DOI QR코드

DOI QR Code

INTEGRAL TRANSFORMS OF FUNCTIONALS ON A FUNCTION SPACE OF TWO VARIABLES

  • Kim, Bong Jin (Department of Mathematics Daejin University) ;
  • Kim, Byoung Soo (School of Liberal Arts Seoul National University of Technology) ;
  • Yoo, Il (Department of Mathematics Yonsei University)
  • Received : 2010.04.02
  • Accepted : 2010.06.01
  • Published : 2010.06.30

Abstract

We establish the various relationships among the integral transform ${\mathcal{F}}_{{\alpha},{\beta}}F$, the convolution product $(F*G)_{\alpha}$ and the first variation ${\delta}F$ for a class of functionals defined on K(Q), the space of complex-valued continuous functions on $Q=[0,S]{\times}[0,T]$ which satisfy x(s, 0) = x(0, t) = 0 for all $(s,t){\in}Q$. And also we obtain Parseval's and Plancherel's relations for the integral transform of some functionals defined on K(Q).

Keywords

References

  1. E. Berkson and T. A. Gillespie, Absolutely continuous functions of two variables and well-bounded operators, J. London Math. Soc. 30 (1984), 305-321. https://doi.org/10.1112/jlms/s2-30.2.305
  2. R. H. Cameron, The first variation of an indefinite Wiener integral, Proc. Amer. Math. Soc. 2 (1951), 914-924. https://doi.org/10.1090/S0002-9939-1951-0045937-X
  3. R. H. Cameron and W. T. Martin, Fourier-Wiener transforms of analytic functionals, Duke Math. J. 12 (1945), 489-507. https://doi.org/10.1215/S0012-7094-45-01244-0
  4. R. H. Cameron and D. A. Storvick, An $L_2$ analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), 1-30. https://doi.org/10.1307/mmj/1029001617
  5. R. H. Cameron and D. A. Storvick, Feynman integral of variations of functionals, Gaussian Random Fields (Nagoya, 1990), Ser. Probab. Statist. 1, World Sci. Publ. 1991, 144-157.
  6. K. S. Chang, B. S. Kim and I. Yoo, Integral transform and convolution of analytic functionals on abstract Wiener spaces, Numer. Funct. Anal. Optim. 21 (2000), 97-105. https://doi.org/10.1080/01630560008816942
  7. J. A. Clarkson and C. R. Adams, On definitions of bounded variation for functions of two variables, Trans. Amer. Math. Soc. 35 (1933), 824-854. https://doi.org/10.1090/S0002-9947-1933-1501718-2
  8. B. A. Fuks, Analytic functions of several complex variables, Amer. Math. Soc., Providence, Rhode Island, 1963.
  9. E. W. Hobson, The theory of functions of a real variable and the theory of Fourier's series, Vol. 1 (3rd ed.), Dover, New York, 1957.
  10. T. Huffman, C. Park and D. Skoug, Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc. 347 (1995), 661-673. https://doi.org/10.2307/2154908
  11. G. W. Johnson and D. L. Skoug, A stochastic integration formula for two- parameter Wiener$\times$two-parameter Wiener space, SIAM J. Math. Anal. 18 (1987), 919-932. https://doi.org/10.1137/0518070
  12. B. J. Kim, B. S. Kim and D. Skoug, Integral transforms, convolution products, and first variations, Internat. J. Math. Math. Sci. 2004 (2004), 579-598. https://doi.org/10.1155/S0161171204305260
  13. B. S. Kim and D. Skoug, Integral transforms of functionals in $L_2(C_0[0,T])$, Rocky Mountain J. Math. 33 (2003), 1379-1393. https://doi.org/10.1216/rmjm/1181075469
  14. J. G. Kim, J. W. Ko, C. Park and D. Skoug, Relationships among transforms, convolutions, and first variations, Internat. J. Math. Math. Sci. 22 (1999), 191-204. https://doi.org/10.1155/S0161171299221916
  15. Y. J. Lee, Integral transforms of analytic functions on abstract Wiener spaces, J. Funct. Anal. 47 (1982), 153-164. https://doi.org/10.1016/0022-1236(82)90103-3
  16. C. Park, D. Skoug and D. Storvick, Relationships among the first variation, the convolution product, and the Fourier-Feynman transform, Rocky Mountain J. Math. 28 (1998), 1447-1468. https://doi.org/10.1216/rmjm/1181071725
  17. D. Skoug and D. Storvick, A survey of results involving transforms and convolutions in function space, Rocky Mountain J. Math. 34 (2004), 1147-1176. https://doi.org/10.1216/rmjm/1181069848
  18. J. Yeh, Wiener measure in a space of functions of two variables, Trans. Amer. Math. Soc. 95 (1960), 433-450. https://doi.org/10.1090/S0002-9947-1960-0125433-1
  19. J. Yeh, Convolution in Fourier-Wiener transform, Pacific J. Math. 15 (1965), 731-738. https://doi.org/10.2140/pjm.1965.15.731
  20. J. Yeh, Stochastic processes and the Wiener integral, Marcel Dekker, New York, 1983.
  21. I. Yoo, Convolution and the Fourier-Wiener transform on abstract Wiener space, Rocky Mountain J. Math. 25 (1995), 1577-1587. https://doi.org/10.1216/rmjm/1181072163