• Title/Summary/Keyword: Function space integral

Search Result 177, Processing Time 0.019 seconds

A Study on Integral Equalities Related to a Laplace Transformable Function and its Applications

  • Kwon, Byung-Moon;Ryu, Hee-Seob;Kwon, Oh-Kyu
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.76-82
    • /
    • 2003
  • This paper establishes some integral equalities formulated by zeros located in the convergence region of a Laplace transformable function. Using the definition of the Laplace transform, it shows that Laplace transformable functions have to satisfy the integral equalities in the time-domain, which can be applied to the understanding of the fundamental limitations on the control system represented by the transfer function. In the unity-feedback control scheme, another integral equality is derived on the output response of the system with open-loop poles located in the convergence region of the output function. From these integral equalities, two sufficient conditions related to undershoot and overshoot phenomena in the step response, respectively, are investigated.

CONDITIONAL GENERALIZED FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT ON A BANACH ALGEBRA

  • Chang, Seung-Jun;Choi, Jae-Gil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.73-93
    • /
    • 2004
  • In [10], Chang and Skoug used a generalized Brownian motion process to define a generalized analytic Feynman integral and a generalized analytic Fourier-Feynman transform. In this paper we define the conditional generalized Fourier-Feynman transform and conditional generalized convolution product on function space. We then establish some relationships between the conditional generalized Fourier-Feynman transform and conditional generalized convolution product for functionals on function space that belonging to a Banach algebra.

A GENERALIZED SIMPLE FORMULA FOR EVALUATING RADON-NIKODYM DERIVATIVES OVER PATHS

  • Cho, Dong Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.609-631
    • /
    • 2021
  • Let C[0, T] denote a generalized analogue of Wiener space, the space of real-valued continuous functions on the interval [0, T]. Define $Z_{\vec{e},n}$ : C[0, T] → ℝn+1 by $$Z_{\vec{e},n}(x)=\(x(0),\;{\int}_0^T\;e_1(t)dx(t),{\cdots},\;{\int}_0^T\;e_n(t)dx(t)\)$$, where e1,…, en are of bounded variations on [0, T]. In this paper we derive a simple evaluation formula for Radon-Nikodym derivatives similar to the conditional expectations of functions on C[0, T] with the conditioning function $Z_{\vec{e},n}$ which has an initial weight and a kind of drift. As applications of the formula, we evaluate the Radon-Nikodym derivatives of various functions on C[0, T] which are of interested in Feynman integration theory and quantum mechanics. This work generalizes and simplifies the existing results, that is, the simple formulas with the conditioning functions related to the partitions of time interval [0, T].

INTEGRAL TRANSFORMS AND INVERSE INTEGRAL TRANSFORMS WITH RELATED TOPICS ON FUNCTION SPACE I

  • Chang, Seung-Jun;Chung, Hyun-Soo
    • The Pure and Applied Mathematics
    • /
    • v.16 no.4
    • /
    • pp.369-382
    • /
    • 2009
  • In this paper we establish various relationships among the generalized integral transform, the generalized convolution product and the first variation for functionals in a Banach algebra S($L_{a,b}^2$[0, T]) introduced by Chang and Skoug in [14]. We then derive an inverse integral transform and obtain several relationships involving inverse integral transforms.

  • PDF

A FUBINI THEOREM FOR GENERALIZED ANALYTIC FEYNMAN INTEGRALS AND FOURIER-FEYNMAN TRANSFORMS ON FUNCTION SPACE

  • Chang, Seung-Jun;Lee, Il-Yong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.3
    • /
    • pp.437-456
    • /
    • 2003
  • In this paper we use a generalized Brownian motion process to define a generalized analytic Feynman integral. We then establish a Fubini theorem for the function space integral and generalized analytic Feynman integral of a functional F belonging to Banach algebra $S(L^2_{a,b}[0,T])$ and we proceed to obtain several integration formulas. Finally, we use this Fubini theorem to obtain several Feynman integration formulas involving analytic generalized Fourier-Feynman transforms. These results subsume similar known results obtained by Huffman, Skoug and Storvick for the standard Wiener process.

ANALYTIC OPERATOR-VALUED GENERALIZED FEYNMAN INTEGRALS ON FUNCTION SPACE

  • Chang, Seung Jun;Lee, Il Yong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.1
    • /
    • pp.37-48
    • /
    • 2010
  • In this paper we use a generalized Brownian motion process to defined an analytic operator-valued generalized Feynman integral. We then obtain explicit formulas for the analytic operatorvalued generalized Feynman integrals for functionals of the form $$F(x)=f\({\int}^T_0{\alpha}_1(t)dx(t),{\cdots},{\int}_0^T{\alpha}_n(t)dx(t)\)$$, where x is a continuous function on [0, T] and {${\alpha}_1,{\cdots},{\alpha}_n$} is an orthonormal set of functions from ($L^2_{a,b}[0,T]$, ${\parallel}{\cdot}{\parallel}_{a,b}$).

EVALUATION FORMULAS FOR AN ANALOGUE OF CONDITIONAL ANALYTIC FEYNMAN INTEGRALS OVER A FUNCTION SPACE

  • Cho, Dong-Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.655-672
    • /
    • 2011
  • Let $C^r$[0,t] be the function space of the vector-valued continuous paths x : [0,t] ${\rightarrow}$ $R^r$ and define $X_t$ : $C^r$[0,t] ${\rightarrow}$ $R^{(n+1)r}$ and $Y_t$ : $C^r$[0,t] ${\rightarrow}$ $R^{nr}$ by $X_t(x)$ = (x($t_0$), x($t_1$), ..., x($t_{n-1}$), x($t_n$)) and $Y_t$(x) = (x($t_0$), x($t_1$), ..., x($t_{n-1}$)), respectively, where 0 = $t_0$ < $t_1$ < ... < $t_n$ = t. In the present paper, with the conditioning functions $X_t$ and $Y_t$, we introduce two simple formulas for the conditional expectations over $C^r$[0,t], an analogue of the r-dimensional Wiener space. We establish evaluation formulas for the analogues of the analytic Wiener and Feynman integrals for the function $G(x)=\exp{{\int}_0^t{\theta}(s,x(s))d{\eta}(s)}{\psi}(x(t))$, where ${\theta}(s,{\cdot})$ and are the Fourier-Stieltjes transforms of the complex Borel measures on ${\mathbb{R}}^r$. Using the simple formulas, we evaluate the analogues of the conditional analytic Wiener and Feynman integrals of the functional G.

THE INTEGRALS OF BANACH SPACE-VALUED FUNCTIONS

  • Park, Jae Myung;Lee, Deok Ho;Yoon, Ju Han
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.79-89
    • /
    • 2008
  • In this paper, we define the ap-Henstock integral and the ap-Denjoy integral of Banach-valued functions, and we investigate some properties of these two integrals. In particular, we show that the ap-Henstock integral is equivalent to the ap-Denjoy integral.

  • PDF

SCALE TRANSFORMATIONS FOR PRESENT POSITION-INDEPENDENT CONDITIONAL EXPECTATIONS

  • Cho, Dong Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.709-723
    • /
    • 2016
  • Let C[0, t] denote a generalized Wiener space, the space of real-valued continuous functions on the interval [0, t] and define a random vector $Z_n:C[0,t]{\rightarrow}{\mathbb{R}}^n$ by $Zn(x)=(\int_{0}^{t_1}h(s)dx(s),{\cdots},\int_{0}^{t_n}h(s)dx(s))$, where 0 < $t_1$ < ${\cdots}$ < $t_n$ < t is a partition of [0, t] and $h{\in}L_2[0,t]$ with $h{\neq}0$ a.e. In this paper we will introduce a simple formula for a generalized conditional Wiener integral on C[0, t] with the conditioning function $Z_n$ and then evaluate the generalized analytic conditional Wiener and Feynman integrals of the cylinder function $F(x)=f(\int_{0}^{t}e(s)dx(s))$ for $x{\in}C[0,t]$, where $f{\in}L_p(\mathbb{R})(1{\leq}p{\leq}{\infty})$ and e is a unit element in $L_2[0,t]$. Finally we express the generalized analytic conditional Feynman integral of F as two kinds of limits of non-conditional generalized Wiener integrals of polygonal functions and of cylinder functions using a change of scale transformation for which a normal density is the kernel. The choice of a complete orthonormal subset of $L_2[0,t]$ used in the transformation is independent of e and the conditioning function $Z_n$ does not contain the present positions of the generalized Wiener paths.