# INTEGRAL REPRESENTATION OF SOME BLOCH TYPE FUNCTIONS IN $\mathbb{C}^{n}$ 

Ki Seong Choi and Gye Tak Yang


#### Abstract

Let $B$ be the open unit ball in the complex space $\mathbb{C}^{n}$. A holomorphic function $f: B \rightarrow C$ which satisfies $\sup \{(1-<z, z>) \|$ $\left.\nabla_{z} f \| \mid z \in B\right\}<+\infty$ is called Bloch type function. In this paper, we will find some integral representation of Bloch type functions.


## 1. Introduction

Throughout this paper, $\mathbb{C}$ will denote the complex field, and $\mathbb{C}^{n}$ will be the Cartesian product of $n$ copies of $\mathbb{C}$. Let $D$ be the open unit disk in $\mathbb{C}$. Then the Bloch space of $D$ consists of analytic functions $f$ on $D$ such that

$$
\sup \left\{\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right| \mid z \in D\right\}<+\infty
$$

Bloch functions in the Bloch space of $D$ are well known and have been studied by many authors [See 1].

In this paper, we will consider some functions on the open unit ball $B$ in complex space $\mathbb{C}^{n}$. Specifically, we let $\mathcal{B}$ denote the linear space of all holomorphic functions $f: B \rightarrow C$ which satisfy

$$
\sup \left\{(1-<z, z>)\left\|\nabla_{z} f\right\| \mid z \in B\right\}<+\infty
$$

In [5], Timoney showed that the linear space $\mathcal{B}$ is a Banach space under the norm

Received by the editors on June 17, 1997.
1991 Mathematics Subject Classifications: Primary 32.
Key words and phrases: Bloch type function.

$$
\|f\|_{\mathcal{B}}=|f(0)|+\sup \left\{(1-<z, z>)\left\|\nabla_{z} f\right\| \mid z \in B\right\} .
$$

The purpose of this paper is to find some integral representation of Bloch type functions in $\mathcal{B}$.

## 2. Integral representation

Let $a \in B$ and let $P_{a}$ be the orthogonal projection of $\mathbb{C}^{n}$ onto the subspace generated by $a$, which is given by

$$
P_{a} z= \begin{cases}\frac{\langle z, a\rangle}{\langle a, a\rangle} a, & \text { if } a \neq 0 \\ 0, & \text { if } a=0\end{cases}
$$

Let $Q_{a}=I-P_{a}$. Define $\varphi_{a}$ on $B$ by

$$
\varphi_{a}(z)=\frac{a-P_{a} z-\sqrt{1-\|a\|^{2}} Q_{a} z}{1-<z, a>}
$$

Theorem 2.1. Let $a \in B$. Then
(i) $\varphi_{a}$ is a biholomorphic mapping of $B$ onto itself.
(ii) $\varphi_{a}(0)=a, \varphi_{a}(a)=0$ and $\varphi_{a}\left(\varphi_{a}(z)\right)=z$.
(iii) For all $z, w \in \bar{B}$, we have

$$
\begin{aligned}
1-<\varphi_{a}(z), \varphi_{a}(w)> & =\frac{\left(1-\|a\|^{2}\right)(1-<z, w>)}{(1-<z, a>)(1-<a, w>)}, \\
1-\left\|\varphi_{a}(z)\right\|^{2} & =\frac{\left(1-\|a\|^{2}\right)\left(1-\|z\|^{2}\right)}{1-|<z, a>|^{2}} .
\end{aligned}
$$

Proof. See [3, Theorem 2.2.2].
Theorem 2.2. Let $\psi$ be a biholomorphic mapping of B onto itself and $a=\psi^{-1}(0)$. The determinant $J_{R} \psi$ of the real Jacobian matrix of $\psi$ satisfies the following identity:

$$
\left|J_{R} \psi(z)\right|^{2}=\left(\frac{1-\|a\|^{2}}{|1-<z, a>|^{2}}\right)^{n+1}=\left(\frac{1-\|\psi(z)\|^{2}}{1-\|z\|^{2}}\right)^{n+1}
$$

## Proof. See [3, Theorem 2.2.6].

Let $\nu$ be the Lebesgue measure on $\mathbb{C}^{n}$ normalized by $\nu(B)=1$. We let $\sigma$ be the rotation invariant positive Borel measure on S for which $\sigma(S)=1$. Here, S is the boundary of $B$. The term "rotation invariant" refers to the invariant porperty of $\sigma$ i.e., $\sigma(\rho E)=\sigma(E)$ for every Borel set $E^{\prime} \subset S$ and for every rotation $\rho \in O(2 n)$ which is the group of all isometries of $\mathbb{R}^{2 n}$ that fix the origin. The measure $\nu$ and $\sigma$ are related by the formula

$$
\int_{\mathbb{C}^{n}} f d \nu=2 n \int_{0}^{\infty} r^{2 n-1} d r \int_{S} f(r \zeta) d \sigma(\zeta)
$$

The measure $\mu$ is the weighted Lebesgue measure:

$$
d \mu=(n+1)\left(1-\|z\|^{2}\right) d \nu(z)
$$

Lemma 2.3. If $f \in L_{\mu}^{1}(B) \cap H(B)$ where $H(B)$ is the set of holomorphic functions on $B$, then $f(0)=\int_{B} f(z) d \mu(z)$.

Proof. Since $f \in H(B)$, by the mean value theorem

$$
\begin{equation*}
f(0)=\int_{S} f(r \zeta) d \sigma(\zeta), 0<r<1 \tag{1}
\end{equation*}
$$

By integrating both sides of (1) with respect to the measure $2 n(1-$ $\left.r^{2}\right) r^{2 n-1} d r$ over $[0,1]$, we have

$$
2 n \int_{0}^{1} \int_{S} f(r \zeta)\left(1-r^{2}\right) r^{2 n-1} d \sigma(\zeta) d r=f(0)(n+1)^{-1}
$$

Namely,

$$
f(0)=(n+1) \int_{B} f(z)\left(1-\|z\|^{2}\right) d \nu(z)=\int_{B} f(z) d \mu(z) .
$$

ThEOREM 2.4. If $f$ is analytic on $B$ and $\int_{B}\left(1-\|z\|^{2}\right)|f(z)| d \nu(z)<$ $\infty$, then

$$
f(z)=(n+1) \int_{B} \frac{1-\|w\|^{2}}{(1-<z, w>)^{n+2}} f(w) d \nu(w)
$$

Proof. By Lemma 2.3,

$$
f(0)=(n+1) \int_{B} f(w)(1-<w, w>) d \nu(w)
$$

Replace $f$ by $f \circ \varphi_{z}$ and using Theorem 2.1, 2.2, then

$$
\begin{aligned}
f(z) & =\left(f \circ \varphi_{z}\right)(0) \\
& =(n+1) \int_{B}\left(f \circ \varphi_{z}\right)(w)(1-<w, w>) d \nu(w) \\
& =(n+1) \int_{B} f(w)\left(1-\left|\varphi_{z}(w)\right|^{2}\right)\left(\frac{\left(1-\|\left. z\right|^{2}\right)}{|1-<w, z>|^{2}}\right)^{n+1} d \nu(w) \\
& =(n+1) \int_{B} f(w) \frac{\left(1-\|z\|^{2}\right)^{n+2}\left(1-\|w\|^{2}\right)}{|1-<w, z>|^{2 n+4}} d \nu(w) \\
& =(n+1)\left(1-\|z\|^{2}\right)^{n+2} \int_{B} f(w) \frac{\left(1-\|w\|^{2}\right)}{|1-<w, z>|^{2 n+4}} d \nu(w) .
\end{aligned}
$$

Replace $f(w)$ again by $f(w)(1-<w, z>)^{n+2}$, then

$$
\begin{aligned}
& f(z)\left(1-\|z\|^{2}\right)^{n+2} \\
& \quad=(n+1)\left(1-\|z\|^{2}\right)^{n+2} \int_{B} f(w) \frac{\left(1-\|w\|^{2}\right)}{(1-<z, w>)^{n+2}} d \nu(w) .
\end{aligned}
$$

So, we have

$$
f(z)=(n+1) \int_{B} \frac{\left(1-\|w\|^{2}\right)}{(1-<z, w>)^{n+2}} f(w) d \nu(w)
$$

Theorem 2.5. Suppose that $z \in B$ and $f \in \mathcal{B}$. Then

$$
f(z)=f(0)+\int_{B} \frac{\left(1-\|w\|^{2}\right) \nabla_{w} f \cdot z}{\left\langle z, w>(1-<z, w>)^{n+1}\right.} d \nu(w)
$$

where $\nabla_{w} f \cdot z=\sum_{i=1}^{n} \frac{\partial f(w)}{\partial w_{i}} \cdot z_{i}$.
Proof. By Theorem 2.4,

$$
\nabla_{t z} f=(n+1) \int_{B} \frac{1-\|w\|^{2}}{(1-<t z, w>)^{n+2}} \nabla_{w} f d \nu(w) .
$$

Taking the line integral from 0 to $z$, we get

$$
\begin{aligned}
& f(z)-f(0)=\int_{0}^{1} \nabla_{t z} f \cdot z d t \\
&= \int_{0}^{1}(n+1) \int_{B} \frac{\left(1-\|w\|^{2}\right) \nabla_{w} f \cdot z}{(1-<t z, w>)^{n+2}} d \nu(w) d t \\
&=(n+1) \int_{B}\left(1-\|w\|^{2}\right) \nabla_{w} f \cdot z \int_{0}^{1} \frac{1}{(1-t<z, w>)^{n+2}} d t d \nu(w) \\
&= \int_{B}\left(1-\|w\|^{2}\right) \nabla_{w} f \cdot z \frac{1}{\langle z, w>}\left[\frac{1}{(1-<z, w>)^{n+1}}-1\right] d \nu(w) \\
&= \int_{B}\left(1-\|w\|^{2}\right) \nabla_{w} f \cdot z \frac{1}{\left\langle z, w>(1-<z, w>)^{n+1}\right.} d \nu(w) \\
&-\int_{B}\left(1-\|w\|^{2}\right) \nabla_{w} f \cdot z \frac{1}{\langle z, w>} d \nu(w) .
\end{aligned}
$$

It is easy to see (using Taylor expansion) that

$$
\int_{B}\left(1-\|w\|^{2}\right) \nabla_{w} f \cdot z \frac{1}{\langle z, w>} d \nu(w)=0 .
$$

Thus we obtain the desired result as follows:

$$
f(z)-f(0)=\int_{B} \frac{\left(1-\|w\|^{2}\right) \nabla_{w} f \cdot z}{\left\langle z, w>(1-<z, w>)^{n+1}\right.} d \nu(w) .
$$

## References

1. S. Axler, The Bergman spaces, the Bloch space and commutators of multiplication operators, Duke Math. J. 53 (1986), 315-332.
2. K.T. Hahn, Holomorphic mappings of the hyperbolic space into the complex Euclidean space and Bloch theorem, Canadian J. Math. 27 (1975), 446-458.
3. W. Rudin, Function theory in the unit ball of $\mathbb{C}^{n}$, Springer-Verlag (1980).
4. E.M. Stein, Boundary behavior of holomorphic functions of several complex variables, Mathematical Notes, Princeton Univ. Press, Princeton.
5. R.M.Timoney, Bloch functions of several variables, J. Bull. London Math. Soc. 12 (1980), 241-267.
6. K.H. Zhu, Hankel Operators on the Bergman spaces of bounded symmetric domains, Trans. Amer. Math. Soc. 324 (1991), 707-730.

Ki Seong Choi
Department of Mathematics
Konyang University
Nonsan 320-800, Korea
Gye Tak Yang
Department of Mathematics
Konyang University
Nonsan 320-800, Korea

