1 |
T. Z. Xu, M. J. Rassias, W. X. Xu, and J. M. Rassias, A fixed point approach to the intuitionistic fuzzy stability of quintic and sextic functional equations, Iran. J. Fuzzy Syst. 9 (2012), no. 5, 21-40.
|
2 |
L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353.
DOI
|
3 |
T. Bag and S. K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems 151 (2005), no. 3, 513-547.
DOI
|
4 |
T. Bag and S. K. Samanta, Some fixed point theorems in fuzzy normed linear spaces, Inform. Sci. 177 (2007), no. 16, 3271-3289.
DOI
|
5 |
A. Bodaghi, Cubic derivations on Banach algebras, Acta Math. Vietnam. 38 (2013), no. 4, 517-528.
DOI
|
6 |
A. Bodaghi, Stability of a quartic functional equation, The Scientific World J. 2014 (2014), Article ID 752146, 9 pages.
|
7 |
A. Bodaghi and Gh. Zabandan, On the stability of quadratic (*-) derivations on (*-) Banach algebras, Thai J. Math. 12 (2014), no. 2, 343-356.
|
8 |
A. Bodaghi, Intuitionistic fuzzy stability of the generalized forms of cubic and quartic functional equations, J. Intel. Fuzzy Syst. 30 (2016), 2309-2317.
DOI
|
9 |
A. Bodaghi, I. A. Alias, and M. H. Ghahramani, Ulam stability of a quartic functional equation, Abstr. Appl. Anal. 2012 (2012), Article ID 232630, 9 pages.
|
10 |
A. Bodaghi, S. M. Moosavi, and H. Rahimi, The generalized cubic functional equation and the stability of cubic Jordan *-derivations, Ann. Univ. Ferrara Sez. VII Sci. Mat. 59 (2013), no. 2, 235-250.
DOI
|
11 |
J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309.
DOI
|
12 |
L. Cadariu and V. Radu, Fixed points and the stability of quadratic functional equations, An. Univ. Timisoara, Ser. Mat.-Inform. 41 (2003), no. 1, 25-48.
|
13 |
L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: A fixed point approach, Grazer Math. Ber. 346 (2004), 43-52.
|
14 |
L. Cadariu and V. Radu, Fixed points and stability for functional equations in probabilistic metric and random normed spaces, Fixed Point Theory Appl. 2009 (2009), Article ID 589143, 18 pages.
|
15 |
J. X. Fang, On I-topology generated by fuzzy norm, Fuzzy Sets and Systems 157 (2006), no. 20, 2739-2750.
DOI
|
16 |
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA. 27 (1941), 222-224.
DOI
|
17 |
S. A. Mohiuddine and H. Sevli, Stability of Pexiderized quadratic functional equation in intuitionistic fuzzy normed space, J. Compu. Appl. Math. 235 (2011), 2137-214.
DOI
|
18 |
J. M. Rassias and M. Eslamian, Fixed points and stability of nonic functional equation in quasi--normed spaces, Contemp. Anal. Appl. Math. 3 (2015), no. 2, 293-309.
|
19 |
M. Mursaleen and Q. M. D. Lohani, Intuitionistic fuzzy 2-normed space and some related concepts, Chaos Solitons Fractals 42 (2009), no. 1, 224-234.
DOI
|
20 |
J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals 22 (2004), no. 5, 1039-1046.
DOI
|
21 |
R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals 27 (2006), no. 2, 331-344.
DOI
|
22 |
R. Saadati, A note on "Some results on the IF-normed spaces", Chaos Solitons Fractals 41 (2009), no. 1, 206-213.
DOI
|
23 |
R. Saadati, Y. J. Cho, and J. Vahidi, The stability of the quartic functional equation in various spaces, Comput. Math. Appl. 60 (2010), no. 7, 1994-2002.
DOI
|
24 |
R. Saadati and C. Park, Non-archimedean L-fuzzy normed spaces and stability of functional equations, Comput. Math. Appl. 60 (2010), no. 8, 2488-2496.
DOI
|
25 |
R. Saadati, A. Razani, and H. Adibi, A common fixed point theorem in L-fuzzy metric spaces, Chaos Solitons Fractals 33 (2007), no. 2, 358-363.
DOI
|
26 |
R. Saadati, S. Sedghi, and N. Shobe, Modified intuitionistic fuzzy metric spaces and some fixed point theorems, Chaos Solitons Fractals 38 (2008), no. 1, 36-47.
DOI
|
27 |
S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Ed., Wiley, New York, 1940.
|
28 |
T. Z. Xu, M. J. Rassias, and W. X. Xu, Stability of a general mixed additive-cubic functional equation in non-archimedean fuzzy normed spaces, J. Math. Phys. 51 (2010), no. 9, 093508, 19 pages.
|