Browse > Article
http://dx.doi.org/10.4313/JKEM.2012.25.5.329

The Phase-change Memory Characteristics of Ge1Se1Te2 Thin Films for Sb Photo Doping  

Nam, Ki-Hyun (Department of Electronic Materials Engineering, Kwangwoon University)
Kim, Jang-Han (Department of Electronic Materials Engineering, Kwangwoon University)
Chung, Hong-Bay (Department of Electronic Materials Engineering, Kwangwoon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.25, no.5, 2012 , pp. 329-333 More about this Journal
Abstract
For phase transition method, good record sensitivity, low heat radiation, fast crystallization and hi-resolution are essential. Also, a retention time is very important part for phase-transition. In our past papers, we chose composition of $Ge_1Se_1Te_2$ material to use a Se factor which has good optical sensitivity than conventional Sb. Sb/Ge-Se-Te thin films are fabricated and irradiated with UV light source to investigate a reversible phase change by Sb-doped condition. Because of Sb atoms, the Sb inserted sample showed better performance than conventional one. We should note that this novel one showed another possibility for phase-change random access memory.
Keywords
Chalcogenide; $Ge_1Se_1Te_2$; PCRAM; Phase-change memory;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. Sousa, Microelectron. Eng., 88, 807 (2011).   DOI   ScienceOn
2 M. S. Youm, Y. T. Kim, and M. Y. Sung, Microelectron. J., 38, 1034 (2007).   DOI   ScienceOn
3 N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, J. Appl. Phys., 69, 2849 (1991).   DOI
4 L. Perniola, V. Sousa, A. Fantini, E. Arbaoui, A. Bastard, M. Armand, A. Fargeis, C. Jahan, J. F. Nodin, A. Persico, D. Blachier, A. Toffoli, S. Loubriat, E. Gourvest, G. B. Beneventi, H. Feldis, S. Maitrejean, S. Lhostis, A. Roule, O. Cueto, G. Reimbold, L. Poupinet, T. Billon, B. D. Salvo, D. Bensahel, P. Mazoyer, R. Annunziata, P. Zuliani, and F. Boulanger, IEEE Electron Dev. Lett., 31, 488 (2010).   DOI
5 K. Wang, D. Wamwangi, S. Ziegler, C. Steimer, and M. Wuttig, J. Appl. Phys., 96, 5557 (2004).   DOI
6 H. B. Chung, K. Shin, and J. M. Lee, J. Vac. Sci. Tech., A25, 48 (2007).
7 J. M. Lee, K. Shin, C. H. Yeo, and H. B. Chung, Jpn. J. Appl. Phys., 45, 5467 (2006).   DOI
8 B. Liu, Z. Song, S. Feng, and B. Chen, Microelectron. Eng., 82, 168 (2005).   DOI   ScienceOn
9 E. B. Lee, B. K. Ju, and Y. T. Kim, Microelectron. Eng., 86, 1950 (2009).   DOI   ScienceOn
10 B. J. Madhu, H. S. Jayanna, and S. Asokan, J. Non-Cry. Sol., 355, 2630 (2009).   DOI   ScienceOn
11 R. Barton, C. R. Davis, K. Rubin, and G, Lim, Appl. Phys. Lett., 48, 1255 (1986).   DOI
12 S. R. Ovshinsky, Phys. Rev. Lett., 20, 1450 (1968).
13 A. Hamada, M. Saito, and M. Kikuchi, Jpn. J. Appl. Phys., 1, 530 (1971).
14 T. Matsushita, T. Yamagami, and M. Okuda, Jpn. J. Appl. Phys., 11, 422 (1972).   DOI
15 S. H. Lee, Y. N. Hwang, S. Y. Lee, K. C. Ryoo, S. J. Ahn, H. C. Koa, C. W. leong, Y. T. Kim, G. H. Koh, G. T. Jeong, H. S. Jeong, and K. Kim, VLSI Symp. Tech. Dig., 20 (2004).
16 S. J. Ahn, Y. N. Hwang, Y. J. Song, S. H. Lee, S. Y. Lee, J. H. Park, C. W. Jeong, K. C. Ryoo, J. M. Shin, Y. Fai, J. H. Oh, G. H. Koh, G. T. Jeong, S. H. Joo, S. H. Choi, Y. H. Son, J. C. Shin, Y. T. Kim, H. S. Jeong, and K. Kim, VLSI Symp. Tech. Dig., 98 (2005).
17 R. Bez and A. Pirovano, Mater. Sci. Semicond. Process., 7, 349 (2004).   DOI   ScienceOn
18 T. Lee, K. B. Kim, B. K. Cheong, T. S. Lee, S. J. Park, K. S. Lee, W. M. Kim, and S. G. Kim, Appl. Phys. Lett., 80, 3313 (2002).   DOI   ScienceOn
19 D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, Nat. Mater., 7, 972 (2008).   DOI   ScienceOn