• 제목/요약/키워드: GeSeTe

검색결과 47건 처리시간 0.03초

Electrical Switching Characteristics of Ge1Se1Te2 Chalcogenide Thin Film for Phase Change Memory

  • Lee, Jae-Min;Yeo, Cheol-Ho;Shin, Kyung;Chung, Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권1호
    • /
    • pp.7-11
    • /
    • 2006
  • The changes of the electrical conductivity in chalcogenide amorphous semiconductors, $Ge_{1}Se_{1}Te_{2}$, have been studied. A phase change random access memory (PRAM) device without an access transistor is successfully fabricated with the $Ge_{1}Se_{1}Te_{2}$-phase-change resistor, which has much higher electrical resistivity than $Ge_{2}Sb_{2}Te_{5}$ and its electric resistivity can be varied by the factor of $10^5$ times, relating with the degree of crystallization. 100 nm thick $Ge_{1}Se_{1}Te_{2}$ thin film was formed by vacuum deposition at $1.5{\times}10^{-5}$ Torr. The static mode switching (DC test) is tested for the $100\;{\mu}m-sized$ $Ge_{1}Se_{1}Te_{2}$ PRAM device. In the first sweep, the amorphous $Ge_{1}Se_{1}Te_{2}$ thin film showed a high resistance state at low voltage region. However, when it reached to the threshold voltage, $V_{th}$, the electrical resistance of device was drastically reduced through the formation of an electrically conducting path. The pulsed mode switching of the $20{\mu}m-sized$ $Ge_{1}Se_{1}Te_{2}$ PRAM device showed that the reset of device was done with a 80 ns-8.6 V pulse and the set of device was done with a 200 ns-4.3 V pulse.

PRAM에서 $Ge_1Se_1Te_2$와 전극의 접촉 면적을 줄이는 방법에 대한 효과 (Reduced contact size in $Ge_1Se_1Te_2$ for phase change random access memory)

  • 임동규;김재훈;나민석;최혁;정홍배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.154-155
    • /
    • 2007
  • PRAM(Phase-Change RAM) is a promising memory that can solve the problem of conventional memory and has the nearly ideal memory characteristics. We reviewed the issues for high density PRAM integration. Writing current reduction is the most urgent problem for high density PRAM realization. So, we studied new constitution of $Ge_1Se_1Te_2$ chalcogenide material and presented the method of reducing the contact size between $Ge_1Se_1Te_2$ and electrode. A small-contact-area electrode is used primarily to supply current into and minimize heat loss from the chalcogenide. In this letter, we expect the method of reducing the contact size between $Ge_1Se_1Te_2$ and electrode to decrease writing current.

  • PDF

칼코게나이드 다층박막의 상변화 특성에 관한 연구 (A Study on Characteristics of Phase Change in Chalcogenide Multilayered Thin Film)

  • 최혁;김현구;정홍배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1426-1427
    • /
    • 2006
  • Chalcogenide based phase-change memory has a high capability and potential for the next generation nonvolatile memory device. Fast writing speed, low writing voltage, high sensing margin, low power consume and long cycle of read/write repeatability are also good advantages of nonvolatile phase-change memory. We have been investigated the new material for the phase-change memory. Its composition is consists of chalcogenide $Ge_{1}Se_{1}Te_2$ material. We made this new material to solve problems of conventional phase-change memory which has disadvantage of high power consume and high writing voltage. In the present work, we are manufactured $Ge_{1}Se_{1}Te_{2}/Ge_{2}Sb_{2}Te_{5}/Ge_{1}Se_{1}Te_{2}$ and $Ge_{2}Sb_{2}Te_{5}/Ge_{1}Se_{1}Te_{2}/Ge_{2}Sb_{2}Te_{5}$ sandwich triple layer structure devices are manufactured to investigate its electrical properties. Through the present work, we are willing to ensure a potential of substitutional method to overcome a crystallization problem on PRAM device.

  • PDF

$Ge_1Se_1Te_2/As$에 Ag layer를 삽입한 구조의 전기적 특성 (Electrical Characteristics of $Ge_1Se_1Te_2/As$ with Inserted Ag Layer)

  • 김현구;김재훈;정홍배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1285-1286
    • /
    • 2008
  • A detailed investigation and structure of tested samples are clearly presented. As a reference, $Ge_1Se_1Te_2/As$ only sample was also investigated. We used compound of Ge-Se-Te material for phase-change cell. Actually, the performance properties have been improved surprisingly then conventional Ge-Sb-Te. However, crystallization time was as long as ever for amorphization time. We conducted this experiment in order to solve that problem by doping-As with Ag layer.

  • PDF

$Ge_1Se_1Te_2$ 상변화 재료를 이용한 고성능 비휘발성 메모리에 대한 연구 (A high performance nonvolatile memory cell with phase change material of $Ge_1Se_1Te_2$)

  • 이재민;신경;정홍배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.15-16
    • /
    • 2005
  • Chalcogenide phase change memory has high performance to be next generation memory, because it is a nonvolatile memory processing high programming speed, low programming voltage, high sensing margin, low consumption and long cycle duration. We have developed a new material of PRAM with $Ge_1Se_1Te_2$. This material has been propose to solve the high energy consumption and high programming current. We have investigated the phase transition behaviors in function of various process factor including contact size, cell size, and annealing time. As a result, we have observed that programming voltage and writing current of $Ge_1Se_1Te_2$ are more improved than $Ge_2Sb_2Te_5$ material.

  • PDF

비휘발성 상변화메모리소자에 응용을 위한 칼코게나이드 $Ge_1Se_1Te_2$ 박막의 특성 (The Characteristics of Chalcogenide $Ge_1Se_1Te_2$ Thin Film for Nonvolatile Phase Change Memory Device)

  • 이재민;정홍배
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권6호
    • /
    • pp.297-301
    • /
    • 2006
  • In the present work, we investigate the characteristics of new composition material, chalcogenide $Ge_1Se_1Te_2$ material in order to overcome the problems of conventional PRAM devices. The Tc of $Ge_1Se_1Te_2$ bulk was measured $231.503^{\circ}C$ with DSC analysis. For static DC test mode, at low voltage, two different resistances are observed. depending on the crystalline state of the phase-change resistor. In the first sweep, the as-deposited amorphous $Ge_1Se_1Te_2$ showed very high resistance. However when it reached the threshold voltage(about 11.8 V), the electrical resistance of device was drastically reduced through the formation of an electrically conducting path. The phase transition between the low conductive amorphous state and the high conductive crystal]me state was caused by the set and reset pulses respectively which fed through electrical signal. Set pulse has 4.3 V. 200 ns. then sample resistance is $80\sim100{\Omega}$. Reset pulse has 8.6 V 80 ns, then the sample resistance is $50{\sim}100K{\Omega}$. For such high resistance ratio of $R_{reset}/R_{set}$, we can expect high sensing margin reading the recorded data. We have confirmed that phase change properties of $Ge_1Se_1Te_2$ materials are closely related with the structure through the experiment of self-heating layers.

상변화 메모리 응용을 위한 ${Ge_1}{Se_1}{Te_2}$ 비정질 칼코게나이드 박막의 전도 록성 (Conductivity Characteristics of ${Ge_1}{Se_1}{Te_2}$ Amorphous Chalcogenide Thin Film for the Phase-Change Memory Application)

  • 최혁;김현구;조원주;정홍배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.32-33
    • /
    • 2006
  • As next generation nonvolatile memory, chalcogenide-based phase change memory can substitute for a conventional flash memory from its high performance. Also, fast writing speed, low writing voltage, high sensing margin, low power consumption and repetition reliability over $10^{15}$ cycle shows its possibility. At our laboratory, we invented ${Ge_1}{Se_1}{Te_2}$ material to alternate with conventional ${Ge_2}{Sb_2}{Te_5}$ for improve its ability. We respect the ${Ge_1}{Se_1}{Te_2}$ material can be a solution for high power consumption problem and long time at 'set' performance. A conductivity experiment from variable temperature was performed to see reliability of repetition at read and write performance. Compare with conventional ${Ge_2}{Sb_2}{Te_5}$ material, these two materials are used as complex compound to get the finest parameter.

  • PDF

PRAM을 위한 Ge-Se-Te 박막의 상변환 특성 (Phase Change Characteristics of Ge-Se-Te Thin Film for PRAM)

  • 신재호;김병철;여종빈;이현용
    • 한국전기전자재료학회논문지
    • /
    • 제24권12호
    • /
    • pp.982-987
    • /
    • 2011
  • In this study, $Ge_8Se_{(2+x)}Te_{(6-x)}$ thin film amorphous-to-crystalline phase-change rate was evaluated in using a nano-pulse scanner. The focused laser beam with a diameter <10 ${\mu}m$ was illuminated in the power (P) and pulse duration (t) ranges of 1-31 mW and 10-460 ns, respectively, with subsequent detection of the responsive signals reflected from the film surface. We also evaluated the material characteristics, such as optical absorption and energy gap, crystalline phases, and sheet resistance of as-deposited and annealed films. The result of experiments showed that the thermal stability of the Ge-Se-Te film is largely improved by adding Se.

Sb 광도핑에 의한 Ge1Se1Te2 박막의 상변화 메모리 특성 (The Phase-change Memory Characteristics of Ge1Se1Te2 Thin Films for Sb Photo Doping)

  • 남기현;김장한;정홍배
    • 한국전기전자재료학회논문지
    • /
    • 제25권5호
    • /
    • pp.329-333
    • /
    • 2012
  • For phase transition method, good record sensitivity, low heat radiation, fast crystallization and hi-resolution are essential. Also, a retention time is very important part for phase-transition. In our past papers, we chose composition of $Ge_1Se_1Te_2$ material to use a Se factor which has good optical sensitivity than conventional Sb. Sb/Ge-Se-Te thin films are fabricated and irradiated with UV light source to investigate a reversible phase change by Sb-doped condition. Because of Sb atoms, the Sb inserted sample showed better performance than conventional one. We should note that this novel one showed another possibility for phase-change random access memory.

상변화 메모리 응용을 위한 Sb-doped $Ge_{1}Se_{1}Te_{2}$ 박막의 특성 (The properties of Sb-doped $Ge_{1}Se_{1}Te_{2}$ thin films application for Phase-Change Random Access Memory)

  • 남기현;최혁;구용운;정홍배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1329-1330
    • /
    • 2007
  • Phase-change random access memory(PRAM) has many advantages compare with the existing memory. For example, fast programming speed, low programming voltage, high sensing margin, low power consume and long cyclability of read/write. Though it has many advantages, there are some points which must be improved. So, we invented and studied new constitution of $Ge_{1}Se_{1}Te_{2}$ chalcogenide material. Actually, the performance properties have been improved surprisingly. However, crystallization time was as long as ever for amorphization time. In this paper, we studied in order to make set operation time and reset operation voltage reduced. In the present work, by alloying Sb in $Ge_{1}Se_{1}Te_{2}$. we could confirm that improved its set operation time and reset operation voltage. As a result, the method of Sb-alloyed $Ge_{1}Se_{1}Te_{2}$ can be solution to decrease the set operation time and reset operation voltage.

  • PDF