β{ḡ(JX̄, Ȳ )ζ − θ(Ȳ )JX̄}.
We say that {J, ζ, θ, ḡ} is an indefinite trans-Sasakian structure of type (α, β).

Note that the notion of a (Riemannian) trans-Sasakian manifold of type
(α, β) was introduced by Oubina [14]. Sasakian, Kenmotsu and cosymplectic
manifolds are important kinds of the trans-Sasakian manifold such that

α = 1, β = 0; α = 0, β = 1; α = β = 0, respectively.

Replacing the Levi-Civita connection ∇̃ by the (`,m)-type metric connection
∇̄, the equation in the above Definition is reduce to

(∇̄X̄J)Ȳ = α{ḡ(X̄, Ȳ )ζ − θ(Ȳ )X̄}(2.2)

+ (β + `){ḡ(JX̄, Ȳ )ζ − θ(Ȳ )JX̄}.
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Replacing Ȳ by ζ to (2.2) and using Jζ = 0 and θ(∇̄X̄ζ) = 0, we obtain

(2.3) ∇̄X̄ζ = −αJX̄ + (β + `){X̄ − θ(X̄)ζ}.
Let (M, g) be an m-dimensional lightlike submanifold of an indefinite trans-

Sasakian manifold M̄ , of dimension (m + n). Then the radical distribution
Rad(TM) = TM ∩ TM⊥ on M is a subbundle of the tangent bundle TM and
the normal bundle TM⊥, of rank r (1 ≤ r ≤ min{m, n}). In general, there
exist two complementary non-degenerate distributions S(TM) and S(TM⊥)
of Rad(TM) in TM and TM⊥, respectively, which are called the screen dis-
tribution and co-screen distribution of M such that

TM = Rad(TM)⊕orth S(TM), TM⊥ = Rad(TM)⊕orth S(TM⊥),

where ⊕orth denotes the orthogonal direct sum. Denote by F (M) the algebra
of smooth functions on M and by Γ(E) the F (M) module of smooth sections
of a vector bundle E over M . Also denote by (2.1)i the i-th equation of (2.1).
We use the same notations for any others. Let X, Y and Z be the vector fields
on M , unless otherwise specified. We use the following range of indices:

i, j, k, . . . ∈ {1, . . . , r}, a, b, c, . . . ∈ {r + 1, . . . , n}.
Let tr(TM) and ltr(TM) be complementary vector bundles to TM in TM̄|M

and TM⊥ in S(TM)⊥ respectively and let {N1, · · · , Nr} be a lightlike basis
of ltr(TM)|U , where U is a coordinate neighborhood of M , such that

ḡ(Ni, ξj) = δij , ḡ(Ni, Nj) = 0,

where {ξ1, . . . , ξr} is a lightlike basis of Rad(TM)|U . In this case,

TM̄ = TM ⊕ tr(TM) = {Rad(TM)⊕ tr(TM)} ⊕orth S(TM)

= {Rad(TM)⊕ ltr(TM)} ⊕orth S(TM)⊕orth S(TM⊥).

A lightlike submanifold M = (M, g, S(TM), S(TM⊥)) of M̄ is called an
r-lightlike submanifold [4] if 1 ≤ r < min{m, n}. For an r-lightlike M , we see
that S(TM) 6= {0} and S(TM⊥) 6= {0}. In the sequel, by saying that M is a
lightlike submanifold we shall mean that it is an r-lightlike submanifold with
following local quasi-orthonormal field of frames of M̄ :

{ξ1, . . . , ξr , N1, . . . , Nr , Fr+1, . . . , Fm , Er+1, . . . , En},
where {Fr+1, . . . , Fm} and {Er+1, . . . , En} are orthonormal bases of S(TM)
and S(TM⊥), respectively. Denote εa = ḡ(Ea, Ea). Then εaδab = ḡ(Ea, Eb).

Let P be the projection morphism of TM on S(TM). Then the local Gauss-
Weingarten formulae of M and S(TM) are given respectively by

∇̄XY = ∇XY +

r∑
i=1

h`i(X,Y )Ni +

n∑
a=r+1

hsa(X,Y )Ea,(2.4)

∇̄XNi = −A
Ni
X +

r∑
j=1

τij(X)Nj +

n∑
a=r+1

ρia(X)Ea,(2.5)
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∇̄XEa = −A
Ea
X +

r∑
i=1

λai(X)Ni +

n∑
b=r+1

µab(X)Eb;(2.6)

∇XPY = ∇∗XPY +

r∑
i=1

h∗i (X,PY )ξi,(2.7)

∇Xξi = −A∗ξiX −
r∑
j=1

τji(X)ξj ,(2.8)

where ∇ and ∇∗ are induced linear connections on M and S(TM) respectively,
h`i and hsa are called the local second fundamental forms on M , h∗i are called
the local second fundamental forms on S(TM). A

Ni
, A

Ea
and A∗ξi are called

the shape operators, and τij , ρia, λai and µab are 1-forms.
Let M be a generic lightlike submanifold of M̄ . From (1.2) we show that

J(Rad(TM)), J(ltr(TM)) and J(S(TM⊥)) are vector subbundles of S(TM).
Thus there exist two non-degenerate almost complex distributions Ho and H
with respect to J , i.e., J(Ho) = Ho and J(H) = H, such that

S(TM) = {J(Rad(TM))⊕ J(ltr(TM))}
⊕orthJ(S(TM⊥))⊕orth Ho,

H = Rad(TM)⊕orth J(Rad(TM))⊕orth Ho.

In this case, the tangent bundle TM on M is decomposed as follows:

(2.9) TM = H ⊕ J(ltr(TM))⊕orth J(S(TM⊥)).

Consider local null vector fields Ui and Vi for each i, local non-null unit
vector fields Wa for each a, and their 1-forms ui, vi and wa defined by

Ui = −JNi, Vi = −Jξi, Wa = −JEa,(2.10)

ui(X) = g(X,Vi), vi(X) = g(X,Ui), wa(X) = εag(X,Wa).(2.11)

Denote by S the projection morphism of TM on H and by F the tensor field
of type (1, 1) globally defined on M by F = J ◦ S. Then JX is expressed as

(2.12) JX = FX +

r∑
i=1

ui(X)Ni +

n∑
a=r+1

wa(X)Ea.

3. Structure equations

Let M̄ be an indefinite trans-Sasakian manifold with an (`,m)-type metric
connection ∇̄. We shall assume that ζ is tangent to M . Cǎlin [2] proved that if
ζ is tangent to M , then it belongs to S(TM) which we assumed in this paper.
Using (1.2), (1.3), (2.3) and (2.11), we see that

(∇Xg)(Y, Z) =

r∑
i=1

{h`i(X,Y )ηi(Z) + h`i(X,Z)ηi(Y )},(3.1)

T (X,Y ) = `{θ(Y )X − θ(X)Y }+m{θ(Y )FX − θ(X)FY },(3.2)
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h`i(X,Y )− h`i(Y,X) = m{θ(Y )ui(X)− θ(X)ui(Y )},(3.3)

hsa(X,Y )− hsa(Y,X) = m{θ(Y )wa(X)− θ(X)wa(Y )},(3.4)

where ηi’s are 1-forms such that ηi(X) = ḡ(X,Ni). From the facts that
h`i(X,Y ) = ḡ(∇̄XY, ξi) and εah

s
a(X,Y ) = ḡ(∇̄XY,Ea), we know that h`i and hsa

are independent of the choice of S(TM). The above local second fundamental
forms are related to their shape operators by

h`i(X,Y ) = g(A∗ξiX,Y )−
r∑

k=1

h`k(X, ξi)ηk(Y ),(3.5)

εah
s
a(X,Y ) = g(A

Ea
X,Y )−

r∑
k=1

λak(X)ηk(Y ),(3.6)

h∗i (X,PY ) = g(A
Ni
X,PY ).(3.7)

Applying ∇̄X to ḡ(Ea, Eb) = εδab, g(ξi, ξj) = 0, ḡ(ξi, Ea) = 0, ḡ(Ni, Nj) = 0
and ḡ(Ni, Ea) = 0 by turns, we obtain εbµab + εaµba = 0 and

h`i(X, ξj) + h`j(X, ξi) = 0, hsa(X, ξi) = −εaλai(X),(3.8)

ηj(ANi
X) + ηi(ANj

X) = 0, ḡ(A
Ea
X,Ni) = εaρia(X).

Furthermore, using (3.3) and (3.8)1 we see that

(3.9) h`i(X, ξi) = 0, h`i(ξj , ξk) = 0, A∗ξiξi = 0.

Replacing Y by ζ to (2.4) and using (2.3) and (2.12), we have

∇Xζ = −αFX + (β + `){X − θ(X)ζ},(3.10)

h`i(X, ζ) = −αui(X), hsa(X, ζ) = −αwa(X).(3.11)

Applying ∇̄X to ḡ(ζ,Ni) = 0 and using (2.3), (2.5) and (3.7), we have

(3.12) h∗i (X, ζ) = −αvi(X) + (β + `)ηi(X).

Applying ∇̄X to (2.10)1, 2, 3 and (2.12) by turns and using (2.2), (2.4)∼ (2.8),
(2.10)∼ (2.12) and (3.5)∼ (3.7), we have

h`j(X,Ui) = h∗i (X,Vj), εah
∗
i (X,Wa) = hsa(X,Ui),

h`j(X,Vi) = h`i(X,Vj), εah
`
i(X,Wa) = hsa(X,Vi),(3.13)

εbh
s
b(X,Wa) = εah

s
a(X,Wb),

∇XUi = F (A
Ni
X) +

r∑
j=1

τij(X)Uj +

n∑
a=r+1

ρia(X)Wa(3.14)

− {αηi(X) + (β + `)vi(X)}ζ,

∇XVi = F (A∗ξiX)−
r∑
j=1

τji(X)Vj +

r∑
j=1

h`j(X, ξi)Uj(3.15)
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−
n∑

a=r+1

εaλai(X)Wa − (β + `)ui(X)ζ,

∇XWa = F (A
Ea
X) +

r∑
i=1

λai(X)Ui +

n∑
b=r+1

µab(X)Wb(3.16)

− εa(β + `)wa(X)ζ,

(∇XF )(Y ) =

r∑
i=1

ui(Y )A
Ni
X +

n∑
a=r+1

wa(Y )A
Ea
X(3.17)

−
r∑
i=1

h`i(X,Y )Ui −
n∑

a=r+1

hsa(X,Y )Wa

+ α{g(X,Y )ζ − θ(Y )X}
+ (β + `){ḡ(JX, Y )ζ − θ(Y )FX},

(∇Xui)(Y ) = −
r∑
j=1

uj(Y )τji(X)−
n∑

a=r+1

wa(Y )λai(X)(3.18)

− h`i(X,FY )− (β + `)θ(Y )ui(X),

(∇Xvi)(Y ) =

r∑
j=1

vj(Y )τij(X) +

n∑
a=r+1

εawa(Y )ρia(X)(3.19)

+

r∑
j=r+1

uj(Y )ηi(ANj
X)− g(A

Ni
X,FY )

− θ(Y ){αηi(X) + (β + `)vi(X)}.

Definition. We say that a lightlike submanifold M is

(1) irrotational [13] if ∇̄Xξi ∈ Γ(TM) for all i ∈ {1, . . . , r},
(2) solenoidal [11] if A

Ea
and A

Ni
are S(TM)-valued,

(3) statical [11] if M is both irrotational and solenoidal.

From (2.3) and (3.8)2, the item (1) is equivalent to

(3.20) h`j(X, ξi) = 0, hsa(X, ξi) = λai(X) = 0.

By using (3.8)4, the item (2) is equivalent to

(3.21) ηj(ANi
X) = 0, ρia(X) = ηi(AEa

X) = 0.

Theorem 3.1. Let M be a generic lightlike submanifold of an indefinite trans-
Sasakian manifold M̄ with an (`, m)-type metric connection subject such that
ζ is tangent to M . If F is parallel with respect to the connection ∇, then

(1) M̄ is an indefinite β-Kenmotsu manifold with α = 0 and β = −`,
(2) M is statical,
(3) H, J(ltr(TM)) and J(S(TM⊥)) are parallel distributions on M , and
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(4) M is locally a product manifold Mr ×Mn−r ×M ], where Mr,Mn−r
and M ] are leaves of J(ltr(TM)), J(S(TM⊥)) and H, respectively.

Proof. (1) Taking X = ξk and Y = ζ to (3.17) and using (3.11), we get

αξk = (β + `)Vk.

Taking the scalar product with Nk and Uk to this equation by turns, we have
α = 0 and β = −`. Thus M̄ is an indefinite β-Kenmotsu manifold.

(2) Taking Y = ξj to (3.17) with ∇XF = 0, we obtain
r∑
i=1

h`i(X, ξj)Ui +

n∑
a=r+1

hsa(X, ξj)Wa = 0.

Taking the scalar product with Vi and Wa to this by turns, we obtain (3.20).
Thus M is irrotational. Taking the scalar product with Nj to (3.17), we get

r∑
i=1

ui(Y )ηj(ANi
X) +

n∑
a=r+1

wa(Y )ηj(AEa
X) = 0.

Taking Y = Ui and Y = Wa to this, we have (3.21). Thus M is solenoidal. As
M is both irrotational and solenoidal, M is statical.

(3) Taking the scalar product with Vi and Wa to (3.17) by turns, we have

h`i(X,Y ) =

r∑
k=1

uk(Y )ui(ANk
X) +

n∑
a=r+1

wa(Y )ui(AEa
X),

hsa(X,Y ) =

r∑
i=1

ui(Y )wa(A
Ni
X) +

n∑
b=r+1

wb(Y )wa(A
Eb
X).

Taking Y = Vj and Y = FZ, Z ∈ Γ(TM) to the last two equations by turns
and using the facts that ui(FZ) = wa(FZ) = 0, we obtain

h`i(X,Vj) = 0, h`i(X,FZ) = 0,

hsa(X,Vj) = 0, hsa(X,FZ) = 0.

Using these, (2.1), (2.8), (2.12), (3.1), (3.13), (3.15) and (3.20), we derive

g(∇Xξi, Vj) = −h`i(X,Vj) = 0, g(∇Xξi,Wa) = −εahsa(X,Vi) = 0,

g(∇XVi, Vj) = h`j(X, ξi) = 0, g(∇XVi,Wa) = hsa(X, ξi) = 0,

g(∇XZo, Vj) = h`i(X,FZo) = 0, g(∇XZo,Wa) = hsa(X,FZo) = 0,

where Zo ∈ Γ(Ho), that is,

∇XY ∈ Γ(H), ∀X ∈ Γ(TM), ∀Y ∈ Γ(H).

It follows that H is a parallel distribution on M .
On the other hand, taking Y = Ui and Y = Wa to (3.17) by turns, we have

A
Ni
X =

r∑
k=1

h`k(X,Ui)Uk +

n∑
a=r+1

hsa(X,Ui)Wa,(3.22)
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A
Ea
X =

r∑
i=1

h`i(X,Wa)Ui +

n∑
b=r+1

hsb(X,Wa)Wb.

Applying F to these equations and using FUi = FWa = 0, we have

F (A
Ni
X) = 0, F (A

Ea
X) = 0.

Using these results, (3.20)2 and (3.21)2, Eqs. (3.14) and (3.16) reduce

(3.23) ∇XUi =

r∑
j=1

τij(X)Uj , ∇XWa =

n∑
b=r+1

µab(X)Wb.

Thus J(ltr(TM)) and J(S(TN⊥)) are also parallel distributions on M , i.e.,

∇XUi ∈ Γ(J(ltr(TM))), ∇XWa ∈ Γ(J(S(TM⊥)), ∀X ∈ Γ(TM).

(4) As J(ltr(TM)), J(S(TM⊥)) and H are parallel distributions and satisfy
(2.9), by the decomposition theorem of de Rham [3], M is locally a product
manifold Mr×Mn−r×M ], where Mr,Mn−r and M ] are leaves of J(ltr(TM)),
J(S(TM⊥)) and H, respectively. �

Theorem 3.2. Let M be a generic lightlike submanifold of an indefinite trans-
Sasakian manifold M̄ with an (`, m)-type metric connection such that ζ is
tangent to M . If Uis are parallel with respect to ∇, then τ = 0, M is solenoidal
and M̄ is an indefinite β-Kenmotsu manifold, i.e., α = 0 and β = −`.

Proof. Taking the scalar product with ζ, Vj , Uj , Wa and Nj to (3.14) with
∇XUi = 0 by turns and using the fact that g(FX, ζ) = 0, we obtain

(3.24) α = 0, β = −` ; τij = 0, ηj(ANi
X) = 0, ρia = 0, h∗i (X,Uj) = 0,

respectively. As α = 0 and β = −`, M̄ is an indefinite β-Kenmotsu manifold.
As ηj(ANi

X) = 0 and ρia(X) = ηi(AEa
X) = 0, M is solenoidal. �

Theorem 3.3. Let M be a generic lightlike hypersurface of an indefinite trans-
Sasakian manifold M̄ with an (`, m)-type metric connection such that ζ is
tangent to M . If Vis are parallel with respect to the connection ∇, then τij = 0,
α = −m, β = −` and M is irrotational.

Proof. Taking the scalar product with ζ, Uj , Vj , Wa and Nj to (3.15) with
∇XVi = 0 by turns and using the fact that g(FX, ζ) = 0, we obtain

(3.25) β = −`, τij = 0, h`j(X, ξi) = 0, λai = 0, h`i(X,Uj) = 0.

As h`j(X, ξi) = 0 and λai(X) = hsa(X, ξi) = 0, M is irrotational. On the other
hand, replacing Y by Ui to (3.3) and using (3.25)5, we have

h`i(Ui, X) = mθ(X).

Replacing X by ζ to this equation and using (3.11)1, we have α = −m. �
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4. Indefinite generalized Sasakian space forms

Definition. An indefinite trans-Sasakian manifold M̄ is said to be a indefinite
generalized Sasakian space form [1] and denote it by M̄(f1, f2, f3) if there exist
three smooth functions f1, f2 and f3 on M̄ such that

R̃(X̄, Ȳ )Z̄ = f1{ḡ(Ȳ , Z̄)X̄ − ḡ(X̄, Z̄)Ȳ }(4.1)

+ f2{ḡ(X̄, JZ̄)JȲ − ḡ(Ȳ , JZ̄)JX̄ + 2ḡ(X̄, JȲ )JZ̄}
+ f3{θ(X̄)θ(Z̄)Ȳ − θ(Ȳ )θ(Z̄)X̄

+ ḡ(X̄, Z̄)θ(Ȳ )ζ − ḡ(Ȳ , Z̄)θ(X̄)ζ},

where R̃ is the curvature tensor of the Levi-Civita connection ∇̄ of M̄ .

Denote by R̄ the curvature tensors of the (`, m)-type metric connection ∇̄
on M̄ , By directed calculations from (1.1), (1.3) and (2.2), we see that

R̄(X̄, Ȳ )Z̄ = R̃(X̄, Ȳ )Z̄(4.2)

+ (X`){θ(Z)Y − g(Y, Z)ζ} − (Xm)θ(Y )JZ

− (Y `){θ(Z)X − g(X,Z)ζ}+ (Y m)θ(X)JZ

+ `{(∇̄Xθ)(Z)Y − (∇̄Y θ)(Z)X

+ α[g(Y,Z)JX − g(X,Z)JY ]

− β[g(Y,Z)X − g(X,Z)Y ]

+ (β + `)[g(Y, Z)θ(X)− g(X,Z)θ(Y )]ζ

+ m[θ(Y )JX − θ(X)JY ]θ(Z)}
− m{[(∇̄Xθ)(Y )− (∇̄Y θ)(X)]JZ

+ α[θ(Y )g(X,Z)− θ(X)g(Y,Z)]ζ

− α[θ(Y )X − θ(X)Y ]θ(Z)

+ (β + `)[θ(Y )g(JX,Z)− θ(X)g(JY, Z)]ζ

− β[θ(Y )JX − θ(X)JY ]θ(Z)}.

Denote by R and R∗ the curvature tensors of ∇ and ∇∗ respectively. Then
we obtain Gauss equations for M and S(TM), respectively:

R̄(X,Y )Z = R(X,Y )Z(4.3)

+

r∑
i=1

{h`i(X,Z)A
Ni
Y − h`i(Y, Z)A

Ni
X}

+

n∑
a=r+1

{hsa(X,Z)A
Ea
Y − hsa(Y,Z)A

Ea
X}

+

r∑
i=1

{(∇Xh`i)(Y,Z)− (∇Y h`i)(X,Z)
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+

r∑
j=1

[τji(X)h`j(Y,Z)− τji(Y )h`j(X,Z)]

+

n∑
a=r+1

[λai(X)hsa(Y, Z)− λai(Y )hsa(X,Z)]

− `[θ(X)h`i(Y,Z)− θ(Y )h`i(X,Z)]

−m[θ(X)h`i(FY,Z)− θ(Y )h`i(FX,Z)]}Ni

+

n∑
a=r+1

{(∇Xhsa)(Y,Z)− (∇Y hsa)(X,Z)

+

r∑
i=1

[ρia(X)h`i(Y,Z)− ρia(Y )h`i(X,Z)]

+

n∑
b=r+1

[µba(X)hsb(Y, Z)− µba(Y )hsb(X,Z)]

− `[θ(X)hsa(Y,Z)− θ(Y )hsa(X,Z)]

−m[θ(X)hsa(FY,Z)− θ(Y )hsa(FX,Z)]}Ea,

R(X,Y )PZ = R∗(X,Y )PZ(4.4)

+

r∑
i=1

{h∗i (X,PZ)A∗ξiY − h
∗
i (Y, PZ)AξiX}

+

r∑
i=1

{(∇Xh∗i )(Y, PZ)− (∇Y h∗i )(X,PZ)

+

r∑
k=1

[τik(Y )h∗k(X,PZ)− τik(X)h∗k(Y, PZ)]

− `[θ(X)h∗i (Y, PZ)− θ(Y )h∗i (FX,PZ)]

−m[θ(X)h∗i (FY, PZ)− θ(Y )h∗i (FX,PZ)]}ξi.

Applying ∇̄X to θ(ξi) = 0, θ(Vi) = 0, θ(Ui) = 0, θ(Wa) = 0 and θ(ζ) = 1 by
turns and using (2.4), (2.8), (3.5), (3.11)1, (3.14), (3.15), (3.16) and the facts
that g(FX, ζ) = 0, ḡ(ζ, ζ) = 1 and ∇̄ is metric, we obtain

(∇̄Xθ)(ξi) = −αui(X), (∇̄Xθ)(Vi) = (β + `)ui(X),(4.5)

(∇̄Xθ)(Ui) = αηi(X) + (β + `)vi(X),

(∇̄Xθ)(Wa) = εa(β + `)wa(X), (∇̄Xθ)(ζ) = 0.

Taking the scalar product with ξi, Ea and Ni to (4.2) by turns and using
(4.1), (4.3), (4.4) and the facts that ζ ∈ Γ(S(TM)) and ∇̄ is metric, we get

(∇Xh`i)(Y, Z)− (∇Y h`i)(X,Z)(4.6)
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+

r∑
j=1

{τji(X)h`j(Y,Z)− τji(Y )h`j(X,Z)}

+

n∑
a=r+1

{λai(X)hsa(Y,Z)− λai(Y )hsa(X,Z)}

− `{θ(X)h`i(Y, Z)− θ(Y )h`i(X,Z)}
− m{θ(X)h`i(FY,Z)− θ(Y )h`i(FX,Z)}
+ {(Xm)θ(Y ) +m(∇̄Xθ)(Y )

− (Y m)θ(X)−m(∇̄Y θ)(X)}ui(Z)

−`α{g(Y, Z)ui(X)− g(X,Z)ui(Y )}
− m(β + `){θ(Y )ui(X)− θ(X)ui(Y )}θ(Z)

= f2{ui(Y )ḡ(X, JZ)− ui(X)ḡ(Y, JZ) + 2ui(Z)ḡ(X, JY )},

(∇Xhsa)(Y, Z)− (∇Y hsa)(X,Z)(4.7)

+
r∑
i=1

{ρia(X)h`i(Y,Z)− ρia(Y )h`j(X,Z)}

+

n∑
b=r+1

{µba(X)hsa(Y,Z)− µba(Y )hsa(X,Z)}

− `{θ(X)hsa(Y,Z)− θ(Y )hsa(X,Z)}
− m{θ(X)hsa(FY,Z)− θ(Y )hsa(FX,Z)}
+ {(Xm)θ(Y ) +m(∇̄Xθ)(Y )

− (Y m)θ(X)−m(∇̄Y θ)(X)}wa(Z)

−`α{g(Y,Z)wa(X)− g(X,Z)wa(Y )}
− m(β + `){θ(Y )wa(X)− θ(X)wa(Y )}θ(Z)

= f2{wa(Y )ḡ(X, JZ)− wa(X)ḡ(Y, JZ) + 2wa(Z)ḡ(X, JY )},

(∇Xh∗i )(Y, PZ)− (∇Y h∗i )(X, PZ)(4.8)

−
r∑
j=1

{τij(X)h∗j (Y, PZ)− τij(Y )h∗j (X, PZ)}

+

r∑
j=1

{h`j(X, PZ)ηi(ANj
Y )− h`j(Y, PZ)ηi(ANj

X)}

−
n∑

a=r+1

εa{ρia(X)hsa(Y, PZ)− ρia(Y )hsa(X, PZ)}

− `{θ(X)h∗i (Y, PZ)− θ(Y )h∗i (X,PZ)}
− m{θ(X)h∗i (FY, PZ)− θ(Y )h∗i (FX,PZ)}



626 D. H. JIN

− {(X`)θ(PZ) + `(∇̄Xθ)(PZ)}ηi(Y )

+ {(Y `)θ(PZ) + `(∇̄Y θ)(PZ)}ηi(X)

+ {(Xm)θ(Y ) +m(∇̄Xθ)(Y )

− (Y m)θ(X)− `(∇̄Y θ)(X)}vi(PZ)

− `α{g(Y, PZ)vi(X)− g(X,PZ)vi(Y )}
+ `β{g(Y, PZ)ηi(X)− g(X,PZ)ηi(Y )}
−mα{θ(Y )ηi(X)− θ(X)ηi(Y )}θ(PZ)

−m(β + `){θ(Y )vi(X)− θ(X)vi(Y )}θ(PZ)

= f1{g(Y, PZ)ηi(X)− g(X,PZ)ηi(Y )}
+ f2{vi(Y )ḡ(X, JPZ)− vi(X)ḡ(Y, JPZ) + 2vi(PZ)ḡ(X, JY )}
+ f3{θ(X)ηi(Y )− θ(Y )ηi(X)}θ(PZ).

Theorem 4.1. Let M be a generic lightlike submanifold of an indefinite gener-
alized Sasakian space form M̄(f1, f2, f3) with an (`,m)-type metric connection
such that ζ is tangent to M . Then the functions α, β, f1, f2 and f3 satisfy

(1) α is a constant on M ,
(2) αβ = 0, and
(3) f1 − f2 = α2 − β2 and f1 − f3 = α2 − β2 − ζβ.

Proof. Applying ∇X to (3.13)1: h`j(Y, Ui) = h∗i (Y, Vj) and using (2.1), (2.12),
(3.5), (3.7), (3.11)1, (3.12), (3.13)1, 2, 3, (3.14) and (3.15), we obtain

(∇Xh`j)(Y,Ui) = (∇Xh∗i )(Y, Vj)

−
r∑

k=1

{τkj(X)h`k(Y,Ui) + τik(X)h∗k(Y, Vj)}

−
n∑

a=r+1

{λaj(X)hsa(Y,Ui) + εaρia(X)hsa(Y, Vj)}

+

r∑
k=1

{h∗i (Y,Uk)h`k(X, ξj) + h∗i (X,Uk)h`k(Y, ξj)}

− g(A∗ξjX,F (A
Ni
Y ))− g(A∗ξjY, F (A

Ni
X))

−
r∑

k=1

h`j(X,Vk)ηk(A
Ni
Y )

− α(β + `){uj(Y )vi(X)− uj(X)vi(Y )}
− α2uj(Y )ηi(X)− (β + `)2uj(X)ηi(Y ).

Substituting this equation and (3.13)1 into (4.6) [which is changed i by j] such
that Z = Ui and using (3.8)3, (3.13)3 and (4.5)3, we have

(∇Xh∗i )(Y, Vj)− (∇Y h∗i )(X,Vj)
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−
r∑

k=1

{τik(X)h∗k(Y, Vj)− τik(Y )h∗k(X,Vj)}

+

r∑
k=1

{h`k(X,Vj)ηi(ANk
Y )− h`k(Y, Vj)ηi(ANk

X)}

−
n∑

a=r+1

εa{ρia(X)hsa(Y, Vj)− ρia(Y )hsa(X,Vj)}

− `{θ(X)h∗i (Y, Vj)− θ(Y )h∗i (X,Vj)}
− m{θ(X)h∗i (FY, Vj)− θ(Y )h∗i (FX, Vj)}
+ {(Xm)θ(Y ) +m(∇̄Xθ)(Y )

− (Y m)θ(X)−m(∇̄Y θ)(X)}δij
− α(2β + `){uj(Y )vi(X)− uj(X)vi(Y )}
− {α2 − (β + `)2}{uj(Y )ηi(X)− uj(X)ηi(Y )}

= f2{uj(Y )ηi(X)− uj(X)ηi(Y ) + 2δij ḡ(X, JY )}.

Comparing this with (4.8) such that PZ = Vj and using (4.5)2, we obtain

{f1 − f2 − α2 + β2}{uj(Y )ηi(X)− uj(X)ηi(Y )}
= 2αβ{uj(Y )vi(X)− uj(X)vi(Y )}.

Taking Y = Uj , X = ξi and Y = Uj , X = Vi to this by turns, we have

f1 − f2 = α2 − β2, αβ = 0.

Applying ∇̄X to ηi(Y ) = ḡ(Y,Ni) and using (2.5), we obtain

(4.9) (∇Xηi)(Y ) = −g(A
Ni
X,Y ) +

r∑
j=1

τij(X)ηj(Y ).

Applying ∇Y to (3.12) and using (3.7), (3.10), (3.12), (3.19) and (4.9), we have

(∇Xh∗i )(Y, ζ) = −(Xα)vi(Y ) +X(β + `)ηi(Y )

+ α{g(A
Ni
X,FY ) + g(A

Ni
Y, FX)−

r∑
j=1

vj(Y )τij(X)

−
n∑

a=r+1

εawa(Y )ρia(X)−
r∑
j=1

uj(Y )ηi(ANj
X)}

− (β + `){g(A
Ni
X,Y ) + g(A

Ni
Y,X)−

r∑
j=1

τij(X)ηj(Y )}

+ α2θ(Y )ηi(X) + (β + `)2θ(X)ηi(Y )

+ α`{θ(Y )vi(X)− θ(X)vi(Y )}.
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Substituting this and (3.12)2 into (4.8) with PZ = ζ and using (4.5)5, we get

{Xβ + (f1 − f3 − α2 + β2)θ(X)}ηi(Y )

− {Y β + (f1 − f3 − α2 + β2)θ(Y )}ηi(X)

= (Xα)vi(Y )− (Y α)vi(X).

Taking X = ζ, Y = ξi and X = Uj , Y = Vi to this by turns, we have

f1 − f3 = α2 − β2 − ζβ, Ujα = 0.

Applying ∇Y to (3.11)1 and using (3.10), (3.11)1 and (3.18), we obtain

(∇Xh`i)(Y, ζ) = −(Xα)ui(Y )− (β + `)h`i(Y,X)

+ α{
r∑
j=1

uj(Y )τji(X) +

n∑
a=r+1

εawa(Y )λai(X)

+ h`i(X,FY ) + h`i(Y, FX)

+ `[θ(Y )ui(X)− θ(X)ui(Y )]}.

Substituting this into (4.6) with Z = ζ and using (3.3) and (3.11), we have

(Xα)ui(Y ) = (Y α)ui(X).

Taking Y = Ui to this result and using the fact that Uiα = 0, we have Xα = 0.
Therefore α is a constant. This completes the proof of the theorem. �

Definition. (1) A screen distribution S(TM) is said to be totally umbilical [5]
in M if there exist smooth functions γi on a neighborhood U such that

h∗i (X,PY ) = γig(X,PY ).

In case γi = 0, we say that S(TM) is totally geodesic in M .
(2) A lightlike submanifold M is said to be screen conformal [7] if there exist

non-vanishing smooth functions ϕi on a neighborhood U such that

(4.10) h∗i (X,PY ) = ϕih
`
i(X,PY ).

Theorem 4.2. Let M be a generic lightlike submanifold of an indefinite gener-
alized Sasakian space form M̄(f1, f2, f3) with an (`,m)-type metric connection
such that ζ is tangent to M . If one of the following three conditions satisfies;

(1) F is parallel with respect to the connection ∇,
(2) Uis are parallel with respect to the connection ∇,
(3) S(TM) is totally umbilical, or
(4) M is screen conformal,

then M̄(f1, f2, f3) is an indefinite β-Kenmotsu manifold such that

α = 0, β = −`, f1 = −β2, f2 = 0, f3 = ζβ.



GENERIC LIGHTLIKE SUBMANIFOLDS OF A TRANS-SASAKIAN MANIFOLD 629

Proof. (1) Assume that F is parallel with respect to ∇. As α = 0 and β = −`,
M̄(f1, f2, f3) is an indefinite β-Kenmotsu manifold and f1− f2 = −β2. Taking
the scalar product with Uj to (3.22)1 and using (3.23)1, we get

h∗i (Y,Uj) = 0.

Applying ∇X to this equation and using (3.20), we obtain

(∇Xh∗i )(Y, Uj) = 0.

Substituting these equations into (4.6) with PZ = U and using (3.21), we have

f2{[vj(Y )ηi(X)− vj(X)ηi(Y )] + [vi(Y )ηj(X)− vi(X)ηj(Y )]} = 0,

due to f1 = −β2. Taking X = Vj and Y = ξi to this equation, we obtain
f2 = 0. Therefore, f1 = −β2, f2 = 0 and f3 = ζβ by Theorem 4.1.

(2) If Uis are parallel with respect to ∇, then we have (3.24):

α = 0, β = −` ; τij = 0, ηj(ANi
X) = 0, ρia = 0, h∗i (X,Uj) = 0.

As α = 0 and β = −`, we get f1 +β2 = f2 and f1−f3 = −β2−ζβ by Theorem
4.1. Applying ∇Y to (3.24)6 and using the fact that ∇Y Uj = 0, we obtain

(∇Xh∗i )(Y, Uj) = 0.

Substituting this into (4.8) with PZ = Uj and using (3.24), we have

f2{[vj(Y )ηi(X)− vj(X)ηi(Y )] + [vi(Y )ηj(X)− vi(X)ηj(Y )]} = 0,

due to the facts: f1 + β2 = f2 and (∇̄Xθ)(Ui) = 0 by (4.5)3. Taking X = ξi
and Y = Vj to the last equation, we get f2 = 0. Thus f1 = −β2 and f3 = ζβ.

(3) If S(TM) is totally umbilical, then (3.12) is reduced to

γiθ(X) = −αvi(X) + (β + `)ηi(X).

Taking X = ζ, X = Vi and X = ξi to this equation by turns, we have

(4.11) γi = 0, α = 0, β = −`.

As α = 0 and β = −` 6= 0, M̄ is an indefinite β-Kenmotsu manifold and
f1 + β2 = f2 by Theorem 4.1. As γi = 0, S(TM) is totally geodesic.

As h∗i = 0, from (3.13)1, 2, we get

(4.12) h`j(X,Ui) = 0, hsa(X,Ui) = 0.

Taking PZ = Uj to (4.8) and using (4.5)3, (4.11) and (4.12), we have

f2{[vj(Y )ηi(X)− vj(X)ηi(Y )] + [vi(Y )ηj(X)− vi(X)ηj(Y )]} = 0,

due to f1 + β2 = f2. Taking X = ξi and Y = Uj , we obtain f2 = 0. Therefore,

α = 0, β = −` 6= 0, f1 = −β2, f2 = 0, f3 = ζβ.

(4) If M is screen conformal, then, from (3.11)1, (3.12) and (4.10), we have

αvi(X)− (β + `)ηi(X) = αϕiui(X)}.
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Taking X = Vi and X = ξi to this by turns, we see that

(4.13) α = 0, β = −`.

Denote by U∗i the r-th vector fields on S(TM) such that U∗i = Ui−ϕiVi. Using
(3.13)1, 3, (3.13)2, 4 and (4.10), we see that

(4.14) h`j(X,U∗i ) = 0, hsa(X,U∗i ) = 0, JU∗i = Ni − ϕiξi.

Applying ∇X to U∗i = Ui − ϕiVi and using (3.14) and (3.15), and then, taking
the scalar product with ζ to the resulting equation, we obtain g(∇XU∗i , ζ) = 0.
Applying ∇̄X to θ(U∗i ) = 0 and using (2.4) and the last equation, we get

(4.15) (∇̄Xθ)(U∗i ) = 0.

Applying ∇Y to (4.10), we have

(∇Xh∗i )(Y, PZ) = (Xϕi)h
`
i(Y, PZ) + ϕi(∇Xh`i)(Y, PZ).

Substituting this equation and (4.10) into (4.8) and using (4.6), we have

r∑
j=1

{(Xϕi)δij − ϕiτji(X)− ϕjτij(X)− ηi(ANj
X)}h`j(Y, PZ)

−
r∑
j=1

{(Y ϕi)δij − ϕiτji(Y )− ϕjτij(Y )− ηi(ANj
Y )}h`j(X,PZ)

−
n∑

a=r+1

{εaρia(X) + ϕiλai(X)}hsa(Y, PZ)

+

n∑
a=r+1

{εaρia(Y ) + ϕiλai(Y )}hsa(X,PZ)

− {(X`)θ(PZ) + `(∇̄Xθ)(PZ) + `βg(X,PZ)−mαθ(X)θ(PZ)}ηi(Y )

+ {(Y `)θ(PZ) + `(∇̄Y θ)(PZ) + `βg(Y, PZ)−mαθ(Y )θ(PZ)}ηi(X)

+ {(Xm)θ(Y ) +m(∇̄Xθ)(Y )

− (Y m)θ(X)− `(∇̄Y θ)(X)}g(PZ,U∗i ))

− `α{g(Y, PZ)g(X,U∗i )− g(X,PZ)g(Y,U∗i )}
−m(β + `){θ(Y )g(X,U∗i )− θ(X)g(Y,U∗i )}θ(PZ)

= f1{g(Y, PZ)ηi(X)− g(X,PZ)ηi(Y )}
+ f2{g(U∗i , Y )ḡ(X, JPZ)− g(U∗i , X)ḡ(Y, JPZ) + 2g(U∗i , PZ)ḡ(X,JY )}
+ f3{θ(X)ηi(Y )− θ(Y )ηi(X)}θ(PZ).

Taking X = ξi, Y = Vj and PZ = U∗j to this equation and using (4.5)1, 2 and

(4.13)∼ (4.15), we have f1 + f2 = −β2. As f1 − f2 = −β2 by Theorem 4.1, we
have f2 = 0 and f1 = −β2. Consequently, we obtain f3 = ζβ. �
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Theorem 4.3. Let M be a generic lightlike submanifold of an indefinite gen-
eralized Sasakian space form M̄(f1, f2, f3) with an (`,m)-type metric connec-
tion such that ζ is tangent to M . If Vis are parallel with respect to ∇, then
M̄(f1, f2, f3) is an indefinite space form such that

α = −m, β = −`, f1 = −β2, f2 = −α2, f3 = −α2 + ζβ.

Proof. If Vis are parallel with respect to ∇, then we have (3.25):

β = −`, τij = 0, h`j(X, ξi) = 0, λai = 0, h`i(X,Uj) = 0.

Taking Y = ξj and Y = Uj to (3.3) by turns and using (3.25)3, 5, we have

h`i(ξj , X) = 0, h`i(Uj , X) = mθ(X)δij .

Using these two equations and (3.13)4, we see that

h`k(ξi, Vj) = 0, hsa(ξi, Vj) = εah
`
j(ξi,Wa) = 0,(4.16)

h`k(Uj , Vj) = 0, hsa(Uj , Vj) = εah
`
j(Uj ,Wa) = 0.

From (3.13)1 and (3.25)5, we have

h∗i (Y, Vj) = 0.

Applying ∇X to this equation and using the fact that ∇XVj = 0, we have

(∇Xh∗i )(Y, Vj) = 0.

Substituting the last two equations into (4.8) such that PZ = Vj and using
(3.25), (4.5)2: (∇̄Xθ(Vj) = 0 and the fact that α` = −αβ = 0, we obtain

r∑
k=1

{h`k(X, Vj)ηi(ANk
Y )− h`k(Y, Vj)ηi(ANk

X)}

+

n∑
a=r+1

εa{ρia(Y )hsa(X, Vj)− ρia(X)hsa(Y, Vj)}

+ {(Xm)θ(Y ) +m(∇̄Xθ)(Y )− (Y m)θ(X)−m(∇̄Y θ)(X)}}δij
− β2{uj(Y )ηi(X)− uj(X)ηi(Y )}

= f1{uj(Y )ηi(X)− uj(X)ηi(Y )}+ 2f2δij ḡ(X, JY ).

Taking X = ξi and Y = Uj to this equation and using (4.5)1, 3, (4.16) and the
fact that α = −m, we obtain f1 + 2f2 = −2α2 − β2. As f1 − f2 = α2 − β2, we
get f2 = −α2. Thus f1 = −β2 and f3 = −α2 + ζβ. �
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