• Title/Summary/Keyword: Function space integral

Search Result 177, Processing Time 0.021 seconds

INTEGRAL KERNEL OPERATORS ON REGULAR GENERALIZED WHITE NOISE FUNCTIONS

  • Ji, Un-Cig
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.601-618
    • /
    • 2000
  • Let (and $g^*$) be the space of regular test (and generalized, resp.) white noise functions. The integral kernel operators acting on and transformation groups of operators on are studied, and then every integral kernel operator acting on can be extended to continuous linear operator on $g^*$. The existence and uniqueness of solutions of Cauchy problems associated with certain integral kernel operators with intial data in $g^*$ are investigated.

  • PDF

PARTS FORMULAS INVOLVING INTEGRAL TRANSFORMS ON FUNCTION SPACE

  • Kim, Bong-Jin;Kim, Byoung-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.553-564
    • /
    • 2007
  • In this paper we establish several integration by parts formulas involving integral transforms of functionals of the form $F(y)=f(<{\theta}_1,\;y>),\ldots,<{\theta}_n,\;y>)$ for s-a.e. $y{\in}C_0[0,\;T]$, where $<{\theta},\;y>$ denotes the Riemann-Stieltjes integral ${\int}_0^T{\theta}(t)\;dy(t)$.

Conditional Integral Transforms on a Function Space

  • Cho, Dong Hyun
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.4
    • /
    • pp.413-431
    • /
    • 2012
  • Let $C^r[0,t]$ be the function space of the vector-valued continuous paths $x:[0,t]{\rightarrow}\mathbb{R}^r$ and define $X_t:C^r[0,t]{\rightarrow}\mathbb{R}^{(n+1)r}$ and $Y_t:C^r[0,t]{\rightarrow}\mathbb{R}^{nr}$ by $X_t(x)=(x(t_0),\;x(t_1),\;{\cdots},\;x(t_{n-1}),\;x(t_n))$ and $Y_t(x)=(x(t_0),\;x(t_1),\;{\cdots},\;x(t_{n-1}))$, respectively, where $0=t_0$ < $t_1$ < ${\cdots}$ < $t_n=t$. In the present paper, using two simple formulas for the conditional expectations over $C^r[0,t]$ with the conditioning functions $X_t$ and $Y_t$, we establish evaluation formulas for the analogue of the conditional analytic Fourier-Feynman transform for the function of the form $${\exp}\{{\int_o}^t{\theta}(s,\;x(s))\;d{\eta}(s)\}{\psi}(x(t)),\;x{\in}C^r[0,t]$$ where ${\eta}$ is a complex Borel measure on [0, t] and both ${\theta}(s,{\cdot})$ and ${\psi}$ are the Fourier-Stieltjes transforms of the complex Borel measures on $\mathbb{R}^r$.

INTEGRAL REPRESENTATION OF SOME BLOCH TYPE FUNCTIONS IN ℂn

  • Choi, Ki Seong;Yang, Gye Tak
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.17-22
    • /
    • 1997
  • Let B be the open unit ball in the complex space $\mathbb{C}^n$. A holomorphic function $f:B{\rightarrow}C$ which satisfies sup{(1- ${\parallel}\;{\nabla}_zf\;{\parallel}\;{\mid}z{\in}B$} < $+{\infty}$ is called Bloch type function. In this paper, we will find some integral representation of Bloch type functions.

  • PDF

GENERALIZED CAMERON-STORVICK TYPE THEOREM VIA THE BOUNDED LINEAR OPERATORS

  • Chang, Seung Jun;Chung, Hyun Soo
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.655-668
    • /
    • 2020
  • In this paper, we establish the generalized Cameron-Storvick type theorem on function space. We then give relationships involving the generalized Cameron-Storvick type theorem, modified generalized integral transform and modified convolution product. A motivation of studying the generalized Cameron-Storvick type theorem is to generalize formulas and results with respect to the modified generalized integral transform on function space. From the some theories and formulas in the functional analysis, we can obtain some formulas with respect to the translation theorem of exponential functionals.

A New Integral Representation of the Coverage Probability of a Random Convex Hull

  • Son, Won;Ng, Chi Tim;Lim, Johan
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.1
    • /
    • pp.69-80
    • /
    • 2015
  • In this paper, the probability that a given point is covered by a random convex hull generated by independent and identically-distributed random points in a plane is studied. It is shown that such probability can be expressed in terms of an integral that can be approximated numerically by function-evaluations over the grid-points in a 2-dimensional space. The new integral representation allows such probability be computed efficiently. The computational burdens under the proposed integral representation and those in the existing literature are compared. The proposed method is illustrated through numerical examples where the random points are drawn from (i) uniform distribution over a square and (ii) bivariate normal distribution over the two-dimensional Euclidean space. The applications of the proposed method in statistics are are discussed.

INTEGRAL TRANSFORMS OF FUNCTIONALS ON A FUNCTION SPACE OF TWO VARIABLES

  • Kim, Bong Jin;Kim, Byoung Soo;Yoo, Il
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.349-362
    • /
    • 2010
  • We establish the various relationships among the integral transform ${\mathcal{F}}_{{\alpha},{\beta}}F$, the convolution product $(F*G)_{\alpha}$ and the first variation ${\delta}F$ for a class of functionals defined on K(Q), the space of complex-valued continuous functions on $Q=[0,S]{\times}[0,T]$ which satisfy x(s, 0) = x(0, t) = 0 for all $(s,t){\in}Q$. And also we obtain Parseval's and Plancherel's relations for the integral transform of some functionals defined on K(Q).

Convolution product and generalized analytic Fourier-Feynman transforms

  • Chang, Seung-Jun
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.3
    • /
    • pp.707-723
    • /
    • 1996
  • We first define the concept of the generalized analytic Fourier-Feynman transforms of a class of functionals on function space induced by a generalized Brownian motion process and study of functionals which plays on important role in physical problem of the form $ F(x) = {\int^{T}_{0} f(t, x(t))dt} $ where f is a complex-valued function on $[0, T] \times R$. We next show that the generalized analytic Fourier-Feynman transform of the convolution product is a product of generalized analytic Fourier-Feynman transform of functionals on functin space.

  • PDF

SERIES EXPANSIONS OF THE ANALYTIC FEYNMAN INTEGRAL FOR THE FOURIER-TYPE FUNCTIONAL

  • Lee, Il-Yong;Chung, Hyun-Soo;Chang, Seung-Jun
    • The Pure and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.87-102
    • /
    • 2012
  • In this paper, we consider the Fourier-type functionals introduced in [16]. We then establish the analytic Feynman integral for the Fourier-type functionals. Further, we get a series expansion of the analytic Feynman integral for the Fourier-type functional $[{\Delta}^kF]^{\^}$. We conclude by applying our series expansion to several interesting functionals.

Analysis of Coplanar Waveguide Discontinuities Using Accurate Closed-Form Green's function (정확한 Closed-Form 그린함수를 이용한 코플래너 도파로 불연속 해석)

  • Kang, Yeon-Duk;Song, Sung-Chan;Lee, Taek-Kyung
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.180-190
    • /
    • 2003
  • By using accurate closed-form Green's functions obtained from real-axis integration method, the full-wave analysis of CPW discontinuities are performed in space domain. In solving MPIE(Mixed Potential Integral Equation), Galerkin's scheme is employed with the linear basis functions on the triangular elements in air-dielectric boundary. In the singular integral arising when the observation point and source point coincides, the surface integral is transformed into the line integral and the integral is evaluated by regular integration. By using the Green's function from the real-axis integration method, the discontinuities are characterized accurately.

  • PDF