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Abstract
In this paper, the probability that a given point is covered by a random convex hull generated by independent

and identically-distributed random points in a plane is studied. It is shown that such probability can be expressed
in terms of an integral that can be approximated numerically by function-evaluations over the grid-points in a
2-dimensional space. The new integral representation allows such probability be computed efficiently. The com-
putational burdens under the proposed integral representation and those in the existing literature are compared.
The proposed method is illustrated through numerical examples where the random points are drawn from (i) uni-
form distribution over a square and (ii) bivariate normal distribution over the two-dimensional Euclidean space.
The applications of the proposed method in statistics are are discussed.

Keywords: Coverage probability, integral representation, random convex hull, random points,
stochastic geometry.

1. Introduction

Since the work of Renyi and Sulanke (1963a, b), the convex hull generated by independent and
identically-distributed random points (random convex hull in short) has attracted a considerable at-
tention in the literatures of stochastic geometry and has been employed in a variety of statistical pro-
cedures. For example, Barnett (1976) defines an ordering of the multivariate data based on the notion
of convex hull peeling depth. In Cook (1979), the random convex hull generated by the data points is
used to identify the influential observations in linear regression. In the data envelopment analysis, the
random convex hull is an important tool for estimating the frontier function (Jeong, 2004; Jeong and
Park, 2006) and finding the optimal classifiers (Fawcett and Niculescu-Mizil, 2007; Lim and Won,
2012). Recently, Ng et al. (2014) develops a test of independence of two random variables based on
the area of the random convex hull.

Though there are endeavors of establishing the probabilistic properties of the random convex hull,
most existing works focus on the situations of either (i) the sample size goes to infinity or (ii) the
random points are generated from the uniform distribution. The classical results in Renyi and Sulanke
(1963a, b) of the expected number of vertexes, the perimeter, and the area of the random convex hull
are applicable only if the sample size goes to infinity. Subsequent studies in Hueter (1994, 1999) and
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Hsing (1994) also focus on the asymptotic behaviors of the random convex hull. Exact formulas of
the functionals of the random convex hull are studied in for example, Buchta (2005, 2006). However,
the results are obtained only under the assumption that the random points are drawn from the uniform
distribution over certain bounded regions.

In order to obtain the probabilistic properties of the random convex hull in the finite-sample cases,
Efron (1965) considers the probability that a given point p = (x, y) is not covered by the convex hull
of n independent points {pi = (xi, yi), i = 1, 2, . . . , n} from a general distribution F(x, y) on R2. Let
q(p, n) be such a probability. By providing an integral representation of q(p, n), Efron (1965) further
obtains a formula of the expected area of the random convex hull. This integral representation is
derived under the coordinate system proposed by Santalo (1953) that is rather complicated to use
in practice. As we will indicate in Section 2.3, evaluating q(p, n) under this integral representation
requires function-evaluations over the grid-points in a 3-dimensional space.

The main contribution of this paper is to establish a new integral representation that allows q(p, n)
be evaluated numerically by function-evaluations over the grid-points in a 2-dimensional space.

This short note is organized as follows. In Section 2, a new integral representation of q(p, n) is
given and the numerical algorithm of evaluating q(p, n) is proposed. The results are applicable to a
general distribution F(x, y) under finite-sample cases. In Section 3, we show that q(p, n) can further
be simplified in the special cases when the random points are drawn from the uniform distribution
on a square and from the bivariate normal distribution with an arbitrarily given covariance matrix.
Numerical examples are also provided. In the concluding section, the applications to certain statistical
problems are discussed.

2. Probability

Let convH(p1, p2, . . . , pn) be the smallest convex hull containing n independent sample points pi =

(xi, yi)i=1,...,n distributed according to law F(x, y) over a convex but not necessarily bounded region
D. Denote the joint density function corresponding to F by f (x, y). In this section, we derive a new
integral representation of q(p, n), the probability that a given point p = (x, y) ∈ D does not belong to
convH((p1, p2, . . . , pn). General results for arbitrarily given distribution F(·) and convex region D are
given in this article. Special cases will be discussed in Section 3.

2.1. Toy example

Before presenting the new integral representation of q(p, n), let us consider the game described below.
The sample space of this game is discrete. Later on, a continuous version of such game is used to
obtain q(p, n).

Let us consider the following game of lucky wheel as shown in Figure 1. Assume that the lucky
wheel is divided into 12 sectors. These sectors are denoted by (1, 2), (2, 3), (3, 4), . . . , (12, 1) respec-
tively. The first and the second number in the brackets are the starting-points and the end-points of
the sector anticlockwise. Each sector can either be occupied or not occupied. Here, the events that
the sectors are occupied are not necessarily exclusive. The sample space for this problem is then the
set of 12-dimensional ordered tuples with 0 (for non occupied) or 1 (for occupied) as the coordinate
values. The probability mass function of this sample space is given. For simplicity, assume that the
mass function at (0, 0, . . . , 0) is zero. If there are at least six (i.e., half of 12) consecutive sectors that
are not occupied, you win, otherwise, you lose. What is the winning probability?

To answer the above question, rewrite the event E of getting win as the union of the following
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Figure 1: An illustration of lucky wheel

events.

E1 = The sector (12, 1) is occupied while (1, 7) is not.
E2 = The sector (1, 2) is occupied while (2, 8) is not.

...

E11 = The sector (10, 11) is occupied while (11, 5) is not.
E12 = The sector (11, 12) is occupied while (12, 6) is not.

In the above, note that 6 = 12/2 guarantees that these events E1, E2, . . . , E12 are mutually exclu-
sive. The event E1 is equivalent to that (12, 7) is occupied while (1, 7) is not occupied. Therefore,

P(E1) = P((12, 7) is occupied) − P((1, 7) is occupied).

Similarly, the probabilities of events E2 to E12 can be obtained.

2.2. General case

Now we return to our original question, “what is the probability that a fixed point p = (x, y) ∈ D does
not belong to the convex hull”.

The following two statements are equivalent.

1. p does not belong to the convex hull.
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2. There is a sector subtended by p and an angle greater than π not occupied by any points pi,
i = 1, 2, . . . , n.

Some analogies between the lucky wheel game and the random convex hull are as follows. The lucky
wheel in the game has 12 sectors of 30 degrees. In the domain D has infinitely many sectors subtended
by the point p and angles of infinitestimal sizes ∆θ. To win the game, one needs to get at least six
consecutive sectors that is not occupied. In order that p is outside the random convex hull, it requires
the existence of a sector with subtended angle greater than or equal to π that is not occupied by any
random points.

For any given θ2 > θ1, the probability that (θ1, θ2) is occupied is

1 − {P (p1 ∈ (θ2, θ1 + 2π))}n .

Let us define G(s, t) = P(p1 ∈ (s, t)). It is not difficult to see by analogy that the required probability
is

q(p, n) = lim
N→∞

N∑
k=1

{
P

(
(θk − ∆, θk + π) is occupied

) − P (
(θk, θk + π) is occupied

)}
= lim

N→∞

N∑
k=1

{[G (θk + π, θk + 2π)]n − [G (θk + π, θk − ∆ + 2π)]n}

=

∫ 2π

0

∂

∂t
G (s + π, t)n

∣∣∣
t=s+2πds

= n
∫ 2π

0
[G (s + π, s + 2π)]n−1 ∂G (s + π, t)

∂t

∣∣∣∣∣
t=s+2π

ds.

In the above, θk = k · 2π/N for k = 1, 2, . . . ,N and ∆ = 2π/N. In addition,

G(s, t) =
∫ t

s

∫ r(θ)

0
f (x + r cos θ, y + r sin θ)r drdθ.

If D is bounded, r(θ) can be defined as shown in Figure 2 and if D = R2, r(θ) can be replaced by∞.
By differentiating G(s, t) with respect to t, we have

∂G (s, t)
∂t

=

∫ r(t)

0
f (x + r cos t, y + r sin t) · r dr.

Since the above partial derivative does not involve s, it is convenient to introduce the notation

h(t) =
∂G(s, t)
∂t

.

Note that h(t) is a function of t only and does not depend on s. Then, the required probability can be
written as

q(p, n) = P(p = (x, y) < convH(p1, . . . , pn))

= n
∫ 2π

0
h(s + π)[G(s, s + π)]n−1ds. (2.1)

In the above, G(s, s + π) is a function of p = (x, y).
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Figure 2: Notations

2.3. Computational issue

In this subsection, we show that the new integral representation given in Subsection 2.2 allows the
probability be evaluated numerically by function-evaluations over the grid-points in a 2-dimensional
space.

Note that Equation (2.1) can be rewritten as

q(p, n) = n
∫ 2π

0
h(s + π)

[∫ s+π

s
h(θ)dθ

]n−1

ds.

Algorithm:

Step 1: Choose integers M and N. Set θk = 2πk/2N for k = 0, 1, 2, . . . , 2N − 1.

Step 2: For k = 0, 1, 2, . . . , 2N − 1, evaluate the integral

h(θ) =
∫ r(θk)

0
f (x + r cos θk, y + r sin θk) · r dr

using any appropriate numerical integration method with M function-evaluations.

Step 3: Compute I0 = πN−1 ∑N−1
k=0 h(θk).
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Step 4: For k = 1, 2, 3, , . . . , 2N − 1, compute Ik = Ik−1 + πN−1[h(θk) − h(θk−N)].

Step 5: Obtain q(p, n) ≈ nπN−1 ∑2N−1
k=0 h(θk+N)In−1

k .

This algorithm requires only MN function-evaluations and the computational burden of Step 3–5 is
only O(N). If the domain is infinite, Gaussian quadrature method can be chosen in Step 2.

It is interesting to note that the integral representation of q(p, n) in Equation (5.13) of Efron (1965) is

q(p, n) =
1
2

n
∫ π

0

∫ ∞

−∞
γn+1(ξ(p, θ), θ)|α − β(p, θ)| f (x(ξ, θ, α), y(ξ, θ, α)),

where

ξ(p, θ) = x cos θ + y sin θ,
β(p, θ) = y cos θ − x sin θ,

x(ξ, θ, α) = ξ cos θ − α sin θ,
y(ξ, θ, α) = α cos θ + ξ sin θ,

γn+1(ξ, θ) = Γn−1(ξ, θ) − (1 − Γ(ξ, θ))n−1,

Γ(ξ, θ) =
∫ −∞

∞

∫ ∞

ξ

f (x(ζ, θ, β), y(ζ, θ, β)) dζdβ.

The integral Γ(ξ, θ) involves the three-dimensional function f (x(ζ, θ, β), y(ζ, θ, β)). As such, the prob-
ability q(p, n) has to be approximated numerically with function-evaluations over the grid-points in a
three-dimensional space.

3. Two Special Cases

The following two special cases will be discussed in this section. In the first example, F(·) is the
uniform distribution function over a bounded convex set D. In the second example, F(·) is the bivariate
Gaussian distribution function with mean zero and variance covariance matrix Σ.

3.1. Uniform distribution on [0, 1]2

Consider the case that the random points pi, i = 1, 2, . . . , n are drawn independently from the uniform
distribution over [0, 1]2. Below, we only consider the case p = (x, y) with 0 ≤ x, y ≤ 1/2. The
probabilities for other values of p can be obtained by symmetry. Under our uniform-distribution
assumptions, the function G(s, t) can be written as

G(s, t) =
1
2

∫ t

s
r2(θ) dθ

and thereby the required probability is

q(p, n) =
n
2

∫ 2π

0
r2(s + π)Gn−1(s, s + π) ds.

Here, both r2(θ) and G(s, t) depend on p = (x, y).
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Let 0 < θ1 ≤ π/2 ≤ θ2 ≤ π ≤ θ3 ≤ 3π/2 ≤ θ4 be the angles defined as follows ,

tan(2π − θ4) =
y

1 − x
,

tan(θ1) =
1 − y
1 − x

,

tan(π − θ2) =
1 − y

x
,

tan(θ3 − π) =
y
x
.

In this case,

h
(
t
)
=

1
2

∫ r(t)

0
r dr =

1
2

r2(t),

and r(θ) is defined as:

r(θ) =



(1 − x)
1

cos θ
, if θ4 − 2π ≤ θ ≤ θ1,

1 − y
sin θ

, if θ1 ≤ θ ≤
π

2
,

1 − y
sin(π − θ) , if

π

2
≤ θ ≤ θ2,

x
cos(π − θ) , if θ2 ≤ θ ≤ π,

x
cos(θ − π)

, if π ≤ θ ≤ θ3,

y

cos
(

3π
2 − θ

) , if θ3 ≤ θ ≤
3π
2
.

Finally,

G(s, s + π) =
∫ s+π

s

1
2

r(θ)2dθ

and

q(p, n) = n
∫ 2π

0
h(s + π)[G(s, s + π)]n−1ds. (3.1)

Next, numerical examples are presented. Here, we compute the probability q(p, n) for various p
and n = 10, 100 and 1000. The points p is chosen as points in {(x, y)|x = i ∗ 0.01, y = 0.01 ∗ j, i, j =
1, 2, . . . , 99}. Figure 3 shows the probabilities q(p, n) for different p and n.

3.2. Bivariate normal distribution

Consider the case that the random points pi , i = 1, 2, . . . , n are drawn independently from the bivariate
Normal distribution with mean zero and variance covariance matrix Σ.
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Figure 3: Uniform distribution
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Figure 4: Uniform distribution

To compute the probability q(p, n), we first compute G(s, s + π) and h(s). To find G(s, s + π) ,
it is beneficial to consider the rectangular coordinates rather than the polar coordinates. In this case,
G(s, s + π) is the probability measure of the shaded region shown in Figure 5. Let (ζ, η) be the
coordinate of a random point. Consider the following rotation and translation,(

ζ′

η′

)
= UT

s

(
ζ − x
η − y

)
,
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Figure 5: Bivariate normal distribution

where

UT
s =

(
cos s sin s
− sin s cos s

)
.

With such transform, the required probability becomes P(η′ > 0) . It can be verified that(
ζ′

η′

)
∼ N

(
−UT

s

(
x
y

)
, UT

s ΣUs

)
.

Let

µ(p, s) = x sin s − y cos s

and

σ2(p, s) = (sin s,− cos s)Σ(sin s,− cos s)T .

We have

G(s, s + π) = 1 − Φ
(
− µ(p, s)
σ(p, s)

)
,

where Φ(·) is the cumulative distribution function of the standard normal random variable.
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Next, we find h(t). The integral

h(p, t) =
∫ ∞

0
f (x + r cos t, y + r sin t) · rdr

can be found explicitly. Let

E(p) = (x, y)Σ−1(x, y)T ,

B(p, t) = (x, y)Σ−1(cos t, sin t)T ,

C(p, t) = (cos t, sin t)Σ−1(cos t, sin t)T .

We have

h(p, t) = (2π)−
1
2 |Σ|− 1

2 C−1(t) exp
{
−1

2

(
E − B2(t)C−1(t)

)}
×

[
ϕ

(
B(t)

C
1
2 (t)

)
− B(t)

C
1
2 (t)

{
1 − Φ

(
B(t)

C
1
2 (t)

)}]
.

Again,

q(p, n) = n
∫ 2π

0
h(s + π)[G(s, s + π)]n−1ds.

Numerical examples are given in the following. The probability q(p, n) is computed for three
bivariate normal distributions with mean (0, 0)T and covariance matrices

Σ =

(
1 0
0 1

)
,

(
1 0.3

0.3 1

)
, and

(
1 0.7

0.7 1

)
(3.2)

respectively. For each Σ, q(p, n) are computed for n = 10, 100, and 1000 and p from the grid points
over [−5, 5] × [−5, 5]. The results are shown in Figure 6.

4. Conclusion

In this paper, a new integral representation is given for q(p, n), the probability that a random convex
hull generated by independent and identically-distributed random points covers p. Under such new
representation, q(p, n) can be approximated numerically by function-evaluations over the grid-points
in a 2-dimensional space. On the contrary, the classical integral representation obtained in Efron
(1965) requires function-evaluations over the grid-points in a 3-dimensional space. The new results
allow even more efficient computation of q(p, n) in the finite-sample cases. Moreover, the proofs
provided in the present paper is much simpler and intuitive than those in Efron (1965).

One of the future research directions is to apply the new integral representation and to fur-
ther simplify the formulas of a number of functionals of the random convex hull, including the
moments of area and perimeters etc. For example, the expected area of the random convex hull
convH(p1, p2, . . . , pn), denoted by An, can be written as

An =

"
q(p, n) dxdy.

The probability that the n + 1th observation pn+1 = (xn+1, yn+1) does not belong to the random convex
hull convH((p1, p2, . . . , pn) is

un+1 = 1 −
"

q(p, n) dF(x, y).
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(a) ρ = 0, n = 10
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(b) ρ = 0, n = 100
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(c) ρ = 0, n = 1000
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(d) ρ = 0.3, n = 10
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(e) ρ = 0.3, n = 100
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(f) ρ = 0.3, n = 1000
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(g) ρ = 0.7, n = 10
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(h) ρ = 0.7, n = 100
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(i) ρ = 0.7, n = 1000

Figure 6: Normal Distribution

Indeed, this is the probability that a new random point forms a new vertex of the convex hull. There-
fore, un+1 can be useful in the simulation of the random convex hull.

In the data envelopment analysis, the probability q(p, n) can be used to obtain the required number
of sample size n so that the given point p is within the random convex hull. Such sample size is an
estimator of the frontier function (or the domain) of the bivariate distribution on a plane (Jeong, 2004;
Jeong and Park, 2006).

It is also an interesting research direction of generalizing the results to the higher dimensional
situations. The improved efficiency in the computation would facilitates many applications of random
convex hull in the multivariate data analysis in the future.
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