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PARTS FORMULAS INVOLVING INTEGRAL TRANSFORMS
ON FUNCTION SPACE

Bong Jin KM AND Byoung Soo KiMm

ABSTRACT. In this paper we establish several integration by parts for-
mulas involving integral transforms of functionals of the form F(y) =
F((B1,4),. .., {bn,y)) for sae. y € Cp[0,T], where (#,y) denotes the
Riemann-Stieltjes integral fOT 0(¢) dy(t).

1. Introduction and definitions

In a unifying paper [9], Lee defined an integral transform F, g of analytic
functionals on an abstract Wiener space. For certain values of the parameters
a and 8 and for certain classes of functionals, the Fourier-Wiener transform [2],
the Fourier-Feynman transform [3] and the Gauss transform are special cases of
his integral transform F,, g. In [5], Chang, Kim and Yoo established an interest-
ing relationship between the integral transform and the convolution product for
functionals on an abstract Wiener space. In this paper we establish several inte-
gration by parts formulas involving integral transforms, convolution products,
and the first variations of functionals of the form F(y) = f({(61,v),-- ., (6n,y))
for s-a.e. y € Cpl0,T], where {f,y) denotes the Riemann-Stieltjes integral

T
Jo 0(2)dy(t).

Let C[0,T] denote one-parameter Wiener space; that is the space of all
real-valued continuous functions x(¢) on [0,7] with #(0) = 0. Let M denote
the class of all Wiener measurable subsets of Cy[0,T] and let m denote Wiener
measure. (Cp[0,T], M, m) is a complete measure space and we denote the
Wiener integral of a Wiener integrable functional F by

(1.1 /CO[O’T] F(z) m(dz).

Let a and 8 be nonzero complex numbers. Next we state the definitions of
the integral transform F, gF', the convolution product (F % G)s and the first
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variation 6F for functionals defined on K = K][0,T), the space of complex-
valued continuous functions defined on [0, 7] which vanish at ¢ = 0.

Definition 1.1. Let F' be a functional defined on K. Then the integral trans-
form F, gF of F is defined by

(12)  Fap(F)y) = FapFly) = f Flaz + By)m(ds), yeK
Co[0,T]
if it exists [5, 7, 8, 9].

Definition 1.2. Let F and G be functionals defined on K. Then the convo-
lution product (F'* G), of F and G is defined by

(1.3) (F,*G)a(y)z/c[OT]F(y:L/;m)G(y:/;x)m(dx), ye K

if it exists [5, 6, 7, 13, 14].
Definition 1.3. Let F be a functional defined on K and let w € K. Then the
first variation 6F of F' is defined by
)
(14) SF(yfw) = £ F(y+ twlizo, y €K
if it exists [1, 4, 7, 11].

Let {61,8,,...} be a complete orthonormal set of real-valued functions in
L[0,T] and assume that each 6; is of bounded variation on [0, T]. Then for each

y € K and j € {1,2,...}, the Riemann-Stieltjes integral (§;,y) = fOT 6;(t) dy(t)
exists. Furthermore

T
(1.5) €05, ) = 16;(T)y(T) —/0 y(t) do;(t)] < Cillylleo
with
(1.6) C; = 16;(T)| + Var(8;,10,T]),

where Var(é;,[0,7]) denote the total variation of 8; on [0, T].
Next we describe the class of functionals which is related to this paper. For
0 <o <1, let E, be the space of all functionals F': K — C of the form

(1.7) Fy) = f((8,9)) = f({81,9),- -, (Bn, )

for some positive integer n, where f (X) = f(A1,- .-, An) is an entire function of
the n complex variables Ay, ..., A\, of exponential type; that is to say,

(1.8) IF(R)| < Ap exp{Br|X'*}

. n
for some positive constants Ar and Br, where |A|'T7 = 3 [A;['17.

Jj=1
In addition we use the notation

Fj(y) = f;((6,))
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where f;(A ) = a>\ 2= f(A1,...,A,) for j=1,.

Recently [7], Klm Kim and Skoug estabhshed the results that if F and G are
elements of E, then Fyo gF, (F %G)qa, 6F(-lw) and §F(y|-) are also elements of
E, and examined various relationships holding among Fu s F, Fa sG, (F*Q)a,
8F and 6@. For related work see [2,5,6,7,9,11, 13, 14] and for a detailed survey
of previous work see [12].

2. Integration by parts formulas

We begin this section by introducing three existence theorems for the integral
transform, the convolution product and the first variation of functionals in E,
are established in [7]. Although they considered only for functionals in Eo
in [7], as they commented in Remark 5.6 of their paper, their results can be
extended for functionals in E,.

Theorem 2.1. Let F € E, be given by (1.7). Then the integral transform
FopF exists, belongs to E, and is given by the formula

(2.1) FasFly) = h((6.9)
fory € K, where
22) W) = @n) 2 [ fladi+ Y exp{ 5l d

R’n

n
where |[@]|? = Y. u;? and di@ = duy - - - dun,.
Jj=1 .

Theorem 2.2. Let F,G € E, be given by (1.7) with corresponding entire
functions f and g, respectively. Then the convolution (F x G)q ezists, belongs
to E, and is given by the formula

(2.3) (F % G)aly) = k(1))
for y € K, where

(2.4) k(X):(mr)—n/?/ (“a" g \_f )exp{——l]u” }dﬁ.
nd |

Theorem 2.3. Let F € E, be given by (1.7) and let w € K. Then
(2.5) SF(ylw) = p((6,9))
for y € K, where
(2:6) = (85, w) f;(X
=1

Furthermore, as a function of y € K, §F(y|lw) is an element of E,.
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Now we state some observations which we use later in this paper. First of
all, equation (1.2) implies that

(2.7) FasFIND = Fo 5/ sF )

for all y € K. Next, a direct calculation using (1.4), (1.2), (2.5) and (2.7) shows
that

0FasF(y/V2lw/V2) = 6F, 6/\/_F(y|w)

2.8
) \/—Z<017w af}/\/_F (y)

for all y and w in K. Finally, by similar calculations, we obtain that

\/_

(2.9) Fas(OF(Jw))(y/V2) = —0F, 5, 5F (ylw)
for all y and w in K, and for all y € K,
(2.10) (FasF);(y) = BFasF;(y)-

Let
A = {y € Cy[0,T] : y is absolutely continuous on [0, 7] with y' € L*0,T)}.

We note that if we choose z € L2[07 T] and define w(t) = f; z(s)ds for t € [0, T},
then w is an element of 4, w’ = z a.e. on [0,7], and for all v € Ly[0,T],
(v,w) = (v,w") = (v, 2), where (v,2) = fo v(8)z(s)ds.

The following theorem plays a key role throughout this paper. In this the-
orem the Wiener integral of the first variation of functional F is expressed in
terms of the Wiener integral of F multiplied by a linear factor.

Theorem 2.4. Let F € E, be given by (1.7) and w € A, then
(2.11) / §F(z|w) m(dz) = / F(a)(z, z) m(dz)
Cql0,7 Col0,T]

where w(t) = f(f 2(s)ds on [0,T] for some z € L[0,T].

Proof. Let w(t) = [y z(s) ds for some z € L*[0,T]. Using the Gram-Schmit pro-
cess we can ﬁnd an orthonormal set {01,...,0n,0n41} With 01 = mzn+1,
where

Zntl =2 — Z(Oj,z)ﬂj

Jj=1
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Then by the Wiener integration formula

/ F(z){z,z) m(dx)
Co[0,T)

= /CO[O’T] f((é: m))(Z(ap Z)<9J7$> + Hzn—i-1”<9n+1,$>) m(dx)

j=1

= (2m)~ (V2 /R @ (2 + il )

j=1
1., 1 )
X exp{—§||u||2 - éuiﬂ}dunﬂdu.

If we evaluate the last integral with respect to w41, we obtain

/CO[O,T}F(m)(z z) m{dz) = (2m)” "/2;9],2/ f(@)u; exp{——“ﬂ’“}

On the other hand, since w € A C K, by Theorem 2.3

n

SF (zlw) = Y (85w} f((0,2) = > (8;,2)F;({6.2)).

=1 =1

Hence by the Wiener integration formula

/ F(xlw) mdz) =3 (65, 2) / £,((8, 2)) m(dz)
Co[O,T] =1 Co[0,T]

= n Y659 [ fexn{- g} az
j=1

Note that for each j = 1,...,n, the integration by parts formula yields

Afj(ﬁ)exp{—%uﬁ}duj
= lim lim [f(ﬁ)exp ——u /f u]exp A}du]-.

b—00 a——00

But since f is of exponential type, the double limit in the last equation is equal

to 0 and so
/ i@ exp du] / fl@)u; exp ?} du;.

Hence

/CO[O,T] F(zfw) m(dz) = (2m)" n/zzlg]’z/ f@ u]exp{——HuH}

and this completes the proof. ]
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In our next theorem we obtain an integration by parts formula for the prod-
ucts of functionals in F,,.

Theorem 2.5. Let F,G € E, be given by (1.7) with corresponding entire func-
tions f and g, respectively. Then for w € A, we have the following integration
by parts formula.

(2.12)

[F(y)dG(ylw) + 0F(y|lw)G(y)m(dy) = / F(y)G(y){z,y)ym(dy),
Co [O,T] Co [O,T]

where w(t) = f(: 2(s)ds for some z € L[0,T].

Proof. Define H(y) = F(y)G(y) for y € K and let h(X) = F£(X)g(X). Then
H e E, and

n

H(ylw) = > (6;,w)£;({6,9)9((6,9)) + F(( Z 05, w)g; (6, )
j=1 j=1

= §F(ylw)G(y) + F(y)oG (ylw).
Thus equation (2.12) follows from Theorem 2.4. a

By choosing G = F in Theorem 2.5, we obtain the following corollary.

Corollary 2.6. Let F € E, be given by (1.7). Then for each w € A,
1
@13) [ PePGmd) =5 [ PGP Eymd),
Co[0,T] Co[0,T]
where w(t) = fot z(s) ds for some z € Lo[0,T].

As we saw in Theorem 2.3 above if F' belongs to E,, then §F(ylw,) also
belongs to E, as a function of y. Thus if we replace G(y) with 6F (y|wi) in
Theorem 2.5, then we have the following corollary.

Corollary 2.7. Let F € E, be given by (1.7). Then for each wi,ws € A,

/ [F(y)8° F(-|wr ) (ylws) + §F (yw2)S F (ylw: )jm(dy)
(2.14) Col0.7]

=/ Fy)dF (ylwy){z9,y)m(dy),
Co[0,T)

where w;(t) = fg zi(s)ds for some z; € L,[0,T],7=1,2.

As we saw in Theorem 2.1 above if G belongs to E,, then F, gG also belongs
to E,. Thus if we replace G with F, sG in Theorem 2.5, then we have the
following corollary.
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Corollary 2.8. Let F,G € E, be given as in Theorem 2.5. Then for each
weE A,

| IF)8FasGlalu) + 5F (she)Fo sG] mids)
(2.15) Col0.7)

= / F(y)Fa,sG(y)(z, y)m{dy),
Co[0,T]

where w(t) = fot z(s)ds for some z € Lo[0,T].

By replacing F' and G by F, gF and F, gG, respectively, in Theorem 2.5,
we obtain the following corollary.

Corollary 2.9. Let F,G € E, be as in Theorem 2.5. Then for each w € A,

[ s )0 sGylu) + 6Fo sF (510)Fa s )
(2.16) Colo-T)

= [ FasFPW)FasGw) e mdy),
Co[0,T]
where w(t) = fot z(s)ds for some z € L1[0,T).

3. Various integration formulas and examples

In this section we establish various integration formulas involving integral
transforms, convolution products and first variations. Furthermore we give
some examples to illustrate the integration formulas in this paper.

In [7], Kim, Kim and Skoug established various relationships holding among
FopF, FopG, (F*xG)qa, 0F and G. From these relationships and the results
in Section 2 above, we can establish various integration formulas.

From Theorem 2.4 above we know that the Wiener integral of the first
variation of functional F € E, is expressed in terms of the Wiener integral of
F multiplied by a linear factor. On the other hand, some of the formulas, for
example, Formulas 3.3, 3.5, 4.1, 4.2, and 5.2 in [7] give us the expressions of the
first variation of various functionals. Hence it is easy to obtain the following
formulas (3.1) through (3.7) below. We just state the formulas without proofs.

Let w € A with w(t) = fot z(s)ds for some z € L5[0,7] throughout this
section. The paper [7] was concerned with the class Ep. But as commented
in Remark 5.6 of that paper, all the formulas in [7] still true for functionals in
E.. Hence we will assume that F € E, in Formula 3.1 through Formula 3.6
and Corollary 3.7 below.

Formula 3.1. From Formula 3.3 of 7], we have

By 8 Fag0F (lw)(y)m(dy) = / Fo,sF (y)(z, y)m(dy).
Co[0,T] Co[0,T)
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Formula 3.2. From Formula 3.5 of [7], we have

Z 5. w) / [(Fj * G)a(y) + (F * G;)a(w)] m{dy)

(3.2) coloT)
= / (F + G)aly) e, vym(dy)
Co[0,T]
and if F = G,
(3.3)
VES O [ (P, @ = [ (F B e

Formula 3.3. From Formula 4.1 of {7}, we have
(3.4)

/c o (Fasgp G WO, 3 GON) + 07, P W), 3G ))m(dy)
oL

=/Co[0,T] (]: BF(\/—)(SE BG(f \/_)_Mf." 6F(\/_ \/_) aﬁG(%))m(dz’)
= /CO[O’T] Fa8(F % G)a(y)(z,y)m(dy)

and if F = G,

[ oo ()] [sp ()] i
:%/ Fop(F x F)a(y)(z,y)m(dy).
Col0,T]

Formula 3.4. From Formula 4.2 of {7], we have
(3.6)

B < . .
752 (65,0) /C o (Fas s Fas@al)  (FusF s oGl

=1

(3.5)

= [ FapF x FapGlati)evmidy).
Co[0,77]
Formula 3.5. From Formula 5.2 of [7] we have,
Y
L 5 T LRG0 + FOSGC0) (F5)ma)
_ V2

6 Co[0,T]

(3.7
(Fa,pF * Fa,ﬁG)m/g (W){(z, y)ym(dy).
Using the equations {2.7) through (2.9) we obtain the following integration

formula for the Wiener integral of the integral transform with respect to the
first argument of the variation.
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Formula 3.6. For F € E, we have
(3.8)

/cg[o,T] FasvaOF () @)m(dy) =3 (5, v) / . Fopyvakily)midy).

=1 Cq0,77]

Proof. By (2.8) and Theorem 2.4 we have

B /

= (85, w) Fo s aFiy)ym(dy) = Fo5/vaF @)z, yym(dy)-
V2 j:1< ! Co[0,T] svefiwml Col0,T] BIV2
Similarly by (2.9) and Theorem 2.4 we have

y
Fo o mGECw) () m(dy) = / )P @)z, yhm(dy).
T | ForaE ) (J)man = [ Fosy
Thus we have the above formula (3.8). O

We next obtain an integration formula for functionals which is a product of
elements of E, by some linear factors.

Corollary 3.7. Let k be a natural number and let z; € L2[0,T] for j =
1,2,...,k+ 1. Let F € E, and let

k
F¥(y) = FE=U(y) (2, y) = Fy) [[ (z509)-
Jj=1

Then we have the following integral equation.
(3.9)

[ elgm)

Co[0,T)

= / SFH N (ylwitr ) {2k, y)m(dy) + <Zkawk+1>/ FEY(yym(dy),
Co[0,T] Co[0,T]

where FI° = F and wi.1(t) = fg zpy1(s)ds.

Proof. To prove this theorem we simply take the first variation of the F(y) =
FF=1(y) {2k, y). Now we have

15}
F¥ (ylwyir) = a(F[k_” (y + twp41) 2k, Y + twrr1))|e=o
= 6FE(y) (zk, y) + FE () (zh, wiern)-

Hence we have

/ SF) (g wyr s Ym(dy)
Col0,T]

=/ SFH=11(y) (o, y)m(dy) + (2 wis1) / FE1g)m(dy).
Co{0,T] Co[0,T)
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But by Theorem 2.4,

/ SFM (y|wgs1)m(dy) = / SF™M (211, y)m (dy)
Col0,T] Col0,T]

- / F1) (g)m(dy)
Co[0,7]

and this completes the proof. O

We finish this section by giving some examples for the illustration of the
integration by parts formulas.

Example 3.8. Let F(y Z (8;,y) which is an element of E,, then we have
j=

dF(ylw) = F(w), where w(t) = fot z(s)ds € A. Thus we can obtain

n

/CO[U,TJ S homidy) = /Co{o,T] F(w)m(dy) = Y _(0;,w)

= jz:;/OTﬁj(s)z(s)ds

Since the constant functional G = 1 belongs to E, and its first variation equals
to zero, Theorem 2.5 yields the following.

(3.10) Z/c 0;, u){z, y)ym(dy) = Z/ 6,(s)z(s)ds.

Example 3.9. Let G(y) = exp{ " (6;,)} which is an element of E,, then we
j=1

have
™ n n
Glylw) =Y G5 w)exo { Y050} = 365, w)CW),
i=1 i=1 j=1
where w(t fo s)ds € A. Hence by the Wiener integration formula

(ylw)ym(dy) = (6; ,w)/ exp{{0;,y)}m(dy)
/C’O[O,T] J; 7 oo[o,:r]j};; ’

=e"2Y (6;,w).

i=1
From Theorem 2.5 we obtain the following Wiener integral.

n

a1y [ oo {00 e ) = e 500 0)

i=1 j=1
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Example 3.10. Let H(y) = 3 [(d;,y)]? which is an element of E,, then we
j=1
have,
H(ylw) = 22(93'711))(91'71/) = 22(9]'72)(91,3/)7
where w( fo s)ds € A. Thus we can obtain the following by Wiener

integratlon formula.

/Co[O,T] OH (yjwym(dy) = 2;(@,,2)/ (0;,y)m(dy) = 0.

Col0,T]

By Theorem 2.5 we have the following.

(3.12) )2z, yym(dy) = 0.
Z Colo, T b 9]
Example 3.11. Let L(y) = [ 3 (65, ] which is an element of E,, then we
=1
have,

n

6‘7:(1,5L(y|w) = 2ﬂ2 Z<9j7 ’UJ> Z(gj ) y>
7=1 j=1
From the Wiener integration formula, we have the followings.

8 Fo s L(y|lw)m(dy) = 25° G,w/ ,yym(dy) =0
[ Pt alum() ;; ; OTEZJ

and

/’ Fap L(y) (2, yym(dy)
Co[0,T)

- /Co[O,T] \:na2 * [ﬂzwj,yﬂz} (z,y) m(dy)

=1

n

2
= 2 ; z,y) m{dy).
—0+8 /CO[O’T] {Z(%y)} (z,y) m(dy)

j=1

From the Corollary 2.8 we have the following.

(3.13) /C o \:2(9]4/} z,y) m{dy) = 0.

=1

Examples 3.8 through 3.11 are interesting to note that we can obtain the
Wiener integrals on the left hand side of (3.10) through (3.13) by using Theorem
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2.5 or Corollary 2.8 rather than direct calculation using Wiener integration
formula.
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