Browse > Article
http://dx.doi.org/10.4134/CKMS.c150147

FUNDAMENTAL STABILITIES OF THE NONIC FUNCTIONAL EQUATION IN INTUITIONISTIC FUZZY NORMED SPACES  

Bodaghi, Abasalt (Department of Mathematics Garmsar Branch Islamic Azad University)
Park, Choonkil (Research Institute for Natural Sciences Hanyang University)
Rassias, John Michael (Section of Mathematics and Informatics Pedagogical Department National and Capodistrian University of Athens)
Publication Information
Communications of the Korean Mathematical Society / v.31, no.4, 2016 , pp. 729-743 More about this Journal
Abstract
In the current work, the intuitionistic fuzzy version of Hyers-Ulam stability for a nonic functional equation by applying a fixed point method is investigated. This way shows that some fixed points of a suitable operator can be a nonic mapping.
Keywords
nonic functional equation; Hyers-Ulam stability; intuitionistic fuzzy normed space;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Z. Xu, M. J. Rassias, W. X. Xu, and J. M. Rassias, A fixed point approach to the intuitionistic fuzzy stability of quintic and sextic functional equations, Iran. J. Fuzzy Syst. 9 (2012), no. 5, 21-40.
2 L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353.   DOI
3 T. Bag and S. K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems 151 (2005), no. 3, 513-547.   DOI
4 T. Bag and S. K. Samanta, Some fixed point theorems in fuzzy normed linear spaces, Inform. Sci. 177 (2007), no. 16, 3271-3289.   DOI
5 A. Bodaghi, Cubic derivations on Banach algebras, Acta Math. Vietnam. 38 (2013), no. 4, 517-528.   DOI
6 A. Bodaghi, Stability of a quartic functional equation, The Scientific World J. 2014 (2014), Article ID 752146, 9 pages.
7 A. Bodaghi and Gh. Zabandan, On the stability of quadratic (*-) derivations on (*-) Banach algebras, Thai J. Math. 12 (2014), no. 2, 343-356.
8 A. Bodaghi, Intuitionistic fuzzy stability of the generalized forms of cubic and quartic functional equations, J. Intel. Fuzzy Syst. 30 (2016), 2309-2317.   DOI
9 A. Bodaghi, I. A. Alias, and M. H. Ghahramani, Ulam stability of a quartic functional equation, Abstr. Appl. Anal. 2012 (2012), Article ID 232630, 9 pages.
10 A. Bodaghi, S. M. Moosavi, and H. Rahimi, The generalized cubic functional equation and the stability of cubic Jordan *-derivations, Ann. Univ. Ferrara Sez. VII Sci. Mat. 59 (2013), no. 2, 235-250.   DOI
11 J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309.   DOI
12 L. Cadariu and V. Radu, Fixed points and the stability of quadratic functional equations, An. Univ. Timisoara, Ser. Mat.-Inform. 41 (2003), no. 1, 25-48.
13 L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: A fixed point approach, Grazer Math. Ber. 346 (2004), 43-52.
14 L. Cadariu and V. Radu, Fixed points and stability for functional equations in probabilistic metric and random normed spaces, Fixed Point Theory Appl. 2009 (2009), Article ID 589143, 18 pages.
15 J. X. Fang, On I-topology generated by fuzzy norm, Fuzzy Sets and Systems 157 (2006), no. 20, 2739-2750.   DOI
16 D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA. 27 (1941), 222-224.   DOI
17 S. A. Mohiuddine and H. Sevli, Stability of Pexiderized quadratic functional equation in intuitionistic fuzzy normed space, J. Compu. Appl. Math. 235 (2011), 2137-214.   DOI
18 J. M. Rassias and M. Eslamian, Fixed points and stability of nonic functional equation in quasi- ${\beta}$-normed spaces, Contemp. Anal. Appl. Math. 3 (2015), no. 2, 293-309.
19 M. Mursaleen and Q. M. D. Lohani, Intuitionistic fuzzy 2-normed space and some related concepts, Chaos Solitons Fractals 42 (2009), no. 1, 224-234.   DOI
20 J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals 22 (2004), no. 5, 1039-1046.   DOI
21 R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals 27 (2006), no. 2, 331-344.   DOI
22 R. Saadati, A note on "Some results on the IF-normed spaces", Chaos Solitons Fractals 41 (2009), no. 1, 206-213.   DOI
23 R. Saadati, Y. J. Cho, and J. Vahidi, The stability of the quartic functional equation in various spaces, Comput. Math. Appl. 60 (2010), no. 7, 1994-2002.   DOI
24 R. Saadati and C. Park, Non-archimedean L-fuzzy normed spaces and stability of functional equations, Comput. Math. Appl. 60 (2010), no. 8, 2488-2496.   DOI
25 R. Saadati, A. Razani, and H. Adibi, A common fixed point theorem in L-fuzzy metric spaces, Chaos Solitons Fractals 33 (2007), no. 2, 358-363.   DOI
26 R. Saadati, S. Sedghi, and N. Shobe, Modified intuitionistic fuzzy metric spaces and some fixed point theorems, Chaos Solitons Fractals 38 (2008), no. 1, 36-47.   DOI
27 S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Ed., Wiley, New York, 1940.
28 T. Z. Xu, M. J. Rassias, and W. X. Xu, Stability of a general mixed additive-cubic functional equation in non-archimedean fuzzy normed spaces, J. Math. Phys. 51 (2010), no. 9, 093508, 19 pages.