• 제목/요약/키워드: Fuzzy equation

검색결과 222건 처리시간 0.023초

선박조타의 TSK 퍼지 비선형제어시스템 설계 (Design of TSK Fuzzy Nonlinear Control System for Ship Steering)

  • 채양범;이원창;강근택
    • 한국항해항만학회지
    • /
    • 제26권2호
    • /
    • pp.193-197
    • /
    • 2002
  • 선박 조종방정식의 비선형 요소를 고려한 선박의 자동조타시스템의 제어기를 설계하기 위하여 TSK (Takagj-Sugeno-Kang) 퍼지 이론을 이용하였다. TSK 퍼지모델은 비선형 시스템을 매우 효율적으로 표현할 수 있으며, 또 TSK 퍼지모델은 결론부가 선형식으로 이뤄져 있어 체계적인 제어기 설계가 가능하다. 따라서 본 연구에서는 선박의 조종방정식을 TSK 퍼지모델로 표현하는 방법과 그 모델로부터 체계적으로 TSK 퍼지제어기를 설계하는 방법을 설명한다.

A NUMERICAL METHOD OF FUZZY DIFFERENTIAL EQUATIONS

  • Jun, Younbae
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제24권3호
    • /
    • pp.147-153
    • /
    • 2017
  • In this paper, we propose a numerical method to solve fuzzy differential equations. Numerical experiments show that when the step size is small, the new method has significantly good approximate solutions of fuzzy differential equation. Graphical representation of fuzzy solutions in three-dimension is also provided as a reference of visual convergence of the solution sequence.

AN ACCELERATING SCHEME OF CONVERGENCE TO SOLVE FUZZY NON-LINEAR EQUATIONS

  • Jun, Younbae
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제24권1호
    • /
    • pp.45-51
    • /
    • 2017
  • In this paper, we propose an accelerating scheme of convergence of numerical solutions of fuzzy non-linear equations. Numerical experiments show that the new method has significant acceleration of convergence of solutions of fuzzy non-linear equation. Three-dimensional graphical representation of fuzzy solutions is also provided as a reference of visual convergence of the solution sequence.

THE DOUBLE FUZZY ELZAKI TRANSFORM FOR SOLVING FUZZY PARTIAL DIFFERENTIAL EQUATIONS

  • Kshirsagar, Kishor A.;Nikam, Vasant R.;Gaikwad, Shrikisan B.;Tarate, Shivaji A.
    • 충청수학회지
    • /
    • 제35권2호
    • /
    • pp.177-196
    • /
    • 2022
  • The Elzaki Transform method is fuzzified to fuzzy Elzaki Transform by Rehab Ali Khudair. In this article, we propose a Double fuzzy Elzaki transform (DFET) method to solving fuzzy partial differential equations (FPDEs) and we prove some properties and theorems of DFET, fundamental results of DFET for fuzzy partial derivatives of the nth order, construct the Procedure to find the solution of FPDEs by DFET, provide duality relation of Double Fuzzy Laplace Transform (DFLT) and Double Fuzzy Sumudu Transform(DFST) with proposed Transform. Also we solve the Fuzzy Poisson's equation and fuzzy Telegraph equation to show the DFET method is a powerful mathematical tool for solving FPDEs analytically.

두개의 pole을 갖는 도립 진자의 퍼지 슬라이딩 모드 제어기 설계 (Design of the fuzzy sliding mode controller with double pole inverted pendulum)

  • 강항균;한종길;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.188-191
    • /
    • 1996
  • In this paper, we derive dynamic equation of double pole inverted pendulum using Lagrangian equation, and design the fuzzy sliding mode controller. We demonstrate that the designed controller regulates double pole simultaneously regardless of cart position by computer simulation.

  • PDF

FUNDAMENTAL STABILITIES OF THE NONIC FUNCTIONAL EQUATION IN INTUITIONISTIC FUZZY NORMED SPACES

  • Bodaghi, Abasalt;Park, Choonkil;Rassias, John Michael
    • 대한수학회논문집
    • /
    • 제31권4호
    • /
    • pp.729-743
    • /
    • 2016
  • In the current work, the intuitionistic fuzzy version of Hyers-Ulam stability for a nonic functional equation by applying a fixed point method is investigated. This way shows that some fixed points of a suitable operator can be a nonic mapping.

Existence and Uniqueness of Fuzzy Solutions for the nonlinear Fuzzy Integro-Differential Equation on EnN

  • Kwun, Young-Chel;Han, Chang-Woo;Kim, Seon-Yu;Park, Jong-Seo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권1호
    • /
    • pp.40-44
    • /
    • 2004
  • In this paper we study the existence and uniqueness of fuzzy solutions for the nonlinear fuzzy integro-differential equations on $E^{n}_{N}$ by using the concept of fuzzy number of dimension n whose values are normal, convex, upper semicontinuous and compactly supported surface in $E^{n}_{N}$. $E^{n}_{N}$ be the set of all fuzzy numbers in $R^{n}$ with edges having bases parallel to axis $x_1$, $x_2$, …, $x_n$.

헬리콥터 자세제어를 위한 뉴로 퍼지 제어기의 설계에 관한 연구 (A Study on Design of Neuro- Fuzzy Controller for Attitude Control of Helicopter)

  • 최용선;임태우;장경원;안태천
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2283-2285
    • /
    • 2001
  • This paper proposed to a neural network based fuzzy control (neuro-fuzzy control) technique for attitude control of helicopter with strongly dynamic nonlinearities and derived a helicopter aerodynamic torque equation of helicopter and the force balance equation. A neuro-fuzzy system is a feedforward network that employs a back-propagation algorithm for learning purpose. A neuro-fuzzy system is used to identify nonlinear dynamic systems. Hence, this paper presents methods for the design of a neural network(NN) based fuzzy controller(that is, neuro-fuzzy control) for a helicopter of nonlinear MIMO systems. The proposed neuro-fuzzy control determined to a input-output membership function in fuzzy control and neural networks constructed to improve through learning of input-output membership functions determined in fuzzy control.

  • PDF

QUADRATIC (ρ1, ρ2)-FUNCTIONAL EQUATION IN FUZZY BANACH SPACES

  • Paokant, Siriluk;Shin, Dong Yun
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제27권1호
    • /
    • pp.25-33
    • /
    • 2020
  • In this paper, we consider the following quadratic (ρ1, ρ2)-functional equation (0, 1) $$N(2f({\frac{x+y}{2}})+2f({\frac{x-y}{2}})-f(x)-f(y)-{\rho}_1(f(x+y)+f(x-y)-2f(x)-2f(y))-{\rho}_2(4f({\frac{x+y}{2}})+f(x-y)-f(x)-f(y)),t){\geq}{\frac{t}{t+{\varphi}(x,y)}}$$, where ρ2 are fixed nonzero real numbers with ρ2 ≠ 1 and 2ρ1 + 2ρ2≠ 1, in fuzzy normed spaces. Using the fixed point method, we prove the Hyers-Ulam stability of the quadratic (ρ1, ρ2)-functional equation (0.1) in fuzzy Banach spaces.