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A NUMERICAL METHOD OF FUZZY DIFFERENTIAL
EQUATIONS

Younbae Jun

Abstract. In this paper, we propose a numerical method to solve fuzzy differential
equations. Numerical experiments show that when the step size is small, the new
method has significantly good approximate solutions of fuzzy differential equation.
Graphical representation of fuzzy solutions in three-dimension is also provided as a
reference of visual convergence of the solution sequence.

1. Introduction

Fuzzy set initially presented by Zadeh [15] has been developed into fuzzy math-
ematics including fuzzy logic, fuzzy probabilities, fuzzy information, and so on.
Fuzzy-valued mapping was developed by Puri and Ralescu [10] and then a theory
for fuzzy differential equations (FDEs) has been developed by Kaleva [8].

There are many works done by several authors for solving FDEs based on the
fuzzy set [15]. For examples, hybrid predictor-corrector method [14], variational iter-
ation method [1], a partial averaging scheme with maxima [9], Laplace decomposition
method [6], Milne’s predictor-corrector method [3], variational iteration method [5],
and fuzzy Laplace transform method [2]. On the other hand, slightly different fuzzy
number so called a linear fuzzy real number was discussed in [7, 11, 12, 13]. How-
ever, there is no literature so far dealing with FDEs in algorithmic point of view over
linear fuzzy real numbers. In this paper, we present an algorithm to solve FDEs on
linear fuzzy real numbers.

The paper is organized as follows. In Section 2, we provide some preliminary
definitions on linear fuzzy real numbers. In Section 3, numerical algorithm and
experiments are presented to solve fuzzy differential equations. Lastly, we will make
concluding remarks in Section 4.
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2. Preliminaries

In this section, we discuss some important definitions and properties of linear
fuzzy real numbers [7, 11, 12, 13]. When we consider the set of all real numbers
R, one way to associate a fuzzy number with a fuzzy subset of real numbers is as a
function µ : R → [0, 1], where the value µ(x) is to represent a degree of belonging
to the subset of R.

Definition 2.1 (Linear fuzzy real number). Let R be the set of all real numbers
and µ : R → [0, 1] be a function defined by

µ(x) =





0, if x < a or x > c,
x−a
b−a , if a ≤ x < b,

1, if x = b,
c−x
c−b , if b < x ≤ c.

Then µ(a, b, c) is called a linear fuzzy real number with associated triple of real
numbers (a, b, c) where a ≤ b ≤ c shown in Figure 1.

x

µ(x)

0            a          b                c

1

Figure 1. Linear fuzzy real number µ(a, b, c)

Let LFR be the set of all linear fuzzy real numbers. Then we note that any
real number t ∈ R can be written as a linear fuzzy real number r(t) ∈ LFR, where
r(t) = µ(t, t, t), and hence R ⊆ LFR. As a linear fuzzy real number, we consider r(t)
to represent the real number t itself. Operations on LFR [7, 11, 12, 13], sequence,
and differentiability are defined as the followings.

Definition 2.2 (Operations). For given two linear fuzzy real numbers µ1 =µ(a1,b1,c1)
and µ2 = µ(a2, b2, c2), we define addition, subtraction, multiplication, and division
by

(1) µ1 + µ2 = µ(a1 + a2, b1 + b2, c1 + c2)
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(2) µ1 − µ2 = µ(a1 − c2, b1 − b2, c1 − a2)
(3) µ1 · µ2 = µ(min{a1a2, a1c2, a2c1, c1c2}, b1b2, max{a1a2, a1c2, a2c1, c1c2})
(4) µ1

µ2
= µ1· 1

µ2
where 1

µ2
= µ(min{ 1

a2
, 1

b2
, 1

c2
}, median{ 1

a2
, 1
b2

, 1
c2
}, max{ 1

a2
, 1
b2

, 1
c2
}).

Since a real number t can be considered as a linear fuzzy real number r(t) =
µ(t, t, t), we have t · µ(a, b, c) = µ(t · a, t · b, t · c) for t > 0.

Definition 2.3 (Sequence). Let {Xn}∞n=0 be a sequence of LFR where Xn =
µ(an, bn, cn). The LFR-sequence {Xn} has the limit X∗ = µ(a∗, b∗, c∗) and we
write limn→∞Xn = X∗, if the sequences {an}, {bn}, and {cn} have the limit a∗,
b∗, and c∗, respectively. If limn→∞Xn exists, we say the LFR-sequence {Xn} is
convergent. Otherwise, we say the sequence is divergent.

Definition 2.4 (Differentiability). Let X : [a, b] → LFR be a mapping, t0 ∈ [a, b],
and L ∈ LFR. We say that X(t) has the limit L as t approaches t0 and we write
limt→t0 X(t) = L, if we can make the values of X(t) arbitrarily close to L by taking
t to be sufficiently close to t0 but not equal to t0. We say that X(t) is differentiable
at t0 if there exists X ′(t0) ∈ LFR such that

X ′(t0) = lim
h→0

X(t0 + h)−X(t0)
h

.

3. Solving Fuzzy Differential Equations

In this section, we consider the following fuzzy initial value problem:

(3.1)
{

X ′(t) = F (t,X(t)), t ∈ [a, b]
X(t0) = X0 ∈ LFR,

where F : [a, b] × LFR → LFR. In this case, X ′(t) = F (t,X(t)) is called a LFR-
valued fuzzy differential equation and X(t0) = X0 ∈ LFR is called an initial condi-
tion at t0. Associated crisp initial value problem is

(3.2)
{

x′(t) = f(t, x(t)), t ∈ [a, b]
x(t0) = x0 ∈ R,

where x′(t) is the crisp derivative of a function x : [a, b] → R.
Solving the fuzzy initial value problem (3.1) over LFR is possible with a modi-

fication of classical Euler’s method of the crisp initial value problem (3.2) over real
numbers. Let N be a fixed positive integer and h = b−a

N . Take tn = a + nh, for
n = 0, 1, · · · , N . Then by Taylor’s theorem [4], for any tn ∈ [a, b], there exists a
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number ξn ∈ [tn, tn+1] with

x(tn+1) = x(tn + h) = x(tn) + hx′(tn) +
1
2
h2x′′(ξn),

and hence crisp Euler’s method is xn+1 = xn + hf(tn, xn) for n = 0, 1, · · · , N − 1.
Thus, the modified Euler’s method to the fuzzy initial value problem (3.1) over

LFR is

(3.3) Xn+1 = Xn + hF (tn, Xn) for each n = 0, 1, · · · , N − 1.

Now we provide the algorithm of the new scheme using (3.3), referred to as LFR

Euler’s algorithm, to solve the fuzzy initial value problem (3.1) over LFR.

Algorithm: (LFR Euler’s algorithm)

INPUT: fuzzy mapping F , interval [a, b], integer N , initial condition X0

OUTPUT: approx. Xn = µ(an, bn, cn) to X(tn) at the (N + 1) values of t

Step 1: Set h = (b− a)/N and t0 = a.
Step 2: For n = 1, 2, · · · , N do Steps 3, 4.
Step 3: Set tn = a + nh.
Step 4: Set Xn = Xn−1 + hF (tn−1, Xn−1).
Step 5: OUTPUT(all tn and Xn) and STOP.

Example 3.1. Consider the following fuzzy initial value problem:
{

X ′(t) = t−X, t ∈ [0, 2]
X(0) = µ(0.5, 1, 1.5)

Let F (t,X) = t − X and initial condition X0 = µ(0.5, 1, 1.5) ∈ LFR. If we
choose N = 10 so that the step size h = 0.2, then we can generate a sequence of
approximate solutions {Xn}10

n=0, where Xn = µ(an, bn, cn), using Equation (3.3).
For example,

X1 = X0 + hF (t0, X0) = X0 + h(t0 −X0) = µ(0.4, 0.8, 1.2).

Entire terms of the sequence of approximate solutions {Xn} are listed in Table 1
along with the exact solutions x(tn) at tn for n = 0, 1, · · · , 10, since the deterministic
associated problem: x′(t) = t − x, t ∈ [0, 2], x(0) = 1 has the exact solution
x(t) = t− 1 + 2e−t. Table 2 shows the results using N = 100 in the algorithm. We
can see in Table 2 that X100 in Table 2 is more accurate than X10 in Table 1 at the
same last time level t = 2.
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Table 1. Approximate solutions by LFR Euler and exact solutions
(N = 10, h = 0.2 )

tn Xn = µ(an, bn, cn) x(tn)
t0 = 0 X0 = µ(0.5, 1, 1.5) x(t0) = 1.0

t1 = 0.2 X1 = µ(0.4000, 0.8000, 1.2000) x(t1) = 0.8375
t2 = 0.4 X2 = µ(0.3600, 0.6800, 1.0000) x(t2) = 0.7406
t3 = 0.6 X3 = µ(0.3680, 0.6240, 0.8800) x(t3) = 0.6976
t4 = 0.8 X4 = µ(0.4144, 0.6192, 0.8240) x(t4) = 0.6987
t5 = 1.0 X5 = µ(0.4915, 0.6554, 0.8192) x(t5) = 0.7358
t6 = 1.2 X6 = µ(0.5932, 0.7243, 0.8554) x(t6) = 0.8024
t7 = 1.4 X7 = µ(0.7146, 0.8194, 0.9243) x(t7) = 0.8932
t8 = 1.6 X8 = µ(0.8517, 0.9355, 1.0194) x(t8) = 1.0038
t9 = 1.8 X9 = µ(1.0013, 1.0684, 1.1355) x(t9) = 1.1306
t10 = 2.0 X10 = µ(1.1611,1.2147, 1.2684) x(t10) = 1.2707

Table 2. Approximate solutions by LFR Euler and exact solutions
(N = 100, h = 0.02)

tn Xn = µ(an, bn, cn) x(tn)
t0 = 0 X0 = µ(0.5, 1, 1.5) x(t0) = 1.0

t10 = 0.2 X10 = µ(0.4256, 0.8341, 1.2427) x(t10) = 0.8375
t20 = 0.4 X20 = µ(0.4014, 0.7352, 1.0690) x(t20) = 0.7406
t30 = 0.6 X30 = µ(0.4182, 0.6910, 0.9637) x(t30) = 0.6976
t40 = 0.8 X40 = µ(0.4686, 0.6914, 0.9143) x(t40) = 0.6987
t50 = 1.0 X50 = µ(0.5463, 0.7283, 0.9104) x(t50) = 0.7358
t60 = 1.2 X60 = µ(0.6463, 0.7951, 0.9439) x(t60) = 0.8024
t70 = 1.4 X70 = µ(0.7647, 0.8862, 1.0078) x(t70) = 0.8932
t80 = 1.6 X80 = µ(0.8980, 0.9973, 1.0966) x(t80) = 1.0038
t90 = 1.8 X90 = µ(1.0435, 1.1246, 1.2058) x(t90) = 1.1306
t100 = 2.0 X100 = µ(1.1989,1.2652, 1.3315) x(t100) = 1.2707

Tables 1, 2 show the comparison between the approximate values at tn and the
actual values. We can see that the accuracy of approximate solutions is better when
a smaller step size h is used.

We also provide three-dimensional graphical representation of approximate solu-
tions in Figure 2 at N = 10 and N = 100, in which we are able to see the convergence
of the solution sequence.
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(a) Solution by LFR Euler (N=10) (b) Solution by LFR Euler (N=100)

Figure 2. Graphical representation of approximate solutions by LFR Euler’s method

4. Conclusion

A differential equation over linear fuzzy real numbers is called a fuzzy differential
equation. In this paper, a numerical method has been introduced to solve fuzzy
differential equations with a modification of crisp Euler’s method. The numerical
experiments show that the approximate solutions of fuzzy differential equations have
very good accuracy when the step size is small. We have also presented graphical
representation of those solutions in three-dimension as a reference of visual conver-
gence of the solution sequence.
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