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GENERALIZED CAMERON-STORVICK TYPE THEOREM

VIA THE BOUNDED LINEAR OPERATORS

Seung Jun Chang and Hyun Soo Chung

Abstract. In this paper, we establish the generalized Cameron-Storvick

type theorem on function space. We then give relationships involving the
generalized Cameron-Storvick type theorem, modified generalized integral

transform and modified convolution product. A motivation of studying
the generalized Cameron-Storvick type theorem is to generalize formulas

and results with respect to the modified generalized integral transform

on function space. From the some theories and formulas in the functional
analysis, we can obtain some formulas with respect to the translation

theorem of exponential functionals.

1. Introduction

The concept of the integral transform Fα,β was introduced by Lee on ab-
stract Wiener space (B,H,m) [21]. Since then many mathematicians have
studied the integral transform Fα,β , the Fourier-Gauss transform Gα,β and the
generalized Fourier-Gauss transform GS,T of functionals on (B,H,m) [1,2,9,12–
19,21]. The function space Ca,b[0, T ], induced by generalized Brownian motion,
was introduced by J. Yeh in [23] and studied extensively in [4, 5, 7, 8, 10, 11].
In [6–8, 11], the authors studied the generalized integral transform Fγ,β of
functionals on Ca,b[0, T ]. The space (Ca,b[0, T ], C ′a,b[0, T ], µ) as an example

of abstract Wiener space was initiated by Chang et al in [4]. The classical
Wiener space and (Ca,b[0, T ], C ′a,b[0, T ], µ) are the most important examples of

an abstract Wiener space, for more details see [4, 5, 7, 14,20,23].
The Cameron-Storvick type theorem is that the function space integrals

involving the first variation can be expressed by the ordinary forms without
concept the first variation. For this reason, it is also called the integration
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by parts formula. Numerous constructs and theories regarding the Cameron-
Storvick type theorem have been studied and applied in many papers [3, 4, 6,
8, 10,11].

In this paper we establish the most generalized Cameron-Storvick type the-
orem via the bounded linear operators. We then establish some relationships
between the modified generalized integral transforms and the modified convo-
lution products involving the first variations for the exponential functionals via
the generalized Cameron-Storvick type theorem. We are going to work in the
framework of general Gaussian space (Ca,b[0, T ], C ′a,b[0, T ], µ). Our transform
and the Cameron-Storvick type theorem are more general than various trans-
forms and the Cameron-Storvick type theorem considered in previous papers.

The results in this paper are quite a lot more complicated because the gen-
eralized Brownian motion used in this paper is nonstationary in time and is
subject to a drift a(t). The generalized Brownian motion can be used to explain
the position of the Ornstein-Uhlenbeck process in an external force field [22].

2. Definitions and preliminaries

Let D = [0, T ] and let (Ω,B, P ) be a probability measure space. A real-
valued stochastic process Y on (Ω,B, P ) and D is called a generalized Brownian
motion process if Y (0, ω)=0 almost everywhere and for 0 = t0 < t1 < · · · <
tn ≤ T , the n-dimensional random vector (Y (t1, ω), . . . , Y (tn, ω)) is normally
distributed with density function

Wn(~t, ~u) =
(
(2π)n

n∏
j=1

(b(tj)− b(tj−1))
)−1/2

× exp

{
−1

2

n∑
j=1

((uj − a(tj))− (uj−1 − a(tj−1)))2

b(tj)− b(tj−1)

}
,

where ~u = (u1, . . . , un), u0 = 0, ~t = (t1, . . . , tn), a(t) is an absolutely continuous
real-valued function on [0, T ] with a(0) = 0, a′(t) ∈ L2[0, T ] and b(t) is a strictly
increasing, continuously differentiable real-valued function with b(0) = 0 and
b′(t) > 0 for each t ∈ [0, T ].

In [24], Yeh showed that the generalized Brownian motion process Y de-
termined by a(·) and b(·) is a Gaussian process with mean function a(t) and
covariance function r(s, t) = min{b(s), b(t)}, and that the probability measure
µ induced by Y , taking a separable version, is supported by Ca,b[0, T ] (which is
equivalent to the Banach space of continuous functions x on [0, T ] with x(0) = 0
under the sup norm). Hence (Ca,b[0, T ],B(Ca,b[0, T ]), µ) is the function space
induced by Y where B(Ca,b[0, T ]) is the Borel σ-algebra of Ca,b[0, T ]. We
then complete this function space to obtain (Ca,b[0, T ],W(Ca,b[0, T ]), µ) where
W(Ca,b[0, T ]) is the set of all Wiener measurable subsets of Ca,b[0, T ].
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Let

L2
a,b[0, T ] =

{
v :

∫ T

0

v2(s)db(s) <∞ and

∫ T

0

v2(s)d|a|(s) <∞
}
,

where |a|(t) denotes the total variation of the function a(·) on the interval [0, t].
For u, v ∈ L2

a,b[0, T ], let

(u, v)a,b ≡
∫ T

0

u(t)v(t)d[b(t) + |a|(t)].

Then (·, ·)a,b is an inner product on L2
a,b[0, T ] and (L2

a,b[0, T ], ‖·‖a,b) is a separa-

ble Hilbert space, where ‖·‖a,b =
√

(·, ·)a,b. We note that ‖v‖a,b = 0 if and only
if v(t) = 0 almost everywhere on [0, T ]. In addition, for each v ∈ L2

a,b[0, T ],

the Paley-Wiener-Zygmund (PWZ) stochastic integral 〈v, x〉 exists for µ-a.e.
x ∈ Ca,b[0, T ]; see [4, 6–8, 11]. Then the PWZ stochastic integral 〈v, x〉 is a

Gaussian random variable with mean
∫ T
0
v(t)da(t) and variance

∫ T
0
v2(t)db(t).

Let

C ′a,b[0, T ] =

{
w ∈ Ca,b[0, T ] : w(t) =

∫ t

0

z(s)db(s) for some z ∈ L2
a,b[0, T ]

}
.

For w ∈ C ′a,b[0, T ], with w(t) =
∫ t
0
z(s)db(s) for t ∈ [0, T ], let Dt : C ′a,b[0, T ]→

L2
a,b[0, T ] be defined by the formula

Dtw = z(t) =
w′(t)

b′(t)
.

Then C ′a,b[0, T ] with inner product

(w1, w2)C′a,b
=

∫ T

0

Dtw1Dtw2db(t)

is a separable Hilbert space. Note that the two separable Hilbert spaces,
L2
a,b[0, T ] and C ′a,b[0, T ] are homeomorphic. Furthermore, we note that

˜Ca,b[0, T ] ≡ C̃a,b ⊂ C ′a,b[0, T ] ≈ C ′a,b[0, T ] ⊂ Ca,b[0, T ],

where C̃a,b is the topological dual space of Ca.b[0, T ].

Remark 2.1. Recall that the function a : [0, T ]→ R is an absolutely continuous
real-valued function on [0, T ] with a(0) = 0, a′(t) ∈ L2[0, T ]. But the function
a(t) = t2/3, t ∈ [0, T ], is not an element in L2

a,b[0, T ] even though a′(t) =
2
3 t
− 1

3 ∈ L2[0, T ]. In order to apply the translation theorem, we have to add
a condition for the function a. Our conditions on b : [0, T ] → R imply that
0 < M1 < b′(t) < M2 for all t ∈ [0, T ] and some positive real numbers M1 and
M2. Now throughout this paper we add the condition

(1)

∫ T

0

|a′(t)|2d|a|(t) <∞.
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Let wa(t) = a′(t)
b′(t) . Then we see that

a(t) =

∫ t

0

a′(s)

b′(s)
db(s) =

∫ t

0

wa(s)db(s)

and∫ T

0

w2
a(t)d[b(t) + |a|(t)] ≤ 1

M1
‖a′‖L2[0,T ] +

1

M2
1

∫ T

0

|a′(t)|2d|a|(t) <∞

by condition (1), and so wa is an element of L2
a,b[0, T ]. Thus a is an element

of C ′a,b[0, T ].

We denote the function space integral of a W(Ca,b[0, T ])-measurable func-
tional F by

E[F ] ≡ Ex[F (x)] =

∫
Ca,b[0,T ]

F (x)dµ(x)

whenever the integral exists.
For the purposes of this paper, we define a complexification of Ca,b[0, T ] by

Ka,b[0, T ] ={x : [0, T ]→ C | x(0) = 0, Re(x) ∈ Ca,b[0, T ]

and Im(x) ∈ Ca,b[0, T ]}.

We also let K ′a,b[0, T ] ≡ K ′a,b denote the complexification of C ′a,b[0, T ].

For x ∈ Ca,b[0, T ] and w ∈ C ′a,b[0, T ] with w(t) =
∫ t
0
z(s)db(s) for t ∈ [0, T ],

(w, x)∼ ≡ 〈Dtw, z〉 = 〈z, x〉 is a well-defined Gaussian random variable with
mean (w, a)C′a,b

and variance ‖w‖2C′a,b
. Then we have the following observations:

(i) For each w in C ′a,b[0, T ], (w, a)∼ = (w, a)C′a,b
and (w,w)∼ = ‖w‖2C′a,b

.

(ii) For x ∈ Ka,b[0, T ] and w ∈ C ′a,b[0, T ], let (w, x)∼ = (w,Re(x))∼ +

i(w, Im(x))∼.
(iii) For x ∈ Ca,b[0, T ] and w ∈ Ka,b[0, T ], let (w, x)∼ = (Re(w), x)∼ +

i(Im(w), x)∼.
(iv) In views of (ii) and (iii), for x ∈ Ka,b[0, T ] and w ∈ K ′a,b,

(w, x)∼ = (Re(w),Re(x))∼ + i(Im(w),Re(x))∼

+ i(Re(w), Im(x))∼ − (Im(w), Im(x))∼.

In this case (·, ·)∼ is the complex bilinear form on K̃a,b ×Ka,b[0, T ].

We next state the following useful formula for function space integrals;
namely that for w ∈ K ′a,b and x ∈ Ca,b[0, T ],

(2) Ex[exp{(w, x)∼}] = exp

{
1

2
(w,w)∼ + (w, a)∼

}
.

If also w ∈ C ′a,b[0, T ], then

Ex[exp{(w, x)∼}] = exp

{
1

2
‖w‖2Ca,b

+ (w, a)Ca,b

}
.
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We finish this section by stating the definitions of the modified generalized
integral transform (MGIT), the modified convolution product (MCP) and the
first variation of functionals on Ka,b[0, T ].

Definition. Let L ≡ L(Ka,b[0, T ]) be the set of all bounded linear operators on
Ka,b[0, T ]. Let Ψ and Φ be functionals on Ka,b[0, T ] and let S,R,A,B,C,D ∈
L. Then the MGIT FS,R(Ψ) of Ψ is defined by the formula (if it exists)

(3) FS,R(Ψ)(y) =

∫
Ca,b[0,T ]

Ψ(Sx+Ry)dµ(x), y ∈ Ka,b[0, T ].

Also, the MCP (Ψ ∗Φ)ABCD of Ψ and Φ is defined by the formula (if it exists)

(4)

(Ψ ∗ Φ)ABCD(y)

=

∫
Ca,b[0,T ]

Ψ(Ax+By)Φ(Cx+Dy)dµ(x), y ∈ Ka,b[0, T ]

and the first variation of Ψ is defined by the formula (if it exists)

(5) δΨ(x|u) =
∂

∂k
Ψ(x+ ku)

∣∣∣∣
k=0

, x, u ∈ Ka,b[0, T ].

Remark 2.2. (1) When S = γ and T = β, for nonzero complex numbers γ and
β, FS,T is the generalized integral transform used in [7, 8].

(2) When A = γ√
2
, B = 1√

2
, C = − γ√

2
and D = 1√

2
, for a nonzero complex

number γ, (Ψ ∗ Φ)ABCD is the convolution product used in [8].
(3) The first variation δF (x|u) acts like a directional derivative in the direc-

tion of u.

3. Fundamental formulas

In this section we list various fundamental formulas with respect to the
MGIT, the MCP and the first variation for the exponential functionals.

For the study of our MGIT and MCP of functionals on Ka,b[0, T ], we will
use a fundamental set of L2(Ca,b[0, T ]). We then introduce a meaningful class
of functionals on Ka,b[0, T ]. Let A be the class of all functionals which have
the form

(6) Ψw(x) = exp

{
(w, x)∼ − 1

2
(w,w)∼ − (w, a)∼

}
for each w ∈ K̃a,b and x ∈ Ca,b[0, T ]. Hence E[Ψn] = 1. The functionals
given by Equation (6) are called the generalized exponential type functionals
on Ca,b[0, T ]. We also note that each Ψw is an element of L2(Ca,b[0, T ]). Then
we have the following observation to understand this paper. For each w ∈
K̃a,b, x ∈ Ca,b[0, T ] and S ∈ L

(w, Sx)∼ = (S∗w, x)∼.

Because S ∈ L, S∗ ∈ L(K̃a,b, K̃a,b) and hence S∗w ∈ K̃a,b is well-defined and
so (S∗w, x)∼ is also well-defined.
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Our goal in the remainder of this paper is to establish various formulas and
relationships for the MGIT, the MCP and the first variation of the generalized
exponential type functionals defined by (6) above which we proceed to do in
Sections 4, 5 and 6 below.

For notational convenience we adopt the following notation: for R1, R2, . . .,

Rn ∈ L and w ∈ K̃a,b, let

(7)

M(R1, . . . , Rn;w)

≡ exp

{
1

2

(( n∑
j=1

RjR
∗
j − I

)
w,w

)∼
+
(( n∑

j=1

R∗j − I
)
w, a

)∼}
,

where R∗j is the Hilbert-adjoint operator of Rj , j = 1, 2, . . . , n. Note that the
symmetric property for M(·;w). That is to say,

M(R1, R2, . . . , Rn;w) = M(Rπ(1), Rπ(2), . . . , Rπ(n);w)

for any permutation π of {1, . . . , n}.
To obtain simple expressions for our formulas and results, we use the follow-

ing lemma which plays a key role in this paper.

Lemma 3.1. Let Ψwn ≡ Ψn ∈ S(Ca,b[0, T ]) be a generalized exponential type
functional of the form (6) and let R1, R2 ∈ L. Then

(8) M(R1;wn) exp{(R∗2wn, y)∼} = M(R1, R2;wn)ΨR∗2wn
(y).

The following theorem was established in [11, Theorems 4.3, 4.4 and 4.5].

Theorem 3.2. Let Ψn,Ψm ∈ S(Ca,b[0, T ]) be generalized exponential type
functionals of the form (6) and let u be an element of C ′a,b[0, T ]. Then for

S,R,A,B,C,D ∈ L, the MGIT FS,R(Ψn) of Ψn, the MCP (Ψn ∗Ψm)ABCD of
Ψn and Ψm, and the first variation δΨn(·|u) of Ψn exist, and are given by the
formulas

(9) FS,R(Ψn)(y) = M(S,R;wn)ΨR∗wn
(y),

(10)
(Ψn ∗Ψm)ABCD(y)

= M(A,B;wn)M(C,D;wm) exp
{

(CA∗wn, wm)∼
}

ΨB∗wn(y)ΨD∗wm(y)

and

(11) δΨn(x|u) = (wn, u)∼Ψn(x).

Furthermore, they are also generalized exponential type functionals.

In our next theorem, we obtain the composition formula for the MGIT.

Theorem 3.3. Let Ψn ∈ S(Ca,b[0, T ]) be a generalized exponential type func-
tional of the form (6) and let S1, S2, R1 and R2 be elements of L. Then we
have

(12) FS1,R1
(FS2,R2

Ψn)(y) = FS3,R3
(Ψn)(y),
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where R3 = R1R2 if and only if the following condition

M(S2, S1R2, R1R2;wn) = M(S3, R3;wn)

holds.

Proof. Equation (12) can be obtained immediately from the definition of MGIT
and Equation (9) repeatedly. �

4. Cameron-Storvick type theorem

In this section we are going to establish the generalized Cameron-Storvick
type theorem with respect to the MGIT. In order to do this, we need the
following Lemma 4.1 below.

The following lemma was established in [10, p. 379].

Lemma 4.1 (Translation theorem). Let x0 be an element of C ′a,b[0, T ]. If F

is µ-integrable on Ca,b[0, T ], then

(13) Ex[F (x+x0)] = exp

{
−1

2
‖x0‖2C′a,b

− (x0, a)C′a,b

}
Ex[F (x) exp{(x0, x)∼}].

Using Equation (13), we establish a more generalized translation theorem
to obtain the generalized Cameron-Storvick type theorem.

Theorem 4.2 (Translation theorem with respect to the operators). Let S1

be an elements of L with S∗1S1 = I, where I is the identity operator and let

S2 ∈ L(C ′a,b, C̃a,b). Let F be a integrable functional on Ca,b[0, T ] and let x0 ∈
C ′a,b[0, T ]. Then

(14)
Ex[F (S1x+ S2x0)] = exp

{
−1

2
‖S∗1S2x0‖2C′a,b

− (S∗1S2x0, a)C′a,b

}
× Ex[F (S1x) exp{(S∗1S2x0, x)∼}].

Proof. We first note that for x0 ∈ C ′a,b[0, T ], S2x0 ∈ C̃a,b ⊂ C ′a,b[0, T ]. Since

S1 ∈ L, S∗1 ∈ L(K̃a,b, K̃a,b) and hence S∗1S2x0 is well-defined and it is an

element of C̃a,b ⊂ C ′a,b[0, T ]. Thus, Equation (14) immediately follows from

Equation (13) by replacing FS1
by F , where FS1

(x) = F (S1x). Because we
note that

F (S1x+ S2x0) = F (S1(x+ S∗1S2x0)) = FS1
(x0 + θ0)

with θ0 = S∗1S2x0. �

Corollary 4.3. Theorem 4.2 tells us that our translation theorem is the most
generalized theorem to date. All version of the translation theorem is a corollary
of Theorem 4.2. Furthermore, if we take the Gaussian process Zh(x, t) as
operators S1 and S2, then Theorem 3.2 established and used in [3] is a corollary
of Theorem 4.2 above.
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From now on, we are going to establish the generalized Cameron-Strovick
type theorem.

The first version of the generalized Cameron-Strovick type theorem is that
the MGIT of the first variation for the exponential functional.

Theorem 4.4. Let S,R ∈ L with S∗S = I and let Ψn ∈ S(Ca,b[0, T ]) be a

generalized exponential type functional of the form (6). Also, let u ∈ C̃a,b ⊂
C ′a,b[0, T ]. Then we have

(15)
FS,R(δΨn(·|u))(y) = FS,R((u, ·)∼Ψn(·))(y)

− ((R∗u, y)∼ + (S∗u, a)∼)FS,R(Ψn)(y).

Proof. The existence of Equation (15) is obtained from Theorem 3.2. We left to
show that the equality in Equation (15) holds. This equality (15) are immediate
consequence of Lemma 4.1 and Theorem 4.2 by replacing S1 and S2 by S and
I respectively. �

Equation (15) tells us that

(16)
FS,R((u, ·)∼Ψn(·))(y) = FS,R(δΨn(·|u))(y)

+ ((R∗u, y)∼ − (S∗u, a)∼)FS,R(Ψn)(y).

In fact, it is not easy to calculate the MGIT involving polynomial weight. That
is to say, a calculation of the following function space integral∫

Ca,b[0,T ]

(u1, x)∼ exp{(u2, x)∼}dµ(x)

is not easy unless u1 and u2 are orthogonal. In these cases, we have to use the
concept of the Gram-Schmidt process and the usual function space integration
formulas. From Equation (16), we note that the MGIT of exponential func-
tionals with polynomial weight can be calculated very easily from the MGIT
of exponential functionals.

From an example, we explain the usefulness of the Cameron-Storvick type
theorem.

Example 4.5. Let Ψn ∈ S(Ca,b[0, T ]) be a generalized exponential type func-
tional of the form (6). Also, let u ∈ C ′a,b[0, T ]. Using Equations (10) and (12),
we obtain that

FS,R(Ψn)(y) = M(S,R;wn)ΨR∗wn
(y)

and
Ψn(x|u) = (wn, u)∼Ψn(x).

Hence using Equation (16), we have

FS,R((u, ·)∼Ψn(·))(y)

= (wn, u)∼M(S,R;wn)ΨR∗wn
(y)

+ ((R∗u, y)∼ − (S∗u, a)∼)M(S,R;wn)ΨR∗wn(y)

= ((wn, u)∼ + (R∗u, y)∼ − (S∗u, a)∼)M(S,R;wn)ΨR∗wn(y).
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In Theorem 4.6, we give the second version of the Cameron-Storvick type
theorem. This is that the first variation of the MGIT for the exponential
functional.

Theorem 4.6. Let S ∈ L with S∗S = I and R ∈ L(C ′a,b, C̃a,b). Let Ψn ∈
S(Ca,b[0, T ]) be a generalized exponential type functional of the form (6). Also,
let u be an element of C ′a,b[0, T ]. Then

(17)
δFS,R(Ψn)(y|u) = FS,R((Ru, ·)∼Ψn(·))(y)

− ((Ru,Ry)∼ + (S∗Ru, a)∼)FS,R(Ψn)(y).

Proof. The existence of Equation (17) is obtained from Theorem 3.2. We left
to show that the equality in Equation (17) holds. In order to do this, we shall
use Equations (9), (11), (14) with replacing S1 and S2 by S and R respectively.
Then the equality in Equation (17) is immediate obtained by the integration
by parts formula. �

Remark 4.7. From Equations (15) and (17) in Theorems 4.4 and 4.6 respec-
tively, we can conclude that

δFS,R(Ψn)(y|u) = FS,R(δΨn(·|Ru))(y).

5. Relationships

In this section we establish various relationships among the MGIT, the MCP
and the first variation for generalized exponential type functionals via the gen-
eralized Cameron-Storvick type theorems in Theorems 4.4 and 4.6.

The following relationships were established in [11]. These relationships are
called fundamental formulas with respect to the MGIT, the MCP and the first
variation for the exponential functionals.

Theorem 5.1. We list various relationships between the MGIT and the MCP
as follows:

(i) The MGIT is a commutative operator, that is to say,

FS2,R2
(FS1,R1

(Ψn))(y) = FS1,R1
(FS2,R2

(Ψn))(y)

if and only if

S1 = S2, R1R2 = R2R1 and R1S2 = R2S1.

(ii) The MCP is a commutative operator, that is to say, (Ψn ∗Ψm)ABCD =
(Ψm ∗Ψn)ABCD if and only if

A = C and B = D.

(iii) Fundamental formula 1:

(18) FS1,R1
(Ψn ∗Ψm)A1B1C1D1

(y) = (FS2,R2
(Ψn) ∗ FS3,R3

(Ψm))A2B2C2D2
(y)

if and only if the following conditions hold:
(a) B1R1 = R2B2 and D1R1 = R3D2;
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(b) M(A1, B1S1;wn)M(C1, D1S1;wm)

= M(S2, R2A2;wn)M(S3, R3C2;wm);

(c) C1A
∗
1 + (D1S1)(B1S1)∗ = (R3C2)(R2A2)∗.

(iv) Fundamental formula 2:

(19)
δ(Ψn ∗Ψm)ABCD(y|u)

= ((δΨn(·|Bu) ∗Ψm)ABCD + (Ψn ∗ δΨm(·|Du))ABCD)(y).

In our next theorem, we establish the fundamental formula with respect to
the MGIT and the MCP. Equation (20) is called the Fubini formula or the
Bearman formula.

Theorem 5.2. Let Si, Ri, A,B,C and D be elements of L for i = 1, 2, 3. Let
Ψn,Ψm ∈ S(Ca,b[0, T ]) be generalized exponential type functionals of the form
(6) and let u be an element of C ′a,b[0, T ]. Then

(20) FS1,T1(Ψn ∗Ψm)ABCD(y) = FS2,T2(Ψn)(y)FS3,T3(Ψm)(y)

if and only if the following conditions hold:

(a) B = D = I;
(b) M(A,S1;wn) = M(S2;wn) and M(C, S1;wm) = M(S3;wm);
(c) CA∗1S1S

∗
1 = 0.

Proof. First using Equations (3), (9) and (10), we obtain that
(21)
FS1,R1

(Ψn ∗Ψm)ABCD(y)

= M(A;wn)M(C;wm)

∫
Ca,b[0,T ]

exp

{
((BR1)∗wn + (DR1)∗wm, y)∼

+ ((BS1)∗wn + (DS1)∗wm, x)∼ + (CA∗1wn, wm)∼

+ ((A∗ − I)wn, a)∼ + ((C∗ − I)wn, a)∼
}
dµ(x)

= M(A,BS1;wn)M(C,DS1;wm)

× exp

{
((BR1)∗wn + (DR1)∗wm, y)∼ + ((CA∗ + (DS1)(BS1)∗)wn, wm)∼

}
.

On the other hand, using Equation (9) repeatedly, we have

(22)

FS2,T2
(Ψn)(y)FS3,T3

(Ψm)(y)

= M(S2, R2;wn)M(S3, R3;wm)ΨR∗2wn(y)ΨR∗3wm(y)

= M(S2;wn)M(S3;wm) exp{(R∗2wn +R∗3wm, y)∼}.
By comparing two Equations (21) and (22), the proof of Theorem 5.2 is com-
pleted as desired. �

From Theorem 3.2 thru 5.2, we gave some conditions for the operators to
establish various results and formulas. From now on, we shall omit these con-
ditions to avoid being expressed in complexity in the statements.
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We recall the basic property of the first variation. For exponential function-
als Ψn and Ψm, δ(ΨnΨm)(x|u) = δΨn(x|u)Ψm + ΨnδΨm(x|u). It looks like
that the derivative of the product for the exponential functionals. Using this
basic property with relationships which were obtained in Theorems 5.1 and 5.2,
we have the following theorem.

Theorem 5.3. Let Ψn,Ψm ∈ S(Ca,b[0, T ]) be generalized exponential type
functionals of the form (6) and let u be an element of C ′a,b[0, T ]. Then we have

(23)

δ(FS1,R1
(Ψn ∗Ψm)ABCD)(y|u)

= FS2,R2
((R2u, ·)∼Ψn(·))(y)FS3,R3

(Ψm)(y)

+ FS3,R3((R3u, ·)∼Ψm(·))(y)FS2,R2(Ψn)(y)

− ((R∗2R2u+R∗3R3u, y)∼ + (S∗2R2u+ S∗3R3u, a)∼)

×FS2,R2
(Ψn)(y)FS3,R3

(Ψm)(y).

Proof. Using Equation (20) together with the basic property with respect to
the first variation to FS2,R2

(Ψn)FS3,R3
(Ψm) instead of FG, we have

(24)

δ(FS1,R1
(Ψn ∗Ψm)ABCD)(y|u)

= δ(FS2,R2
(Ψn)FS3,R3

(Ψm))(y|u)

= δFS2,R2(Ψn)(y|u)FS3,R3(Ψm)(y) + FS2,R2(Ψn)(y)δFS3,R3(Ψm)(y|u).

Applying Equation (17) to the two terms in the last expression of Equation
(24), we have

δ(FS1,R1
(Ψn ∗Ψm)ABCD)(y|u)

= FS2,R2((R2u, ·)∼Ψn(·))(y)FS3,R3(Ψm)(y)

− ((R2u,R2y)∼ + (S∗2R2u, a)∼)FS2,R2
(Ψn)(y)FS3,R3

(Ψm)(y)

+ FS3,R3
((R3u, ·)∼Ψm(·))(y)FS2,R2

(Ψn)(y)

− ((R3u,R3y)∼ + (S∗3R3u, a)∼)FS2,R2
(Ψn)(y)FS3,R3

(Ψm)(y),

which yields Equation (23) as desired. �

In our next theorem, we give a relationship between the MGIT and the
MCP.

Theorem 5.4. Let Ψn,Ψm ∈ S(Ca,b[0, T ]) be generalized exponential type
functionals of the form (6) and let u be an element of C ′a,b[0, T ]. Then we have

(25)

FS1,R1
(δ(Ψn ∗Ψm)ABCD(·|u))(y)

= FS2,R2
((Bu, ·)∼Ψn(·))(y)FS3,R3

(Ψm)(y)

+ FS3,R3
((Du, ·)∼Ψm(·))(y)FS2,R2

(Ψn)(y)

− ((R∗2Bu+R∗3Du, y)∼ − (S∗2Bu+ S∗3Du, a)∼)

×FS2,R2(Ψn)(y)FS3,R3(Ψm)(y).
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Proof. In order to establish Theorem 5.4, we first use Equations (11) and (20).
Then we have
(26)
FS1,R1

(δ(Ψn ∗Ψm)ABCD(·|u))(y)

=FS1,R1
(((δΨn(·|Bu) ∗Ψm)ABCD+(Ψn ∗ δΨm(·|Du))ABCD))(y)

=FS1,R1
(((δΨn(·|Bu) ∗Ψm)ABCD)(y)+FS1,R1

(Ψn ∗ δΨm(·|Du))ABCD))(y)

=FS2,R2(δΨn(·|Bu))(y)FS3,R3(Ψm)(y)+FS2,R2(Ψn)(y)FS3,R3(δΨm(·|Du))(y).

We now apply Equation (17) to the two terms in the last expression of Equation
(26), we have

FS1,R1(δ(Ψn ∗Ψm)ABCD(·|u))(y)

= FS2,R2((Bu, ·)∼Ψn(·))(y)FS3,R3(Ψm)(y)

− ((Bu,R2y)∼ + (S∗2Bu, a)∼)FS2,R2
(Ψn)(y)FS3,R3

(Ψm)(y)

+ FS3,R3
((Du, ·)∼Ψm(·))(y)FS2,R2

(Ψn)(y)

− ((Du,R3y)∼ + (S∗3Du, a)∼)FS2,R2(Ψn)(y)FS3,R3(Ψm)(y),

which yields Equation (25) as desired. �

We finish this paper by stating a formula with respect to the Fubini theorem
involving the first variation.

Theorem 5.5. Let Ψn ∈ S(Ca,b[0, T ]) be a generalized exponential type func-
tional of the form (6) and let u be an element of C ′a,b[0, T ]. Then we have

(27)

FS1,R1
((FS2,R2

(δΨn)(·|R2R1u)))(y)

= FS3,R3((R2R1u, ·)∼Ψn(·))(y)

− ((R2R1u,R3y)∼ + (S∗R2R1u, a)∼)FS3,R3
(Ψn)(y).

Proof. Using Equation (11), we have

(28)

FS1,R1
((FS2,R2

(δΨn)(·|R2R1u)))(y)

= FS1,R1
(δ(FS2,R2

(Ψn))(·|R1u))(y)

= δ(FS1,R1(FS2,R2(Ψn)))(y|u).

Form Equations (11) and (20) again, we have

FS1,R1((FS2,R2(δΨn)(·|R2R1u)))(y)

= FS3,R3
(δΨn)(·|R2R1u))(y)

= FS3,R3
((R2R1u, ·)∼Ψn(·))(y)

− ((R2R1u,R3y)∼ + (S∗R2R1u, a)∼)FS3,R3
(Ψn)(y).

Hence we have the desired result. �

Remark 5.6. Form Theorems 3.3 thru 5.5 above, we obtained various relation-
ships via the Cameron-Storvick type Theorems 4.4 and 4.6. As mentioned in
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Section 1, by choice of operator, one can see that many formulas in previous
papers are the corollaries of the formulas in this paper.
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