퍼지관계방정식의 해의유계

THE BOUNDED OF SOLUTIONS OF FUZZY RELATION EQUATION

김현미

HYUN MEE KIM
DEPARTMENT OF MATHEMATICS,
KYUNG HEE UNIVERSITY

경희대학교 수학과

0.ABSTRACT. In a fuzzy relation equation $R \circ U = \mathcal{T}$, we find the bounded by U_* and U^* of the equation where U_* is lower bound and U^* is upper bound.

1. INTRODUCTION

Sanchez introduced a fuzzy relation equations []]. This paper study the bounded of fuzzy relation equation. Some operations are defined.

Let us consider the lattice $L = ([0, 1], \bigvee, \bigwedge, \rightarrow, \ll)$, where

$$a \lor b = \max (a, b),$$

 $a \land b = \min (a, b),$
 $a \rightarrow b = 1 \text{ if } a \le b,$
 $b \text{ if } a > b.$
 $a \ll b = 1 \text{ if } a \ge b,$
 $a \text{ if } a < b.$

We need the following definitions and properties. Let X be non-empty finite set.

DEFINITION1.1

A fuzzy binary relation on X and Y is a fuzzy subset R on $X \times Y$. We are only interested in the case in which X = Y.

DEFINITION1.2

Suppose R and U are two fuzzy relation on X.

$$(R \cdot U)(x,z) = \bigvee (R(x,y) \land S(y,z))$$
 for $x,z \in X$.

where - operation is called a sup-inf composition.

PROPOSITION1.3

Let R, U, S and T be fuzzy relations on X.

[1]
$$(R : S) : T = R : (S : T)$$
.

[2] If $R \le T$, then $R \circ S \le T \circ S$.

DEFINITION1.4

We say that I is called an identity relation on X if $R \circ I = I \circ R$.

where
$$I(x, y) = 1$$
 if $x = y$,

0 if $x \neq v$.

2. PRELIMINARIES

The existence of solution of the relation equation

$$R \cdot U = T$$
 $-----(1)$

(with unknown relation U and given relation R, T) was characterized by Sanchez [11.13].

THEOREM2.1[3]

Eq. (1) has solutions if $R \circ U^* = \mathcal{I}$, where

$$U^*(x,z) = \bigwedge (R(y,x) \rightarrow T(y,z))$$
 for $x,z \in X$.

If Eq.(1) has solutions , then the above formula gives the greatest one. In general, we always have $R \circ U^* \leq T$.

DEFINITION2.2 [2]

- [1] A fuzzy relation R is said to reflxive if $I \le R$.
- [2] If $R \circ R \leq R$, then R is called transitive.

3. RESULT

THEOREM.3.1

Let R be reflexive relation on X.

- [1] If $R \le T$, then $U_* \le U^*$.
- [2] For any U such that $U_* \le U \le U^*$, then $R \circ U \le T$. where $U_*(x, z) = \bigwedge [R(x, y) \ll T(y, z)]$.

Proof.

Let
$$U_*(x,z) = \bigwedge [R(x,y) \ll T(y,z)]$$
 -----(2)

The right-hand member of (2) contains terms

$$R(x, x) \ll T(x, z)$$
, $R(x, z) \ll T(z, z)$, $R(x, y) \ll T(y, z)$.

Let
$$U^*(x,z) = \bigwedge [R(y,x) \rightarrow T(y,z)]$$

The right -hand member of (3) contains terms

$$R(x, x) \rightarrow T(x, z)$$
, $R(z, x) \rightarrow T(z, z)$, $R(y, x) \rightarrow T(y, z)$.

- Il Suppose that $R(x,x) \ge T(x,z)$. Since $R \ge 1$, we have $R(x,x) \ll T(x,z) = 1 = U_{+}$.
- If R(x,x) < T(x,z), then $R(x,x) \ll T(x,z) = 1 = U_*$.
- 2) Suppose that $R(x,z) \ge T(z,z)$. Since $R \le T$ and $R \ge 1$, $R(x,z) \ll T(z,z) = 1 = U_{\infty}$.
- If R(x,z) < T(z,z), then $R(x,z) \ll T(z,z) = R(x,z) = U_{\star}$.
- 3) Suppose that $R(x, y) \ge T(y, z)$. Then $R(x, y) \ll T(y, z) = 1 = U_*$.
- If R(x, y) < T(y, z), then $R(x, y) \ll T(y, z) = R(x, y) = U_{\infty}$.
- So $\bigwedge [1,1,1,R(x,z),1,R(x,y)] = U_*$ -----(4)
- 4) Suppose that R(x,x) > T(x,z). Then $R(x,x) \to T(x,z) = T(x,z) = U^*$.
- If $R(x,x) \le T(x,z)$, then $R(x,x) \to T(x,z) = 1 = U^*$.
- 5] Suppose that R(z,x) > T(z,z). Since $R(z,z) \le T(z,z)$, $R(z,x) \to T(z,z) = 1 = U^*$.
- If $R(z,x) \le T(z,z)$, then $R(z,x) \to T(z,z) = 1 = U^*$.
- 6) Suppose that R(y, x) > T(y, z). Then $R(y, x) \rightarrow T(y, z) = T(y, z) = U^*$.
- If $R(y, x) \le T(y, z)$, then $R(y, x) \rightarrow T(y, z) = 1 = U^*$.
- So $\bigwedge [T(x,z), 1, 1, 1, T(y,z), 1] = U^*$ -----(5)

Suppose $R(x, z) \le R(x, y)$ in (4). Since R(x, z) < T(z, z) and R(x, y) < T(y, z) in 21 and 31, $U_* = R(x, z)$ and $U^* = T(x, z)$ or T(y, z). Thus $U_* \le U^*$. If R(x, y) < R(x, z), then $U_* = R(x, y)$ and $U^* = T(x, z)$ or T(y, z). $U_* \le U^*$.

[2] Since - operation is isotony in Proposition 1.3 [2], it is trivial. ///

EXAMPLE.3.2

$$R = \begin{pmatrix} 1 & 0.2 & 0.3 \\ 0.4 & 1 & 0.1 \\ 0.6 & 0.2 & 1 \end{pmatrix} \le T = \begin{pmatrix} 1 & 0.2 & 0.5 \\ 0.4 & 1 & 0.3 \\ 0.6 & 0.3 & 1 \end{pmatrix}.$$

$$U^*(x,z) = \bigwedge [R(y,x) \rightarrow T(y,z)]$$

$$= \begin{pmatrix} (1 \to 1 \land 0.4 \to 0.4 \land 0.6 \to 0.6) & (1 \to 0.2 \land 0.4 \to 1 \land 0.6 \to 0.3) & (1 \to 0.5 \land 0.4 \to 0.3 \land 0.6 \to 1) \\ (0.2 \to 1 \land 1 \to 0.4 \land 0.2 \to 0.6) & (0.2 \to 0.2 \land 1 \to 1 \land 0.2 \to 0.3) & (0.2 \to 0.5 \land 1 \to 0.3 \land 0.2 \to 1) \\ (0.3 \to 1 \land 0.1 \to 0.4 \land 1 \to 0.6) & (0.3 \to 0.2 \land 0.1 \to 1 \land 1 \to 0.3) & (0.3 \to 0.5 \land 0.1 \to 0.3 \land 1 \to 1) \end{pmatrix}$$

$$= \begin{pmatrix} (1 \land 1 \land 1) & (0.2 \land 1 \land 0.3) & (0.5 \land 0.3 \land 1) \\ (1 \land 0.4 \land 1) & (1 \land 1 \land 1) & (1 \land 0.3 \land 1) \\ (1 \land 1 \land 0.6) & (0.2 \land 1 \land 0.3) & (1 \land 1 \land 1) \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0.2 & 0.3 \\ 0.4 & 1 & 0.3 \\ 0.6 & 0.2 & 1 \end{pmatrix}$$

$$U_*(x,z) = \bigwedge [R(x,y) \ll T(y,z)]$$

$$= \begin{pmatrix} (1 \leqslant 1 \land 0.2 \leqslant 0.4 \land 0.3 \leqslant 0.6) & (1 \leqslant 0.2 \land 0.2 \leqslant 1 \land 0.3 \leqslant 0.3) & (1 \leqslant 0.5 \land 0.2 \leqslant 0.3 \land 0.3 \leqslant 1) \\ (0.4 \leqslant 1 \land 1 \leqslant 0.4 \land 0.1 \leqslant 0.6) & (0.4 \leqslant 0.2 \land 1 \leqslant 1 \land 0.1 \leqslant 0.3) & (0.4 \leqslant 0.5 \land 1 \leqslant 0.3 \land 0.1 \leqslant 1) \\ (0.6 \leqslant 1 \land 0.2 \leqslant 0.4 \land 1 \leqslant 0.6) & (0.6 \leqslant 0.2 \land 0.2 \leqslant 1 \land 1 \leqslant 0.3) & (0.6 \leqslant 0.5 \land 0.2 \leqslant 0.3 \land 1 \leqslant 1) \end{pmatrix}$$

$$= \begin{pmatrix} (1 \land 0.2 \land 0.3) & (1 \land 0.2 \land 1) & (1 \land 0.2 \land 0.3) \\ (0.4 \land 1 \land 0.1) & (1 \land 1 \land 0.1) & (0.4 \land 1 \land 0.1) \\ (0.6 \land 0.2 \land 1) & (1 \land 0.2 \land 1) & (1 \land 0.2 \land 1) \end{pmatrix}$$

$$= \begin{pmatrix} 0.2 & 0.2 & 0.2 \\ 0.1 & 0.1 & 0.1 \\ 0.2 & 0.2 & 0.2 \end{pmatrix}$$

So $U_* \leq U^*$.

For any
$$U$$
 such that $U_* \le U \le U^*$, let $U = \begin{pmatrix} 0.3 & 0.2 & 0.2 \\ 0.3 & 0.9 & 0.2 \\ 0.4 & 0.2 & 0.5 \end{pmatrix}$.

Then
$$R \cdot U = \begin{pmatrix} 1 & 0.2 & 0.3 \\ 0.4 & 1 & 0.1 \\ 0.6 & 0.2 & 1 \end{pmatrix} - \begin{pmatrix} 0.3 & 0.2 & 0.2 \\ 0.3 & 0.9 & 0.2 \\ 0.4 & 0.2 & 0.5 \end{pmatrix}$$
$$= \begin{pmatrix} 0.3 & 0.2 & 0.3 \\ 0.3 & 0.9 & 0.2 \\ 0.4 & 0.2 & 0.5 \end{pmatrix} \le T.$$

REFERENCES

- 1. E. Sanchez, Resolution of composite fuzzy relation equations, Inform and Control 30 (1967)38-48
- 2. J. Drewniak, Fuzzy relation equations and inequlities, Fuzzy Sets and Systems 14 (1984) 237-228
- 3. Equations in classes of fuzzy relations, Fuzzy Sets and Systems 75 (1995) 215-228
- 4. H. Hashimoto, Subinverses of fuzzy matrices, Fuzzy Sets and Systems 12 (1984) 115-168