KYUNGPOOK Math. J. 52(2012), 413-431
http://dx.doi.org/10.5666 /KMJ.2012.52.4.413

Conditional Integral Transforms on a Function Space

Donc Hyun CHO
Department of Mathematics, Kyonggi University, Suwon, 443-760, Korea
e-mail © j94385@kyonggi.ac.kr

ABSTRACT. Let C7[0,¢] be the function space of the vector-valued continuous paths
z : [0,t] - R” and define X; : C7[0,t] — R™*V" and v; : C"[0,t] — R™ by
Xi(z) = (z(to),z(t1), -, 2(tn-1), (tn)) and Yi(z) = (z(t0), z(t1), -+ , ©(tn—1)), respec-
tively, where 0 = to < t1 < --- < t, = t. In the present paper, using two simple formulas
for the conditional expectations over C"[0, ] with the conditioning functions X; and Yz, we
establish evaluation formulas for the analogue of the conditional analytic Fourier-Feynman
transform for the function of the form

exp{/ot 0(s,z(s)) dn(s)}w(m(t)), z € C"[0,1]

where 7 is a complex Borel measure on [0, ¢] and both 6(s, -) and ¢ are the Fourier-Stieltjes
transforms of the complex Borel measures on R".

1. Introduction and an analogue of the r-dimensional Wiener space

Let Cy[0,t] be the space of real-valued continuous functions x on [0,¢] with
xz(0) = 0. It is well known that the space Cy[0,¢] is equipped with the Wiener
measure which is a probability measure. On the space, Yeh [10, 11, 12] introduced
an inversion formula that a conditional expectation can be found by a Fourier-
transform. In [2], the author and his co-authors introduced a simple formula for
the conditional Wiener integrals over Co(B), the space of the abstract Wiener space
B-valued continuous functions which vanish at 0. Using the formula, they estab-
lished various evaluation formulas for the conditional analytic Wiener and Feynman
integrals of the functionals on Cy(B) in a certain Banach algebra which corresponds
to the Cameron and Storvick’s Banach algebra 8” [1]. In [3], the author evaluated
conditional analytic Fourier-Feynman transform for functional of the form
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where ¢ is a complex Borel measure on [0, ] and both 6(s,-) and ¢ are the Fourier-
Stieltjes transforms of the complex Borel measures on the real separable Hilbert
space embedded in B. Note that (s, ) and ¢ are defined on B, the abstract Wiener
space [8].

On the other hand, let C[0,t] denote the space of real-valued continuous func-
tions on the interval [0,¢]. Ryu and Im [6, 9] introduced a probability measure w,
on (C10,t], B(CI0,t])), where B(C|0,t]) denotes the Borel o-algebra on C[0,¢] and
© is a probability distribution on (R, B(R)). This measure space is a generaliza-
tion of the Wiener space Cy[0,t]. In the Wiener space, every path x starts at the
origin, that is, z(0) = 0. If the paths z start at any points, that is, if € C[0,¢],
certain properties on Cy[0, ] can not hold or some of them should be modified. For-
tunately, in [4, 5], the author could derive two simple formulas for the conditional
w,-integrals of the functions on C[0, t] with the vector-valued conditioning functions
X : C[0,8] = R and Y : C[0,t] — R™ given by X (z) = (z(to), z(t1), -+ ,x(ts))
and Y (z) = (z(to), z(t1), -+ ,x(tn-1)), where 0 = to <1 < -+ < tp_1 <t, =tis
a partition of [0,¢]. These formulas express the conditional w-integrals directly in
terms of the non-conditional w,-integrals.

Let C7[0,t] be the product space of C[0,t] and define X; : C"[0,t] — R"+D7
and Y; : C7[0,t] — R™ by Xi(x) = (x(to), x(t1), -+ ,2(tn-1), z(tn)) and Yi(x) =
(z(to),z(t1), -+, (tn—1)). In the present paper, with the conditioning functions
X; and Y;, we introduce two simple formulas for the conditional expectations over
C"[0,¢t], an r-dimensional analogue of Wiener space. We then establish evaluation
formulas for an analogue of the conditional analytic Fourier-Feynman transform for
the function of the form

ef [ 005,205 anto) bota(t). € oy

where 7 is a complex Borel measure on [0, ¢] and both 6(s, -) and ¢ are the Fourier-
Stieltjes transforms of the complex Borel measures on R”.

Throughout this paper, let C and C; denote the sets of complex numbers and
complex numbers with positive real parts, respectively.

Now, we introduce the probability measure w, on (C[0,t], B(C|0,t])).

For a positive real ¢, let C = C[0,t] be the space of all real-valued con-
tinuous functions on the closed interval [0,¢] with the supremum norm. For
t = (toyt1, ++ ,tn) With 0 = g < t1 < -+ < t, < ¢, let Jp: C[0,¢] = R"™! be

the function given by
J(w) = (x(to), x(t1), -+ x(tn))-

For Bj(j = 0,1,---,n) in B(R), the subset thl(H;-L:O Bj) of C[0,t] is called an
interval and let J be the set of all such intervals. For a probability measure ¢ on
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(R, B(R)), let

(o (f12) = [Mawtes] [

Jj=0 J=1

(t
exp{; Zn: (%W}d(uh g )do(ug).

tj—tj 1

Then B(C|0, t]) coincides with the smallest o-algebra generated by J and there exists
a unique probability measure w,, on (C[0,t], B(C|0,t])) such that w, (1) = m(I) for
all I in J. This measure w,, is called an analogue of the Wiener measure associated
with the probability measure ¢ [6, 9]. Let r be a positive integer and C" = C"[0, ¢]
be the product space of C0,¢] with the product measure wy,. Since C[0,1] is a
separable Banach space, we have B(C"[0,t]) = H;:1 B(CI0,t]). This probability
measure space (C"[0,t], B(C"[0,1]),w,) is called an analogue of the r-dimensional
Wiener space.

Lemma 1.1([6, Lemma 2.1]). If f : R**! — C is a Borel measurable function,
then we have

/ Fa(to), w(tr), -+, 2(tn))dw,(2)
B [H 2m(t; —tj—1) } / Rnf Ug, UL, " 5 U exp{ 52 utj —Zj 1 }

j=1
d(u17 T n)dSO(UO)

where = means that if either side exists, then both sides exist and they are equal.

Definition 1.2. Let F': C"[0,t] — C be w,-integrable and let Z be a random vector
on C7[0,t] assuming that the value space of Z is a normed space with the Borel
o-algebra. Then we have the conditional expectation E[F|Z] of F given Z from a
well known probability theory. Further, there exists a Pz-integrable complex-valued
function = on the value space of Z such that E[F|Z](z) = (E 0 Z)(x) for wi-a.e.
x € C"[0,t], where Py is the probability distribution of Z. The function = is called

the conditional w(-integral of I’ given Z and it is also denoted by E[F|Z].

2. The simple formulas for conditional w -integrals

Let 0 =tg < t; < -+ < tp—1 < t, =t be a partition of [0,t]. For any z in
C"[0,¢t], define the polygonal function [x] of 2 on [0,¢] by

(2.1 me g (“"”x(tj_l) n Wx(t») oy (8)2(0)

t —tj 1 tj_tjfl
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for s € [0,t], where x(;,_, +,] and x {0} denote the indicator functions of (¢;_1,¢;] and
{0}, respectively. For &= (C0, &1, Enmt, £€,) € RHDT e define the polygonal
function [£,] of &, as (2.1) replacing x(tj) by & for 5 =0,1,--- ,n.

Now, we introduce a lemma which is useful to prove several theorems. The
proof follows immediately from Corollary 2.5 in [4].

Lemma 2.1. The processes {z(s) — [z](s) : tj—1 < s < t;} on C7[0,t], for j =
1,--- ,n, are stochastically independent.

In the following two theorems, we introduce two simple formulas for the condi-

tional w(,-integrals on C” [0,t]. Their proofs follow immediately from Theorem 2.9

in [4] and Theorem 2.5 in [5].

Theorem 2.2. Let F': C"[0,t] — C be wi,-integrable and X, : C"[0,t] — R(+1)r
be given by

(2.2) Xi(z) = (z(to),z(t1), -+, 2(tn-1),(tn))
for z € C"[0,t]. Then we have for Px,-a.e. 5n e R(»+Dr
(2.3) E[F|X))(&) = E[F(z — [2] + [£&.])],

where Py, is the probability distribution of X; on (RHDT B(RM+)),
Theorem 2.3. Let F': C"[0,t] — C be w],-integrable and Y; : C"[0,t] — R be
given by

(24) K(x) = (x(t0)7x<t1)7"' 7x(tn71))

for x € C"[0,t]. Then we have for Py,-a.e. En1 = (€0, &1, 1 En_1) ERPT

. 5 )
] [ BB ED)

X exp{—”gn —&noalE }dfn

2(t —tp-1)

(2.5) E[F|Y}](£n—1)

where Py, is the probability distribution of Y; on (R™, B(R™)) and [£,] denotes the
polygonal function of (£0,&1, ,&n—1,&n) € R+

For a function F : C7[0,f] — C and A > 0, let F(z) = F(A\~2z), X}\(z) =
X;(A"2z) and Y (z) = Y;(A\"2z), where X; and Y; are given by (2.2) and (2.4),
respectively. Suppose that E[F?] exists for each A > 0. By the definition of the
conditional w{,-integral and (2.3), we have

BIFMXN(&) = BIF(A"%(z — [z]) + [6.))]
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for Pyx-a.e. E,L € RHD7 swhere Py is the probability distribution of X} on the
Borel class of R("*17. Throughout this paper, for y € C"[0,] let

I}y, &) = E[F(y + A" (z — [2]) + [€.))]

unless otherwise specified, where the expectation is taken over the variable x. More-
over, under the notations used in Theorem 2.3, we have by (2.5)

B[FMY(€n-1)
A )r/TIQ(O,gn)eXP{_/\M}dE”

2. = |——
( 6) |:27T(t—tn1 2 t—tn,1

for Pya-a.e. fn,l € R™, where Py is the probability distribution of Y on the
Borel class of R"". From now on, for y € C"[0,t] let K (y, €,-1) be given by (2.6)
replacing 0 by y.

If I;\;(O,gn) has the analytic extension J;(F)(gn) on C, as a function of A,
then it is called the conditional analytic Wiener w -integral of F' given X; with the
parameter \ and denoted by

BN F|X,)(6) = JE(F)(E)

for £, € R+Dr . Moreover, if for a nonzero real g, E“">[F| X,](&,) has the limit as
A approaches to —iq through C,, then it is called the conditional analytic Feynman
w-integral of F' given X; with the parameter ¢ and denoted by

EaF|X)(E,) = lim E“A[F|X,])(E).

A——1iq

Similarly, the definitions of E>[F|Y;](&,—1) and E“fa[F|Y;](€,_1) are under-
stood with K2 (0,&,-1).

3. Time-dependent conditional Fourier-Feynman transform

For a given extended real number p with 1 < p < oo, suppose that p and p’
are related by % + i = 1(possibly p’ = 1 if p = 00). Let F,, and F be measurable
functions such that for p > 0

lim |Fn(py) — Fpy)|? dwl(y) = 0.

n—oo [or
Then we write

Lim.(w”)(F,) ~ F

n— oo

and call F' the limit in the mean of order p’. A similar definition is understood
when n is replaced by a continuously varying parameter.
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Now, we define an analytic conditional Fourier-Feynman transform of the func-
tions on C"[0, t].

Definition 3.1. Let F be defined on C"[0,¢] and let X; be given by (2.2). For
A € C; and for wi-a.e. y € C7[0,1], let

TA[FIX(y, &) = B*" [F(y + )| Xi] (€n)

for Px,-a.e. f_;L € R™*! if it exists. For a non-zero real ¢ and for wi-a.e. y € CT[0, 1],

we define the L; analytic conditional Fourier-Feynman transform Tq(l)[F|Xt] of F
by the formula

TVFIXd) (v, &) = B* 1 [F(y + )X (E)

for Px,-a.e. En € R if it exists. For 1 < p < oo we define the L, analytic
conditional Fourier-Feynman transform Tq(p ) [F|X¢] of F by the formula
TPIFIX(,6) = Lim, (P ) (T FIX( €)
for Px,-a.c. &, € R"*! where A approaches to —iq through C,.
Similar definitions are understood with Kj}(y, En_l) if we replace X; by Y; which
is given by (2.4).

Let n be a complex valued Borel measure on [0,¢]. Then n = u + v can be
decomposed uniquely into the sum of a continuous measure i and a discrete measure
v. Further, let §,, ; denote the Dirac measure with total mass 1 concentrated at

Dij-
Let M(R") be the class of all complex Borel measures on R” and G* be the set
of all C-valued functions # on [0,00) x R” which have the form

(3.1) 0o, ) = | explia,1)}don(9)
where (-, ) denotes the dot product on R” and {os : s € [0,00)} is the family from
M(R") satisfying the following conditions;

(i) for each Borel subset E of R", 04(FE) is a Borel measurable function of s on
[0,2],

(i) [losll € L1([0, 2}, B([0, ]), In])-
Now we have the following theorem.

Theorem 3.2. Let X; be given by (2.2) and let = p+37_) Y351, wi,j0p, ;, where
wy; € C for all (l,j) and 0 =ty < P11 < pro < <Py <ty <p<-o- <
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Doy <tz < - <tp1 <Ppi < < Pnp, <tn =1t Further, let k be a positive
integer and let

(3:2) Fe() = [ / t e(sw(s»dn(s)} " oraecro,

where § € G* is given by (3.1). Then for X € C4, y € C"[0,t] and & =
(0,61, , &) € ROEDT T\[FL| X4 (y, E,) exists and it is given by

TX[Fk:‘Xt](yagn) = k! Z HA(la)‘vyvgl—hglaql)

Qi+ +an=k =1

where
ANy, &1, 8 @)

mi,j
Wy 5
_ > (H = D S | DLy,
—g \jp U _ Gowe g JRUT
myotmi 1t tmy ey =q Nj=1 Jo+git-+ir =m0 Dy gido i
T ]/3+1
> Y A
t—1
B=u+1 v=1 ! =
]u+1 v—1 u—17+1

s, 7 ti—1— Stuqy ti—1— s
le57+z tl_tlU’Y ’7+Z t—ti_1 — 7“7+ZZ t—ti_1 .

y=v = B=0 y=1

T Ju
} (H Hgsl uw X HUZZZ“) vl,ﬁl)d Lo ()

u=0v=1

. Jutl

glflvglvvlahlasl eXP{_Z Z Sl,u,v Sl,u,vfl)

u=0 v=1

XULB .y

with the conventions those S;00 = ti—1, Slu0 = Plu = Slu—1l,ju_1+1 JOT
u o= 1.1, Strijm+1 = ti, 81 = (81,015 5 81,0,jos """ » Sty 1y asl,rl,j”);
Ay oigorir, = 181 tim1 < s100 < o < S0, < P < s < e < Siyy <
P2 < o < Py < Sip1 <o < S, < t}, U= (T, U1,0,50, Ui,1,15

s UL, 505 0 5 ULr, 1yt Ulrl,jrl) vlT[,Jrl+1 = 0 € RT; hl = (hl,l,la"'a
N - - L= mi
hl,1,7nl,17hl,2,17 R hl,2,ml,27 o hl il hl,n,ml,rl)a Vlu—1,5u_14+1 = 21,:1 hl,u,v
Joru=1,---,r,

(33) D<lay7£l—1,€l7ﬁl7ﬁl;§l)

. Jutl
_ tl — Slu,w Slu,w — tl,1 -
= exp E E Y(81,u,0) 7]5 — §1—1+ T— &LV ) ¢
wu—0 v—1 l -1 l -1
]B+1 ti—51,8,~ v—1 t;—1—81 u,
Zﬂ u+12 tl_tllvlﬁ’Y*Oqu*rlyz tl_tll‘ylu'y*Ovafland
]15+1 tz 1—81,8.~ _ _
E E 1 o, g = 0 if u=0.
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Proof. For A > 0, y € C"[0,#] and &, = (&,&1,- - ,&n) € ROFDT we have by
Lemma 2.1 and the binomial expansion

I (4. 6)

> qn' H/[ | 00 y(s) + A7H () = [e)(9)) + [El()

Qi+ +qn —k

au() + 3 w0005 9(p1s) + A o) — [al(p) + [Enkpl,j))] dut (2).

j=1

Using the simplex method [7] and the Fubini’s theorem we have by (3.1)

I3 (v, &)

-0 Y I Y (I

@b =k I=1 miotmi - my, =aq Nj=1

A / [/m exp{ 53 o) + A0 -

mlyj
Wi, ) 3
ml,j!

Jot+ii+-+ir=mio

my,0330 u=0v=1
T Ju
[x](sl,u,v)) + [gn](sl,u v Ul U, v } (H H Osiu, v) U ] |:/R("Lz,1+“'+7”l,rl)"
u=0v=1

exp{ Z zf Sl U, 0 + A7 ( (817%0) - [x](sl,u,O)) =+ [gn](sl,u,O)a Hl,u,v)}

u=1 v=1
(Ho;??’:) | dut @)

where 57, 171, hl and A, 030, jr, ATE glven by the assumptions, and s;,,0 = P14
foru = 1,---,r. Forw = 1,---,r, let Slu—1,ju_141 = SLu,00 UVlu—1,ju_141 =
Zv 1 hl vy Sl +1 = s $1,0,0 = ti—1 and Uiy jr+1 =0 € R". Then we have

I (4. 6)

e Y 11y (%) %

Qi+t an=k I=1 my o+mia+otme e =a =1 9 ot jid e =muo

r; Jutl
Lo 1
/ D(layyfz—l,&,vz,hz,sz)/ eXP{M 2y )
Aml.,O?J'O"“vJ'TL Rar cr u=0 v=1
ty — Siu, ti—1 — Siu,
(= o) = )+ P52 o) — (o1
tl - tl,1 tl - tlfl

T u
oYzt o FL o o

u=0v=1
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where D(l,y,fl_l,fl,@'l,ﬁl,é) is given by (3.3). Let

r1 Jutl

1 3
S(l) = |:ul;[0 1}1;[1 271'(81)“71; - Sl,u,v—l):|

and for [ = 2,--- ,n let

1 T Jutl 1 %
S(l) = .
( ) |:27Ttl1 ul;[() ,;]l;[l 27T(5l,u,v - sl,u,ul):|

Let m(1) = myo+r1+1and m(l) =myo+mr+2if I =2,--- ,n. Then we have by
an application of Lemma 1.1

Ilék (Y, gn)

e Y Y (I%) %

QA =k I=1 my o tmy it tm =g =1 03 ot gt e, =ma
T ju"!‘l
> 7 = 1
/ Dty s Fus)sa) [ exp{m 533
Aml,o;jo«'“ 2drg Ra™ T JRmOr u=0 v=1
Tl
i — Stuw, > - ti—1 = Stuw , = - . 1
L (Cl,u,v - CI,0,0) + = (Cl,'r‘l,jr +1 — Cl,u,v)a Viuw ) — 3 Z
ty— 11 by —t—1 ! 2=
Jutl | 2 = 2 g = 2 T Ju
G0 = Quw—1llzr €100 = Croollgr | = >
Z u,v u,v R™ R dCZd‘PT(Cl,O,O)d H H Tt
= Stuw ~ SLue—1 241 + 0 et
T
mi,u - 7 mio (g
31 G CAATIRRES
u=1
where Clu—1,ju_1+1 = Clu,0 foru=1,---,7 and (; = (C1,0,1,"' ,C1,0,j0+1, C1,1,1,
1 Gl Gl +1) 5 G0 = (€,0,05 6,015 5 CL0Go+15 Gl Ty T
Cl,l,jl-i-la T 7<l,7‘z,17' e 7<l,7‘z,jrl+1) ifl =2,---,n. Let m,u,v = Cl,u,v - Cl,u,v—l for

u = 0’17... STV = 17 7]u+1 and ﬁl,0,0 — 6, 7’_’}’0’0 — &’0’0—5’170’0 lfl — 27 R
Then we have by the change of variable theorem

I (y,6)

-0 Yy Iy (%) v

Qi an=k =1 myotmia o Am g =a =1 9 ottt g =muo

. . Jutl
/A o exp{z)\ 2 Z Z

u=0 v=1

D(lay»glflaglvglaﬁlagl)s(l)/

. ] qr
™y 03J0s s dry R R
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— u—1J8+1 t, s, Jut1
] .
(i (S i s )+ 5 (8 s

B=0 =1 y=v+1
rg Jptl . Jutl o 9 S 2
i ) i > 1 |Tuolle- 00l }
Beut1 y=1 u—0 vl Slu,w — Sliu,v—1 261+ 0n
dﬂd mlu ]j): d myo(z
m Osiu,0 X Opy,0 0, l) 1% ( l)
u=0v=1
where 771 - (ﬁ1,0,17"' 7ﬁ1,0,j0+17 ﬁ1,1,17 R nl,l,j1+17 o 7771 1,107 ﬁl,’rl,jrlJrl)v
m= (77l,0,0a771,0 17 M0, Go+1s 1,1, 70 nl,l,j1+la"' 7771 NS EIR nl,rl,jrfl»l) ifl e
jg+1 o =, _ Ju+1 — . .
{2, n}, 4o ny L gy = 00w =0, Y2000 Ty = 0if v = j, 4+ 1 and

—

> op— u+1zj—1 s~ =0 if u = 7. Now we have
It (y.n)

-0 Y 1oy () %

Q1+ gn=kl=1myo+mi1+-+my = j=1 Ly Jo+Jjit-Fir,=mi0

A

Ty Jutl
D(l,y,&_l,fl,m,hl,sﬁ)S(D/ . exp{z'xzz Z<
R?n T u:O ’U:l

ma.id0s iy JRUT
! Jﬁ+1 s Ju +1 1t s
lﬂ'y_. lu,’y—» Y-1 7 Slhuy
L D Z Lt Y Y
v, -t K tr—tig tr—t-1
B=u+1 v=1 T=v r=1
u—1Jjg+1 " s . Jutl
-1~ 51,8y ~
a4 3 30 PG ) < g 3y AT
B=0 v—1 l -1 w=0 v—1 lLau,v lLau,v—1
||77100||]R7 d \d T My E d mio (3,
% 146 HH%MXH%U ) (51)
-1+ 0n st et

- Z HA(L&%&-M&&I)

G+t an=Fk =1

where the last equality follows from the well known integration formula

(3.4) /Rexp{—au2 +ibu}du = (D z eXp{—ZZ}

for a € C, and any real b. By the Morera’s theorem, the theorem follows. O

Corollary 3.3. Under the assumptions given as in Theorem 3.2, with one exception
1 = p, that is, assuming that n has no discrete part, we have for A € C4, y € C"[0, ]
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and &, € R(++1r

DF X, 6) =k > [[4AA g a)

q1+-+gn=Fkl=1

where
1 q+1
/ / exp{ 5 o) + Eal(sta). ) — = 3 (st — st
Ra™ 2
‘IL u=1 u=1
li—s1,8 ti—1 — 51,8 2 -
U1 g + U d os, ., | (U1)dpt (5
szmﬁE;HHﬁng%ym<>
with the conventions those sj0 = ti—1, Siq+1 = ti, & = (S11,812," ", SLa)s
{gl : tl 1 < 81,1 < 51,2 < e < Slq < tl} IUl = (17l1a77l27"‘;17l,qz)7

hesis o =0 ifu=q+1 and UIMUZ =0ifu=1.
ﬁu B B

ti—t—1 ti—ti—1

Corollary 3.4. Under the assumptions given as in Theorem 3.2 with one exception
n=>,, Z;’:l wy,j0p, ,, that is, assuming that n has no continuous part, we have

for \e Cp, y € C[0,t] and &, € R(TDT

T)\[Fk|Xf](yvgn) = k! Z HAV(la Avyag;wa)

q1+-+gn=Fkl=1

where
AV(Z7)‘7y7€naql)
Tl wml,j ry My
1,j -
= Z (H mjl|>/ exp{ ZZ plu gn}(plu) hluv>
my it tme e, =q Nj=1 Ly Rarr u=1 v=1
1 ri+1 ry ™Miy,g —p u—1m;,g t P 2
1, -1 I,
SUPEINT] ) 9) S E URARD 9) o e s
2)\ tr—ti—1 R"
B=u y=1 B=1~vy=1
} <H JZT;YLLZ'““)
with the conventions those p1o = ti—1, Pir+1 = t1, hy = (El 115" El,l,ml 1 ﬁl 2,15

7 7 r mis ti—pLB _
> hl,Q,ml ! RUR ER hl,Tumz,rl) Z E’y— ti—t,— lhl By — ] ifu=mr+1
t =
andz 2"”571 ! p’ﬁhl,g,W:O ifu=1.

ti—ti—1

Theorem 3.5. Let 1 < p < oo and q be a nonzero real number. Then, under the
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assumptions given as in Theorem 3.2, Tq(p) [Fk|Xt](y,gn) exists for y € C[0,t] and
gn = (507517 e 7§n) S R(n—l—l)r, and it is given by

35 TOERXI@E) =k Y [[AG-igv418a)

q1++gn=k =1

where A is given as in Theorem 3.2.

Proof. For 1 < p < oo let Tq(p) [Fr| Xt](y, &) be given by the right hand side of (3.5).
If A € Ct or A = —iq, we have by the simplex method and the binomial expansion

k! Z HA(Z7)\,y7§l—17flan)

Q1+ an=k I=1

v TS [ ]

arttgn=k =1 "m0+ me 4 me e =q

" ﬁ (lwejlllop, , )™
ml7j!

Jj=1

vy I L o] = [ [ 1o }

i+ tqu=kl= 1

IA

so that for A € C we have

- - t k
TFI X 0,E) — T [F X (9,60 < 2[ / ||as|d|n|<s>} .

Hencewhenl<p§oo,for%+1%:1andp>0,wehave

L TR0 &) = TP Xl . £ )

[ 1] T avs =2 [ ttain] " <o

Letting A — —iq through C,, we have the result by the dominated convergence
theorem. 0

Theorem 3.6. For z € C"[0,t] let

(36) Fo) = e [ t 0. (5))in(s)}.

Then under the assumptions given as in Theorem 3.5, Tq(p) [F|Xt](y,§n) exists for
y € C"[0,t] and &, € R and it is given by

(3.7) PIFIX . 6) 71+Z T X (v, 60)
k=1
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where Tq(p) [F| X](y, &) is given as in Theorem 3.5,

Proof. By the Maclaurin series of the exponential function, we have
=1
Flo)=1+)Y_ k(@)
k=1

and for A € C; or A = —iq, y € C"[0,t] and & = (€0,€1,- -, &n) € ROFDT we have

oo

1
1“1‘2@

k=1

k! Z HA(17>\,?/7§1—1,&,Q1)

Qg =k =1

< eglf o] =eso] [ oulidnlc

where A is given as in Theorems 3.2 and 3.5. Hence we have for A € C

(33) TFIX) () = 1+ 3 S TR0, 6)
k=1""

since the convergence of (3.8) is uniform with respect to both A and y. For 1 < p <

oo let Tq(p) [F|X{](y, &) be given by the right hand side of (3.7). For A € C we
have

ITAFI X (9, &) = TEP[F1 X3 (9, €n)] < Qexp{/o ||0s||d|77|($)}

and hence when 1 < p < o0, for%—k}% =1 and p > 0, we have

P00 €)= T I )P (1)

< [ o] [ inano)] avzo =2 ol [ tetanic} < .

Letting A — —iq through C,, we have the result by the dominated convergence
theorem. a

For v € M(R") define ¢ on R" by
(39) w(d) = [ expi(a )av(o)
Br
Then we have for &, = (£0,&1, -+ &) € ROTD™ and X > 0

(3.10) D(y(t) + A2 (2() = [2](1) + [E)(1) = b (y(t) + &)
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and

(3.11) [Py () + &)l < vl
By (3.10), (3.11), Theorems 3.2, 3.5 and 3.6, we have the following theorem.
Theorem 3.7. Let Gy and G be given by
Gi(z) = Fi(2)y(x(t))
and
(3.12) G(x) = F(x)y(x(t))

forx € C"[0,t], where Fy, F and ¢ are given by (3.2), (3.6) and (3.9), respectively.
Then, under the assumptions and notations given as in Theorems 3.2, 3.5 and 5.0,
we have for y € C"[0,t], nonzero real q and &, = (&9, €1, -+ , &) € ROVEDT

TP (Gl X (y,6n) = $(y() + E)TP (B Xe) (9. &)

and
TWGIXi(y, &) = ©yt) +E&)T, (p)[FlXt](y &)
= t) +&n) Z PG| X (y, &n)-
k=1
Remark 3.8.

e If Iy, Gk, F and G are defined on r-dimensional Wiener space, then we can
obtain the same results in Theorems 3.2, 3.5, 3.6 and 3.7 with {, = 0 € R”
in the expression of &,.

o If some of the p; ;s are in the set {to,¢1,--- ,t,}, we can obtain all the results
in the present section with minor modifications.

e Ifnp=p+>,,>", wy,j0p, ; and some of the rs are oo, then, using the
following version of the No- nomlal formula [7, p.41]

oo

(313) (i bp)n _ Z Z nilbqobm . .b%h7
p=0

h=0 qo+q1+---+qrn=n,qn 70 Go'at - gn!

we can show that TS [G|X;](y, &,) exists in Theorem 3.7.

4. Time-independent conditional Fourier-Feynman transform

In the present section we evaluate the conditional analytic Fourier-Feynman
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transform of G given Y;, where Y; and G are given by (2.4) and (3.12), respectively.
For the purpose we need the following lemma.

Lemma 4.1. For A\ >0, 7 € R", y € C"[0,t] and &,—1 € R" let

L A : Lo
\I/(na)‘7ya€n—1vvvvnahn’3n) = |:277(tt1):| D(n7y7§n—17£nvvnahna3n)
—t Rr
A n - Sn— 2r
ceplifen, ) - 1= Sl g,

where ¥, i_in, Sy and D(n,y,fn_l,fn,ﬁn,ﬁn,gn) are given as in Theorem 3.2 with
{ =n. Then we have

(41) \Il(nvA7y7§n71717» ﬁnvﬁnagn)

rn Jutl
= exp{ gn 1,V +Z§ § Snuu +§n 1avnuv>

u=0 v=1
2
RT}

rn Jutl
Proof. For A\ > 0, we have by the change of variable theorem and (3.4)

EDIDY Snfft_n R T

u=0 v=1

N
RN -
\Ij(nﬂ Aa Y, fn—la U, Un, hnv STL)
r
2

A rn Jutl s —tp—1
= |:27T(ttn1):| /]R eXp{ Z Z< Snuv +£n 1+ ,tftnfl (gn

u=0 v=1

—€n1>ﬂn,u,v> +i(en1, B) +i{En — Enr, B) — A||€nfnlihv}d‘5n

2 t—th_1
Trn Jutl Tn
= exp{ gn 1,V +ZZZ Snuv +£n 17Unuv>_ +Z

u=0 v=1

Jutl 2

Z Sn,uv T th—1 7 }
n,u,v

=1 t— tn,1 R"

which completes the proof. O

Theorem 4.2. Let the assumptions and notations be given as in Theorem 35.2.
Suppose that Yy is given by (2.4). Then for A € C4, y € C"[0,t] and {1 =
(0,81, ,&n—1) € R™, Th\[Fy|Yi](y, &n—1) exists and it is given by

n—1
TA[FkD/t](y7En—l) = k! Z |:H A(l))‘ayagl—hflvql) B(na)‘vyao'agn—hqn)

qittgn=k Cl=1
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where for v € R", B(n,\,y,¥,&n—1,qn) 1s given by the expression of A(n, A\, y,&n—1,
ns qn) replacing D(n,y,&n—1,&n, Uns Pn, 50) by W(n, N\, y, &1, U, U, By, 8n) which is
given by (4.1).

Proof. For &1 = (€01, &n-1) € R, Jet (§u-1,&n) = (b0, 1€n-1,6n) €
R™+D7 where &, € R”. Then for A > 0 and y € C"[0, ] we have by Theorem 3.2

A 3 o A, e
:| / I]{;k(ya (gnlagn))exp{_m}dgn
R"

|:27T(t—tn_1) 2(t—tn_1)

- k![%(t—)\tnq)r/r{ Z ﬁA(laAay,flhfl,(ﬂ)}

Gt tan=Fk =1

X GXP{AHEn - En—luﬂir }dgn

K} (y,6) =

Q(t - tnfl)
n—1 )\ %
= k! Z |:H A(L>h%§l1»§la‘]l)i| |:27T(t_t):|
qi+-+gn=k -l=1 1
MEn = Enetll2e
X /7‘A(n’)\7y7§n—17£n7qn) eXP{M}dfn

n—1
= k! Z |:H A(lvA,yvfllvglvql):| B(na)‘a:%(_)’,gnfl;qn)

g tan=k "1=1

where the last equality follows from Lemma 4.1. Now, by the Morera’s theorem, we
have the theorem. O

For A € C, it is easy to prove

—

(4.2) [W (1, Ay Yy En—1, U, Uny i, 8)| <1
where W is given by (4.1). Applying the same method used in the proof of Theorems
3.5, 3.6 with (4.2), we can prove the following theorem.

Theorem 4.3. Let the assumptions and notations be given as in Theorems 3.2,
3.5, 8.6 and 4.2. Furthermore, let ¢ be a nonzero real number and 1 < p < oo.

Then fOT’ Yy e CT[Oat] and gnfl = (507517 T 767171) € ]Rn'r’ Tq(p) [Fk|th}(yvgn71) and
Tq(p) [F|Y:|(y,&n—1) exist and they are given by

n—1
Tq(p)[Fk‘}/;](y7gn*1) = K Z |:H A(l7_iQ7y7€l71u€l>qZ)

Q1+ aa=k LI=1
XB(na _an Y, 67 51’7/717 qn)

and

TRy, 6umr) = 1+ > =T [FEJYi] (g, Enrr).

k!
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Theorem 4.4. Under the assumptions and notations given as in Theorems 3.2,
3.7, 4.2 and 4.3, we have for y € C"[0,t] and &,—1 = (&9,&1,+ -+ ,€n—1) € R™

n—1
H Al —iq,y, &1, &, q)

=1

TGy, emr) = B Y [

a1+t gn=k

< [ B =00, 760,00 exp (0, D))

and

TG (y.60 1) = ‘/

‘ R B
exp{z(y(t) +&n_1,7) + 5 ! ||v||f§7}d1/(v)

oo 1 .
+ Y ST GV (5 €.

k=1
P’I’OOf. For gn—l = (507517' o 76%—1) € Rnra let (él—hfn) = (60)517' T agn—lagn) €
RMH+D7 where &, € R". Then for A > 0 we have by Theorem 3.7

Kék (yygn—l)

= [mate) L Eo oo -5 e
T SR )| EE SR | S, R
ot ST it

>\ n - Sn— 2r Jan
X /T A(nv)‘vyagnflvfnatbl) exp{i(fn,17> - M}dfndy(v)

Now by Theorem 3.2 and Lemma 4.1 we have

A
) LAt

>\ n - Sn— 2'r' —
x exp{z'<fn,ﬂ> - M}d& = B\ 5, 7, En 1, )

[k
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where B(n, \,y,7,&—1,¢n) is given as in Theorem 4.2. We also have by (3.4)

[S]

M€ — Enet]2r
B @(y(t) + fn) exp{_HfflllR}dgn

|:27T(t)\tn—1):| 2(t = tn-1)

[V

_ [Qﬂ(tjtn_l)] /Texp{i<y(t)+fn175>}/D§T6Xp{i<fn—fnlﬂ7>

All&n — En—1ll§- .
—m }dfndV(U)

t—tn 1

= [ ew{ituo)+ 0. - SRR fav(o),

By the Morera’s theorem and the dominated convergence theorem, we have the
theorem. O

Remark 4.5.

o If Fy, Gy, F and G are defined on r-dimensional Wiener space, then we can
obtain the same results in Theorems 4.2, 4,3 and 4.4 with {; = 0 € R" in the
expression of &, 1.

e lfn=porn=>7,, Z;L:1 wy,j0p, ,, We can obtain more simple expressions
in Theorems 4.2, 4.3 and 4.4.

o If some of the p; ;s are in the set {to,¢1,--- ,tn}, we can obtain all the results
in the present section with minor modifications.

o lfn=p+>, Z:l:1 wy,j0p, , and some of the 7;s are oo, then, using (3.13),
we can show that Tq(p) [G|Y:](y,&n—1) exists in Theorem 4.4.
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