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SERIES EXPANSIONS OF THE ANALYTIC FEYNMAN
INTEGRAL FOR THE FOURIER-TYPE FUNCTIONAL

Il Yong Lee a, Hyun Soo Chung b and Seung Jun Chang c, ∗

Abstract. In this paper, we consider the Fourier-type functionals introduced in
[16]. We then establish the analytic Feynman integral for the Fourier-type func-
tionals. Further, we get a series expansion of the analytic Feynman integral for the
Fourier-type functional [∆kF ] .̂ We conclude by applying our series expansion to
several interesting functionals.

1. Introduction

Let C0[0, T ] denote one-parameter Wiener space; that is the space of continuous
real-valued functions x on [0, T ] with x(0) = 0. Let M denote the class of all Wiener
measurable subsets of C0[0, T ] and let m denote Wiener measure. (C0[0, T ],M,m) is
a complete measure space, and we denote the Wiener integral of a Wiener integrable
functional F by

∫
C0[0,T ] F (x)dm(x).

A subset B of C0[0, T ] is said to be scale-invariant measurable provided ρB is M-
measurable for all ρ > 0, and a scale-invariant measurable set N is said to be a scale-
invariant null set provided m(ρN) = 0 for all ρ > 0. A property that holds except on
a scale-invariant null set is said to hold scale-invariant almost everywhere(s-a.e.)[19].
Throughout this paper we will assume that each functional F : C0[0, T ] → C that
we consider is scale-invariant measurable and that

∫
C0[0,T ] |F (ρx)|dm(x) < ∞ for

each ρ > 0.
In 1948, Feynman assumed the existence of an integral over a space of paths, and

he used his integral in a formal way in his approach to quantum mechanics [9]. Sev-
eral mathematicians have attempted to give rigorously meaningful definitions of the
Feynman integral with appropriate existence theorems and have expressed solutions
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of the Schrödinger equation in terms of their integrals. One of these approaches
was based on the similarity between the Wiener and the Feynman integrals, and
procedures were set up by many mathematicians to obtain Feynman integrals from
Wiener integrals by analytic extension from the real axis to the imaginary axis. For
the procedure of analytic continuation to define the analytic Feynman integral, see
[4-7].

Let [f ]̂ be the Fourier transform of f ,

(1.1) [f ] (̂~ξ) =
(

1
2π

)n
2

∫

Rn

f(~u) exp{i~u · ~ξ}d~u, ~u, ~ξ ∈ Rn,

where ~u · ~ξ = u1ξ1 + · · · + unξn. Many mathematicians and physicists studied the
Fourier transform since the Fourier transform is a very useful tool in physics and
various fields including mathematics. In [2, 21], the authors established the Paley-
Wiener theorems for the Fourier transform. Their theorems were based upon some
properties of the Fourier transform. In [22], Tuan established the Paley-Wiener type
theorems over the appropriate domains. In [16], Chung and Tuan studied the Fourier
type functionals via the Fourier transforms on Wiener space and investigated some
properties of the Fourier-type functionals.

In this paper, we investigate several properties involving the analytic Feynman
integral for the Fourier-type functionals ∆kF and [∆kF ]̂ on C0[0, T ]. In Section 3,
we obtain the existence and various formulas of the analytic Feynman integral for
∆kF and [∆kF ] .̂ Finally, in Section 4, we present various series expansions of the
analytic Feynman integral for various Fourier-type functionals.

2. Definitions and Preliminaries

In this section, we list some definitions and properties from [4-6, 10, 18].
For v ∈ L2[0, T ] and x ∈ C0[0, T ], let 〈v, x〉 denote the Paley-Wiener-Zygmund

(PWZ) stochastic integral. One can show that for each v ∈ L2[0, T ], 〈v, x〉 exists
for a.e. x ∈ C0[0, T ] and if v ∈ L2[0, T ] is a function of bounded variation on [0, T ],
〈v, x〉 equals the Riemann-Stieltjes integral

∫ T
0 v(t)dx(t) for s-a.e. x ∈ C0[0, T ]. Also,

〈v, x〉 has the expected linearity property. Furthermore, 〈v, x〉 is a Gaussian random
variable with mean 0 and variance ‖v‖2

2. For a more detailed study of the PWZ
stochastic integral, see [13, 17, 18].

Now, we state the definition of the analytic Feynman integral.
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Definition 2.1. Let C denote the complex numbers, let C+ = {λ ∈ C : Re(λ) > 0}
and let C̃+ = {λ ∈ C : λ 6= 0 and Re(λ) ≥ 0}. Let F : C0[0, T ] → C be a
measurable functional such that for each λ > 0, the Wiener integral

J(λ) =
∫

C0[0,T ]
F (λ−1/2x)dm(x)

exists. If there exists a function J∗(λ) analytic in C+ such that J∗(λ) = J(λ) for all
λ > 0, then J∗(λ) is defined to be the analytic Wiener integral of F over C0[0, T ]
with parameter λ, and for λ ∈ C+ we write

J∗(λ) =
∫ anwλ

C0[0,T ]
F (x)dm(x).

Let q 6= 0 be a real number and let F be a functional such that J∗(λ) exists for all
λ ∈ C+. If the following limit exists, we call it the analytic Feynman integral of F

with parameter q and we write
∫ anfq

C0[0,T ]
F (x)dm(x) = lim

λ→−iq

∫ anwλ

C0[0,T ]
F (x)dm(x)

where λ → −iq through values in C+.

The following theorem is a well-known integration formula which is used several
times in this paper, see [1].

Theorem 2.2. Let {α1, · · · , αn} be an orthonormal set of functions from L2[0, T ].
Let f : Rn → C be Borel measurable, and let

F (x) = f(〈α1, x〉, · · · , 〈αn, x〉) ≡ f(〈~α, x〉).
Then

(2.1)

∫

C0[0,T ]
F (x)dm(x) =

∫

C0[0,T ]
f(〈~α, x〉)dm(x)

=
(

1
2π

)n
2

∫

Rn

f(~v) exp
{
− |~v|2

2

}
d~v

in the sense that if either side of (2.1) exists, both sides exist and equality holds.

Now we state some well-known properties of the Fourier transform as a lemma,
see [22].

Lemma 2.3. (1) Let f ∈ C∞(Rn) be such that all Laplacians ∆kf , k = 0, 1, · · · ,
belong to L2(Rn). Then

(2.2) [∆kf ] (̂~ξ) = (−1)k|~ξ|2kf̂(~ξ),
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where

|~ξ| =
√

ξ2
1 + · · ·+ ξ2

n and ∆ =
∂2

∂ξ2
1

+ · · ·+ ∂2

∂ξ2
n

.

(2) The following statement is called the Paley-Wiener-type theorem for the Fourier
transform on Rn. A function f , square integrable on Rn, is the restriction on Rn of
an entire function of exponential type if, and only if ∆kf belong to L2(Rn) for all
positive integers k.

Let S(Rn) be the Schwartz space of infinitely differentiable function f(~u) decaying
at infinity together with all its derivatives faster than any polynomial of |~u|−1. Note
that the Fourier transform is an isomorphism on the Schwartz space S(Rn). Also,
∆kf and [∆kf ]̂ are elements on S(Rn) for all k = 1, 2, · · · .

Now we introduce the Fourier-type functionals defined on C0[0, T ].

Definition 2.4. Let {α1, · · · , αn} be an orthonormal set of functions from L2[0, T ].
For f ∈ S(Rn), let

(2.3) ∆kF (x) = (∆kf)(〈~α, x〉), k = 0, 1, · · ·

and

(2.4) [∆kF ] (̂x) = [∆kf ] (̂〈~α, x〉), k = 0, 1, · · · .

The functionals in (2.3) and (2.4) are called the Fourier-type functionals defined on
Wiener space C0[0, T ].

Remark 2.5. (1) The Fourier-type functionals appear frequently in the applications
of the analytic Feynman integral to quantum theory, see Section 4.

(2) Using equation (2.2), the Fourier-type functional [∆kF ]̂ given by equation
(2.4) can be expressed by

(2.5) [∆kF ] (̂x) = (−1)k|〈~α, x〉|2kf̂(〈~α, x〉) = (−1)k|〈~α, x〉|2k[F ] (̂x).

3. Analytic Feynman Integral for the Fourier-type
Functionals

In this section we establish the analytic Feynman integral for the Fourier-type
functionals given by equations (2.3) and (2.4). We then establish some properties
of the analytic Feynman integrals for ∆kF and [∆kF ]̂ and their relationships.

In our next two theorems, we obtain the analytic Feynman integral for the
Fourier-type functionals for ∆kF and [∆kF ] ,̂ respectively.
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Theorem 3.1. Let ∆kF be given by equation (2.3). Then for all q ∈ R− {0}, the
analytic Feynman integral of ∆kF exists and is given by the formula

(3.1)
∫ anfq

C0[0,T ]
∆kF (x)dm(x) =

(−iq

2π

)n
2

∫

Rn

(∆kf)(~v) exp
{

iq|~v|2
2

}
d~v.

Proof. By using equation (2.1), we have for all λ > 0
∫

C0[0,T ]
∆kF (λ−1/2x)dm(x) =

(
λ

2π

)n
2

∫

Rn

(∆kf)(~v) exp
{
− λ|~v|2

2

}
d~v.

By using Morera’s theorem, the right-side term in the above equality is an analytic
function of λ ∈ C+ and is a continuous function of λ ∈ C̃+ and so setting λ = −iq

yields equation (3.1).
Next, we prove the existence theorem of analytic Feynman integral. Since ∆kf ∈

S(Rn), using equation (3.1),

(3.2)
∣∣∣∣
∫ anfq

C0[0,T ]
∆kF (x)dm(x)

∣∣∣∣ ≤
( |q|

2π

)n
2

∫

Rn

|(∆kf)(~v)|d~v < ∞.

Thus we have the desired result. ¤

The following Theorem 3.2 is the main result in this section. This theorem gives
us the existence for the series expansion of the analytic Feynman integral for [∆kF ] ,̂
see Theorem 4.1 below.

Theorem 3.2. Let [∆kF ]̂ be given by equation (2.4). Then for all q ∈ R − {0},
the analytic Feynman integral of [∆kF ]̂ exists and is given by the formula

(3.3)
∫ anfq

C0[0,T ]
[∆kF ] (̂x)dm(x) =

(
1
2π

)n
2

∫

Rn

(∆kf)(~v) exp
{
− i|~v|2

2q

}
d~v.

Proof. By using equations (2.1) and (1.1), we have for all λ > 0
∫

C0[0,T ]
[∆kF ] (̂λ−1/2x)dm(x) =

(
λ

2π

)n
2

∫

Rn

[∆kf ] (̂~ξ) exp
{
− λ|~ξ|2

2

}
d~ξ

=
(

λ

2π

)n
2
(

1
2π

)n
2

∫

Rn

(∆kf)(~v)
∫

Rn

exp
{
− λ|~ξ|2

2
+ i~v · ~ξ

}
d~ξd~v

=
(

1
2π

)n
2

∫

Rn

(∆kf)(~v) exp
{
− |~v|2

2λ

}
d~v.

By using Morera’s theorem, the last expression above is an analytic function of
λ ∈ C+ and is a continuous function of λ ∈ C̃+ and so setting λ = −iq yields
equation (3.3). Finally, using the similar method of equation (3.2), we can easily
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obtain the existence of the analytic Feynman integral. Thus we have the desired
result. ¤

Many mathematicians use the properties for the convolution of the Fourier trans-
form to solve appropriate differential equations in their research fields. In Theorems
3.1 and 3.2 we considered the Fourier-type functional via the Fourier transform. So
we need a new concept which looks like convolution of the Fourier transform.

Next we give the definition of ¦-convolution of functionals on C0[0, T ].

Definition 3.3. Let F be as in Definition 2.4 and let G be the Fourier-type func-
tional on C0[0, T ] of the form

G(x) = g(〈~α, x〉).
We define their ¦-convolution by

(F ¦G)(x) = (f ∗ g)(〈~α, x〉).
Remark 3.4. The ¦-convolution preserves useful properties of convolution for the
Fourier transform as follows. Let F and G be the Fourier-type functionals on
C0[0, T ].

(F ¦G) = (G ¦ F ), [F ]̂¦ [G]̂ = (2π)
n
2 [FG]̂

and

[(F ¦G)]̂ = (2π)
n
2 [F ] [̂G]̂ = [(G ¦ F )] ;̂

that is to say the ¦-convolution is commutative.

In our next theorem, we establish the Feynman integration formulas (3.4)-(3.7)
by using Remark 3.4 and equation (2.5).

Theorem 3.5. Let F and G be as in Remark 3.4. Then for all q ∈ R− {0},

(3.4)
∫ anfq

C0[0,T ]
[(F ¦G)] (̂x)dm(x) = (2π)

n
2

∫ anfq

C0[0,T ]
[F ] (̂x)[G] (̂x)dm(x),

(3.5)
∫ anfq

C0[0,T ]
(∆kF ¦G)(x)dm(x) =

∫ anfq

C0[0,T ]
(F ¦∆kG)(x)dm(x),

(3.6)
∫ anfq

C0[0,T ]
[(∆kF ¦G)] (̂x)dm(x) = (2π)

n
2

∫ anfq

C0[0,T ]
([F ] (̂x)[∆kG] )̂(x)dm(x),

(3.7)
∫ anfq

C0[0,T ]
[∆kF ] (̂x) ¦ [∆kG] (̂x)dm(x) = (2π)

n
2

∫ anfq

C0[0,T ]
[∆kF∆kG] (̂x)dm(x)
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and
(3.8)∫ anfq

C0[0,T ]
[∆kF ¦∆kG] (̂x)dm(x) = (2π)

n
2

∫ anfq

C0[0,T ]
|〈~α, x〉|4k[F ] (̂x)[G] (̂x)dm(x).

In particular, if k is even, then

(3.9)
∫ anfq

C0[0,T ]
[∆k/2F ¦∆k/2F ] (̂x)dm(x) = (2π)

n
2

∫ anfq

C0[0,T ]
([∆k/2F ] )̂2(x)dm(x)

and
(3.10)∫ anfq

C0[0,T ]
[∆k/2F ] (̂x) ¦ [∆k/2F ] (̂x)dm(x) = (2π)

n
2

∫ anfq

C0[0,T ]
[(∆k/2F )2] (̂x)dm(x).

4. Series Expansions of the Analytic Feynman Integral
for the Fourier-type Functionals

In this section, we will investigate a series representation of the the analytic Feyn-
man integral for the Fourier-type functional using hypergeometric series expansion
which is different form Taylor series expansion. In addition we explain the Fourier-
type functional applied to several areas. We then give the special applications for
each case.

The following statement is certainly known and the result plays a key role in this
section. The hypergeometric function has a hypergeometric series given by

(4.1)
1F1[a, b, z] = 1 +

a

b
z +

a(a + 1)
b(b + 1)

z2

2!
+

a(a + 1)(a + 2)
b(b + 1)(b + 2)

z3

3!

+
a(a + 1)(a + 2)(a + 3)
b(b + 1)(b + 2)(b + 3)

z4

4!
+ · · · =

∞∑

s=0

(a)s

(b)s

zs

s!

where (a)s is the Pochhammer symbol; that is to say

(a)s = a(a + 1)(a + 2) · · · (a + s− 1).

If a and b are integers, a < 0 and either b > 0 or b < a, then the series yields
a polynomial with a finite number of terms. In particular, (a)0 = 1. When b ∈
Z− ∪ {0}, 1F1[a, b, z] is undefined.

In our next theorem we obtain the series expansion of the analytic Feynman
integral for [∆kF ] .̂ Equation (4.2) is the series representation of the the analytic
Feynman integral for the Fourier-type functional [∆kF ]̂ using hypergeometric series
expansion.
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Theorem 4.1. Let [∆kF ]̂ be given by equation (2.4). Then the analytic Feynman
integral for [∆kF ]̂ exists and for all q ∈ R− {0},

(4.2)

∫ anfq

C0[0,T ]
[∆kF ] (̂x)dm(x)

=
(√−iq

2π

)n ∑

l1+···+ln=k

(−1)kk!
l1! · · · ln!

∫

Rn

f(~u) exp
{
− i|~u|2

2q

}

·
n∏

j=1

(
2i

q

)lj 2Γ(1
2 + lj)√−2iq

1F1

[
− lj ,

1
2
,
iu2

j

2q

]
d~u

where 1F1 is given by equation (4.1) and Γ is the Gamma function.

Proof. First note that using Theorem 3.2, the analytic Feynman integral for [∆kF ]̂

always exists. Now we will obtain the series expansion of the analytic Feynman
integral for [∆kF ] .̂ By using equations (2.5) and (1.1), we have for all λ > 0

∫

C0[0,T ]
[∆kF ] (̂λ−1/2x)dm(x) =

(
λ

2π

)n
2

(−1)k

∫

Rn

|~ξ|2kf̂(~ξ) exp
{
− λ|~ξ|2

2

}
d~ξ

=
(

λ

2π

)n
2

(−1)k

(
1
2π

)n
2

∫

Rn

|~ξ|2k

∫

Rn

f(~u) exp
{

i~u · ~ξ
}

d~u exp
{
− λ|~ξ|2

2

}
d~ξ.

=
(

λ

2π

)n
2

(−1)k

(
1
2π

)n
2

∫

Rn

f(~u) exp
{
− |~u|2

2λ

}

·
[ ∫

Rn

|~ξ|2k exp
{
− λ

2

∣∣∣∣~ξ −
i~u

λ

∣∣∣∣
2}

d~ξ

]
d~u.

Now by using the multinomial theorem, the last equation above equals

(
λ

2π

)n
2

(−1)k

(
1
2π

)n
2

∫

Rn

f(~u) exp
{
− |~u|2

2λ

}

·
[ ∫

Rn

∑

l1+···+ln=k

k!
l1! · · · ln!

ξ2l1
1 ξ2l2

2 · · · ξ2ln
n exp

{
− λ

2

∣∣∣∣~ξ −
i~u

λ

∣∣∣∣
2}

d~ξ

]
d~u.

Finally, by using the Mathematica program we have the following formula

∫

R
ξ2k exp

{
− λ

2

(
ξ − iu

λ

)2}
dξ =

(
2
λ

)k 2Γ(1
2 + k)√
2
√

λ
1F1

[
− k,

1
2
,
u2

2λ

]
,

where Γ is the Gamma function. Applying this to the last equation above, we get
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∫

C0[0,T ]
[∆kF ] (̂λ−1/2x)dm(x)

=
(

λ

2π

)n
2

(−1)k

(
1
2π

)n
2

∫

Rn

f(~u) exp
{
− |~u|2

2λ

}

·
[ ∑

l1+···+ln=k

k!
l1! · · · ln!

n∏

j=1

(
2
λ

)lj 2Γ(1
2 + lj)√
2λ

1F1

[
− lj ,

1
2
,
u2

j

2λ

]]
d~u.

By using Morera’s theorem, the last expression above is an analytic function of
λ ∈ C+ and is a continuous function of λ ∈ C̃+ and so setting λ = −iq yields
equation (4.2). Thus we have the desired result. ¤

Now we exhibit several Fourier-type functionals to apply Theorem 4.1 above. We
then compute the analytic Feynman integrals for special cases by using the series
expansion for each Fourier-type functionals.

1. The heat equation in one dimension. Consider the heat equation in one
dimension {

ut = uyy

u(y, 0) = φ(y)
.

Take the Fourier transform of both sides with respect to y,

[ut]̂ = [uyy]̂ = −ξ2[u]̂ for ξ ∈ R.

Solve the differential equation [ut]̂ = −ξ2[u]̂ to get

[u] (̂ξ, t) = C(ξ) exp{−ξ2t}.

By using the initial condition, [u] (̂ξ, t) = φ̂(ξ) exp{−ξ2t}. Now using the formula
for the Fourier transform,

exp{−ξ2t} =
1√
2t

[exp{−y2/4t}] .̂

Let

(4.3) st(y) =
1√
2t

exp{−y2/4t}.

Then [u]̂ = [φ] [̂st]̂ = [φ ∗ st] .̂ Thus the solution of the heat equation is φ ∗ st.
The function st is an element of the Schwartz class S(R).
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Let ∆kSt(x) = ∆kst(〈α1, x〉). Then, using Theorem 4.1, the analytic Feynman
integral of [∆kSt]̂ exists and using equation (4.2), we have

∫ anfq

C0[0,T ]
[∆kSt] (̂x)dm(x)

=
(−1)k

2π
√

t

(
2i

q

)k

Γ
(

1
2

+ k

)∫

R
exp

{
− u2

4t
− iu2

2q

}
1F1

[
− k,

1
2
,
iu2

2q

]
du.

For examples, we compute the analytic Feynman integrals of the Fourier-type func-
tional [∆kSt]̂ as follows:

∫ anfq
C0[0,T ][∆

kSt] (̂x)dm(x), t > 0

k = 1 i
8q2

√
t

(
1
4t + i

2q

)− 5
2
(
−2i−q

4t2

)

k = 2 −3
32q2t2

√
t

(
1
4t + i

2q

)− 5
2

k = 3 15i
q3(q+2it)3

√
t

(
1
4t + i

2q

)− 1
2 (16t3i + 12qt2)

Table 1. Heat equation in one dimension

2. The Hermite function. For n = 0, 1, · · · , define the Hermite function by

(4.4) pn(u) =
1√

2nn!
√

π
exp

{
− u2

2

}
hn(u)

where
hn(u) = (−1)n exp{u2} dn

dun
exp{−u2}

is a Hermite polynomial. Next let {βp(t) : p = 1, 2, · · · } be a complete orthonormal
set of functions of bounded variation on [0, T ]. Define

Φn,ρ(x) = pn

(∫ T

0
βρ(t)dx(t)

)
, n = 0, 1, 2, · · · , ρ = 1, 2, · · ·

and

(4.5) Ψn1,··· ,nρ(x) = Ψn1,··· ,nρ,0,··· ,0(x) = Φn1,1(x) · · ·Φnρ,ρ(x).

The functionals in (4.5) are called the Fourier-Hermite functionals. In [3], Cameron
and Martin showed that the Fourier-Hermite functionals form a complete orthonor-
mal set in L2(C0[0, T ]). That is to say that every functional F ∈ L2(C0[0, T ]) has a
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Fourier-Hermite development which converges in the L2(C0[0, T ]) sense to F ; namely
that

F (y) = l.i.m.N→∞FN (y)

where

FN (y) =
N∑

n1,··· ,nN=0

AF
n1,··· ,nN

Ψn1,··· ,nN (y)

and where AF
n1,··· ,nN

is the Fourier-Hermite coefficient

AF
n1,··· ,nN

=
∫

C0[0,T ]
F (y)Ψn1,··· ,nN (y)dm(y).

In [11, 12], the authors extended the results [3, 4] to a very general function space
Ca,b[0, T ] rather than the Wiener space C0[0, T ]. The Hermite function pn is an
element of Schwartz class S(R).

Let ∆kPn(x) = ∆kpn(〈α1, x〉). Then, using Theorem 4.1, the analytic Feynman
integral of [∆kPn]̂ exists and using equation (4.2), we have
∫ anfq

C0[0,T ]
[∆kPn] (̂x)dm(x)

=
(−1)k

π
√

2nn!
√

π

(
2i

q

)k

Γ
(

1
2

+ k

)∫

R
exp

{
− u2

2
− iu2

2q

}
hn(u)1F1

[
− k,

1
2
,
iu2

2q

]
du.

For examples, we compute the analytic Feynman integrals of the Fourier-type func-
tional [∆kPn]̂ as follows:

∫ anfq
C0[0,T ][∆

kPn] (̂x)dm(x)

k = 1(n = 1) −5−iq

8q2
√√

π

(
1
2 + i

2q

)− 5
2

k = 2(n = 2) −3π

16q4
√

π
√

π

(
1
2 + i

2q

)− 5
2
(
12iq − 3− i

q − (i+q)3

q

)

k = 3(n = 2) 15
√

2i

q4
√

3
√

π

(
1 + i

q

)− 9
2

·(36iq + 39q2 + 2iq3 − 15iq4 + q4 + 15q3 + 4)

Table 2. The Hermite function
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3. The Gauss kernel. For ε > 0 and ~u ∈ Rn, the Gauss kernel is given by

(4.6) gε(~u) =
(

1
4πε

)n
2

exp
{
− |~u|2

4ε

}
.

Then the Gauss kernel gε has some useful properties:

(1) gε(~u) ≥ 0 for all u,
(2)

∫
Rn gε(~u)d~u = 1 for all ε > 0

and
(3) For δ > 0, lim

ε→0

∫

|~u|≥δ
gε(~u)d~u = 0.

Furthermore, we can show that the Gauss kernel gε(~u) from (1) thru (3) above,

lim
ε→0

∫
gε(~u− ~v)f(~v)d~v = f(~u)

for all f ∈ S(Rn). The gε is called an approximate identity as ε → 0. Also, the
Gauss kernel is an element of Schwartz class S(Rn).

Let ∆kGε(x) = ∆kgε(〈~α, x〉). Then, using Theorem 4.1, the analytic Feynman
integral of [∆kGε]̂ exists and using equation (4.2), we have
∫ anfq

C0[0,T ]
[∆kGε] (̂x)dm(x) =

(√−iq

2π

)n ∑

l1+···+ln=k

(−1)kk!
l1! · · · ln!

∫

Rn

(
1

4πε

)n
2

· exp
{
− |~u|2

4ε
− i|~u|2

2q

} n∏

j=1

(
2i

q

)lj 2Γ(1
2 + lj)√−2iq

1F1

[
− lj ,

1
2
,
iu2

j

2q

]
d~u.

For examples, we compute the analytic Feynman integrals of the Fourier-type
functional [∆kGε]̂ as follows:

∫ anfq
C0[0,T ]

[∆kGε] (̂x)dm(x), ε > 0

k = 1(n = 2) −i
32πq2ε

(
1
4ε

+ i
2q

)−3(
− i

ε
− q

2ε2

)

k = 2(n = 2) −1
64πq4ε

(
1
4ε

+ i
2q

)−5(
− i

2ε
− q

4ε2

)2

− 3
√−iq

64π2q2ε3
√

2

(
1
4ε

+ i
2q

)− 5
2

k = 3(n = 2) 15i
√

π
8π2q2ε

(
1

4πε

) 3
2
(

1
4ε

+ i
2q

)−1

(−4iε3 − 12ε2q + 24ε3iq + 12ε2q2 − q3)

− 3i(εi+q)

16π3q8ε5√πε

(
1
4ε

+ i
2q

)−4

Table 3. The Gauss kernel
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4. Potential function in a Schrödinger equation. For a ∈ R, consider the
differential equation

∂

∂t
ψ(x, t) =

1
2λ

∆ψ(x, t)− a2

2λ
x2ψ(x, t)

with the initial condition ψ(x, 0) = ϕ(x). For λ > 0, this is the diffusion equation
with the potential V (x) = a2x2

2λ . From the Feynman-Kac formula we know that the
solution of this equation can be written as a Wiener integral

∫

C0[0,T ]
ϕ(λ−1/2x(T )) exp

{
− a2

2λ2

∫ T

0
x2(s)ds

}
dm(x).

Let

C ′
0[0, T ] =

{
w ∈ C0[0, T ] : w(t) =

∫ t

0
w(s)ds, w ∈ L2[0, T ]

}
.

Then it is a separable infinite dimensional Hilbert space with inner product

(w1, w2)c′0 =
∫ T

0
w′1(t)w

′
2(t)dt.

As is known, (C ′
0[0, T ], C0[0, T ],m) is an example of abstract Wiener space [20].

Let S : C ′
0[0, T ] → C ′

0[0, T ] be the linear operator defined by

Sw(t) =
∫ t

0
w(s)ds.

Then we see that the adjoint operator S∗ of S is given by

S∗w(t) = w(T )t−
∫ t

0
w(s)ds =

∫ t

0
[w(T )− w(s)]ds

and the linear operator A = S∗S is given by

Aw(t) =
∫ T

0
min{s, t}w(s)ds.

Furthermore, we see that A is a self-adjoint operator on C ′
0[0, T ] and that

(w1, Aw2)c′0 = (Sw1, Sw2)c′0 =
∫ T

0
w1(s)w2(s)ds

for all w1, w2 ∈ C ′
0[0, T ]. Hence A is a positive definite operator, i.e., (w, Aw)c′0 ≥ 0

for all w ∈ C ′
0[0, T ].

One can show that the orthonormal eigenfunctions {αm} of A are given by

αm(t) =
√

2T

(m− 1
2)π

sin
(

(m− 1
2)π

T
t

)
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with corresponding eigenvalues {βm} given by

βm =
(

T

(m− 1
2)π

)2

.

Furthermore, it can be shown that {αm} is a basis of C ′
0[0, T ] and that A is a trace

class operator and so S is a Hilbert-Schmidt operator on C ′
0[0, T ]. In fact, the trace

of A is given by TrA = 1
2T 2 =

∫ T
0 tdt.

In this case,

(4.7)
∫ T

0
x2(s)ds = lim

m→∞

m∑

j=1

βj〈αj , x〉2

for a.e. x ∈ C0[0, T ], see [14, 15]. In [10], the authors extended this result to the
function space Ca,b[0, T ].

Let fm(~u) = exp
{− a2

2

∑m
j=1 βju

2
j

}
and let

(4.8) Vm(x) = fm(〈~α, x〉).

Then fm ∈ S(Rm) and, by equation (4.7) and (4.8), we have

lim
m→∞Vm(x) = exp

{
− a2

2

∫ T

0
x2(t)dt

}
,

for a.e. x ∈ C0[0, T ].
The functional given by equation (4.8) is under our consideration and so we will

apply the results obtain in previous sections to the functional Vm given by equation
(4.8).

Let ∆kVm(x) = ∆kfm(〈~α, x〉). Then, using Theorem 4.1, the analytic Feynman
integral of [∆kVm]̂ exists and using equation (4.2), we have

∫ anfq

C0[0,T ]
[∆kVm] (̂x)dm(x)

=
(√−iq

2π

)m ∑

l1+···+lm=k

(−1)kk!
l1! · · · lm!

m∏

j=1

(
2i

q

)lj 2Γ(1
2 + lj)√−2iq

·
∫

R
exp

{
− a2βj

2
u2

j −
iu2

j

2q

}
1F1

[
− lj ,

1
2
,
iu2

j

2q

]
duj .

For examples, we compute the analytic Feynman integrals of the Fourier-type func-
tional [∆kVm]̂ as follows:
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∫ anfq
C0[0,T ][∆

kVm] (̂x)dm(x)

k = 1(m = 1) i
4q2

√
2

(
a2β1

2 + i
2q

)− 5
2
(

iqa2β1

2 − a4β2
1q − 2ia2β1

)

k = 2(m = 1) 1
16q4

√
2

(
a2β1

2 + i
2q

)− 5
2

·
(
12 + 12i(a2β1q+i)2

q − 12(a2β1q + i)2
)

k = 3(m = 1) −15i
8q5

√
2

(
α2β1

2 + i
2q

)− 7
2

·
(
α4β1q

2 − α4β1iq + α2β1iq − 2i
q

)

Table 4. Potential function in a Schrödinger equation
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