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CONDITIONAL GENERALIZED FOURIER-FEYNMAN
TRANSFORM AND CONDITIONAL CONVOLUTION
PRODUCT ON A BANACH ALGEBRA

SEUNG JUN CHANG AND JAE GIL CHOI

ABSTRACT. In [10], Chang and Skoug used a generalized Brownian
motion process to define a generalized analytic Feynman integral
and a generalized analytic Fourier-Feynman transform. In this pa-
per we define the conditional generalized Fourier-Feynman trans-
form and conditional generalized convolution product on function
space. We then establish some relationships between the condi-
tional generalized Fourier-Feynman transform and conditional gen-
eralized convolution product for functionals on function space that
belonging to a Banach algebra.

1. Introduction

The concept of L; analytic Fourier-Feynman transform (FFT) was
introduced by Brue in [1]. In [2], Cameron and Storvick introduced
the concept of an Ly analytic FFT on Wiener space. In [19], Johnson
and Skoug developed an L, analytic FFT theory for 1 < p < 2 which
extended the results in [1, 2] and gave various relationships between
the Ly and Ly theories. In [15], Huffman, Park and Skoug defined a
convolution product(CP) for functionals on Wiener space and in [16,
17] obtained various results involving and relating the FFT and CP.
For further work of the conditional FFT(CFFT) and the conditional
CP(CCP), see the references [4, 5, 9, 12-14, 21, 22].

Received February 3, 2003.

2000 Mathematics Subject Classification: 60J65,28C20.

Key words and phrases: generalized Brownian motion process, generalized ana-
lytic Feynman integral, conditional generalized analytic Fourier-Feynman transform,
conditional generalized convolution product.

The present research was conducted by the research fund of Dankook University
in 2003.



74 Seung Jun Chang and Jae Gil Choi

In this paper, we study functionals on function space but with z
in a general function space C, [0, T| rather than in the Wiener space
Csl0,T). The Wiener process used in [4, 9, 12-22] is free of drift and
is stationary in time while the stochastic process used in this paper is
nonstationary in time and is subject to a drift a(t).

The class of functionals on function space that we study with through-
out this paper is the Banach algebra S (inb[O, T}) introduced by Chang
and Skoug in [10]. Results in [6-8, 10] show that S(LZ [0, T]) contains
many interests in connection with generalized Feynman transform and
quantum mechanics.

In this paper we define the concepts of a conditional generalized
FFT(CGFFT) and a conditional generalized CP(CGCP) and obtain sev-
eral interesting relationships between them.

2. Definitions and preliminaries

Let D = [0,T] and let (2,8, P) be a probability measure space. A
real valued stochastic process Y on (Q,B,P) and D is called a gen-
eralized Brownian motion process if Y (0,w)=0 almost everywhere and
for 0 =ty < t; < --- < t, < T, the n-dimensional random vector
(Y(ty,w), -+, Y (tn,w)) is normally distributed with the density func-
tion

K(@E7) = 27r)”H(bt ) = b(t;_1))) "

j=1
. " a(t;)) = (01 — a(t;_1)))?
‘ p{ Z: b(t;) — b(t; 1) }

where 7 = (N1, - - 7n), Mo = 0, £ = (t1, - ,tn), a(t) is an absolutely
continuous real-valued function on [0, T] with a(0) = 0, a’(¢) € L?[0,T7,
and b(¢) is a strictly increasing, continuously differentiable real-valued
function with (0) = 0 and ¥ (t) > 0 for each ¢ € {0, T].

As explained in [23, pp.18-20], Y induces a probability measure 1 on
the measurable space (RP, B”) where R? is the space of all real valued
functions z(t), t € D, and BP is the smallest g-algebra of subsets of R?
with respect to which all the coordinate evaluation maps e;(z) = z(t)
defined on RP are measurable. The triple (R?, B, 1) is a probability
measure space. This measure space is called the function space induced

(2.1)
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by the generalized Brownian motion process Y determined by a(-) and
b(-).

We note that the generalized Brownian motion process Y determined
by a{-) and b(-) is a Gaussian process with mean function a(t) and co-
variance function r(s,t) = min{b(s),b(t)}. By Theorem 14.2 [23, p.187],
the probability measure u induced by Y, taking a separable version, is
supported by C, 5[0, 7] (which is equivalent to the Banach space of con-
tinuous functions z on [0, 7] with z(0) = 0 under the sup norm). Hence
(Capl0, T, B(Cyp[0,T]), 1) is the function space induced by Y where
B(C, [0, T]) is the Borel o-algebra of C, [0, T].

A subset B of C,[0,T] is said to be scale-invariant measurable [11,
20] provided pB is B(C, [0, T])-measurable for all p > 0, and a scale-
invariant measurable set IV is said to be scale-invariant null set provided
w(pN) = 0 for all p > 0. A property that holds except on a scale-
invariant null set is said to hold scale-invariant almost everywhere(s-
a.e.).

Let L2 ,[0,T] be the Hilbert space of functions on [0, T] which are
Lebesgue measurable and square integrable with respect to the Lebesgue
Stieltjes measures on [0,T] induced by a(-) and b(-): i.e.,

(2.2)

L2,00,T] = {v : /OT v?(s)db(s) < oo and /0

T

v (s)d|al(s) < oo}

where |a|(t) denotes the total variation of the function a on the interval
[0,¢].
For u,v € L7 ,[0,T], let

T
(2.3) (U, V)ap = /0 u(t)v(t)d[b(t) + |a|(t)].

Then (-,-)a is an inner product on L2 [0, T and ||ullap = +/(u,u)ap
is a norm on L2 ;[0,T]. In particular note that ||lullo,, = 0 if and only
if u(t) = 0 a.e. on [0,T]. Furthermore (L2 [0, T, - [la,0) is & separable
Hilbert space.

Let {¢, };";1 be a complete orthogonal set of real-valued functions of
bounded variation on [0, T) such that

0, j#k

@oen={ 1 17}
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and for each v € L2 [0, 77, let

(24) Un(t) = (v, b5)ands (£)
j=1
for n = 1,2,.---. Then for each v € Lib[O,T], the Paley-Wiener-
Zygmund(PWZ) stochastic integral (v, z) is defined by the formula
T
(2.5) (v,z) = lim v (t)dx(t)
n—000 0

for all z € C,[0,T] for which the limit exists.; one can show that
for each v € Lﬁ,b[O,T], the PWZ integral (v,x) exists for p-ae. z €
Ca,b[O,T].

We denote the function space integral of a B(C, [0, T'])-measurable
functional F' by

(2.6) E[F) = /C | Fne)

whenever the integral exists.
We are now ready to state the definition of the generalized analytic
Feynman integral.

DEFINITION 2.1. Let C denote the complex numbers. Let C; =
{fA€C:Rex>0}and Cy = {A € C: X # 0 and ReX > 0}. Let
F : Cb3[0,7] — C be such that for each A > 0, the function space
integral

I = [ PO R)dua)
Ca 5[0,T]

exists for all A > 0. If there exists a function J*(A) analytic in C; such
that J*(A) = J(A) for all A > 0, then J*(\) is defined to be the analytic
function space integral of F' over C, [0,7T] with parameter A, and for
A € C, we write

(2.7) E*[F] = E™[F(z)] = J*(\).

Let g # 0 be a real number and let F be a functional such that E2"*[F]
exists for all A € C,. If the following limit exists, we call it the gener-
alized analytic Feynman integral of F' with parameter ¢ and we write
(2.8) E*a[F] = Jim, B2 [F]

—>—'L'q
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where A approaches —ig through C,.

Next we state the definitions of the generalized analytic Fourier-
Feynman transform (GFFT) and the generalized convolution product
(GCP).

DEFINITION 2.2. For A € Cy and y € C, (0,77, let
(2.9) Ta(F)(y) = EZ™ [F(y + )],

In the standard Fourier theory the integrals involved are often inter-
preted in the mean; a similar concept is useful in the FFT theory [19].
Let p € (1,2] and let p and p’ be related by 1/p+1/p’ = 1. Let {H,} and
H be scale-invariant measurable functionals such that for each p > 0,

Jim E[|Hn(py) - H(py)[”'1 =0.
Then we write

H=~lim,eH,

and we call H the scale-invariant limit in the mean of order p’. A similar
definition is understood when n is replaced by the continuously varying
parameter A.

We are ready to state the definition of the L, analytic GFFT.

DEFINITION 2.3. Let ¢ be a nonzero real number and let F be a
measurable functional. For p € (1,2], we define the L, analytic GFFT,

Tq(p)(F) of F, by the formula (A € Cy)
(2.10) TP(F)(y) = Limoo_igTh(F)(y)

if it exists. We define the L; analytic GFFT, T\"(F) of F, by the
formula (A € Cy4)

(2.11) TM(F)(y) = lim Ta(F)(y)

A—>—iq

if it exists.

We note that for 1 < p < 2, TSP (F) is defined only s-a.e.. We
also note that if Tq(p ) (F) exists and if F' ~ G, then Tq(p )(G) exists and
T (G) ~ T (F).



78 Seung Jun Chang and Jae Gil Choi

DEFINITION 2.4. Let F and G be measurable functionals on
Co [0, T).

For A € Cy, we define their GCP (F % @), (if it exists) by
(2.12)

any [[(YET V3 (Y=
(F+G)s(y) = { E; [F(yﬁ )G(yﬁ ), AeCy
- anfy z —x .
EcF(E2)G(SE)), A= —ig, g€ R, g #0.

REMARK 2.1. (1) When A = —igq, we denote (F * G) by (F * G),.
(2) For any real g # 0, we briefly describe F7 and * Fy of a functional
F on C, [0, T] as follows :

(2.13) Fj =(Fx1), and *Fy = (1% F),.

The following generalized analytic Feynman integral formula is used
several times in this paper.

(2.14) Elexp{iA~% (v,z)}] = exp{—%(vQ, B) +iA"2 (v, a’)}

for all A € C,. and v € L2 [0, T] where

T T
(2.15) (v,a')z/O v(t)a,’(t)altz/0 v(t)da(t)

and
T T
2 g v2 / — U2 .
(2.16) (w2, 1) = /0 () (£)dt /0 (£)db(2)

In this paper for each A € C,, Az(or A7) is always chosen to have
positive real part.

Now we introduce the Banach algebra S(L2,[0,T]) referred to in
Section 1. ’

DEFINITION 2.5. Let M(L2 ,[0,T7]) be the space of complex-valued,
countably additive (and hence finite) Borel measures on L2 {0, T]. The
Banach algebra S(LZ ,[0, T]) consists of those functionals F on C, [0, T
expressible in the form

(2.17) F(z) = /L g el

for s-a.e. © € Cy [0, T] where the associated measure f is an element of
M(Li,b[oa T])
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REMARK 2.2. (i) When a(t) =0 and b(t) = t on [0, T], S(LZ ,[0,T])
reduces to a Banach algebra S introduced by Cameron and Storvick in
[3]. For further work on S, see the references referred to in Section 20.1
of [18].

(it) M (sz’b[O, T)) is a Banach algebra under the total variation norm
where convolution is taken as the multiplication.

(iii) One can show that the correspondence f — F' is injective, car-
ries convolution into pointwise multiplication and that S (Li,b[O, T))isa
Banach algebra with norm

IFI=isl= [, )
a.0,T
In (3], Cameron and Storvick carry out these arguments in detail for the
Banach algebra S.

REMARK 2.3. If a(t) = 0 on [0,T7], then for all F € S(LZ,[0,T1)
associated with measure f, the generalized analytic Feynman integral
E?7[F] will always exist for all real ¢ # 0 and be given by the formula

(2.18) E*Ma[F) = /L o exp{ - &’;&i)}df@).

However for a(t) as in this section, and proceeding formally using equa-
tion (2.14), we see that E**![F] will be given by the formula

(2.19)  E*[F) /L o exp{ - 3@% 4 z(é—) : (v,a')}df(fu)

if it exists. But the integral on the right hand-side of (2.19) might not
exist if the real part of

1
i(v?,b) (z)5 ,
——+il -} (v,a
5 .) ©)
is positive. However

i(v2, b i\ 2 exp{—(2¢)"Y2(v,a’ >0
o { 2L (1)} )| - { P g
2q q exp{(—2¢)7"*(v,d")}, ¢ <0,
and so the generalized analytic Feynman integral E**«[F)] exist provided
the associated measure f satisfies the condition

(2.20) /L exp{\/l_q (s)|dlal(s) }|df(u)|<oo.
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REMARK 2.4. (i) Let gg be a non-zero real number and let F be an
element of S(L2 [0, T]) whose associated measure f satisfies the condi-
tion

(2.21) / on® {\/%/ |d|a{(s}|df(u)|<oo.

Then for all p € [1,2] and all real ¢ with |g| > |qo|, the GFFT of F,

TP (F) exists and is given by the formula
(2.22)

T (F)(y) = /
L2 ,[0,T]

for s-a.e. y € C, [0, 7).
(ii) Let F and G be elements of S(L2 ,[0,T]) whose associated mea-
sures f and g satisfy the condltlon

exp{ifu) - )+ q)<u ) bar(w)

o [ exp{ i [ (o)} [0+ o] < .

Then their GCP (F * G), exists for all real ¢ with |g| > |go| and is given
by the formula
(2.24)

(F % G)qly) = /Lg’b[oj] exp{v_i(u+ v,Y)

- =)+ - o) )t

for s-a.e. y € C,3[0,T]. Furthermore (F * G), is an element of
S(L24[0,T7)).

3. Conditional transforms and conditional convolutions

In this section we first obtain the CGFFT and CGCP. We then es-
tablish several relationships between CGFFT and CGCP.
Throughout this section we will condition by the function

X :Copl0,T] - R
given by
(3.1) X(z) = z(T).

Now, we state the definition of the conditional function space integral.
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DerFINITION 3.1. Let X be a real-valued measurable function on
Cap[0,T) whose probability distribution px is absolutely continuous
with respect to Lebesgue measure on R. Let F be a complex-valued
p-integrable function on C, 4[0,7]. Then the conditional integral of F
given X, denoted by E[F|X](n), is a Lebesgue measurable function of
7, unique up to null sets in R, satisfying the equation

82 [ P@due = [ EEX )

for all Borel sets B in R.
DEFINITION 3.2. Let F': Cy3[0,T] — C be such that for each A > 0,

(3.3) / IFO22)|dp(z) < oo.
Cab(0,T]

Let X : Cq[0,T]) — R be such that for each A > 0 and a.e. 5 € R,
X(A\" 2z +7n) is a p-integrable function of z on Co 0,7}, i.e., for a.e.
nE€R, Y(z) = X(A\" 22 +1n) is scale-invariant measurable on Cop[0,T).
For A >0 and n € R, let

(3.4) In(n) = E[F(A22)| X (A1 2)] ()

denote the conditional function space integral of F(A~'/2z) given
A7Y/22(T). If for a.e. 7 € R, there exists a function JX(n) analytic
in A on C, such that J§(n) = Jx(n) for all A > 0, then J3(-) is defined
to be the conditional analytic function space integral of F' given z(T)
with parameter A and for A € C, we write

(3.5) EXMF|X](n) = EZ [F(2)| X (2))(n) = JX(n).
If for fixed real q # 0 the limit

(3.6) lim B [F|X](n)
i

exists for a.e. n € R, where A — —ig through C,, we will denote
the value of this limit by E**«[F|X](n) and we call it the conditional
generalized analytic Feynman integral of F' given X with parameter q.
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REMARK 3.1. In [21], Park and Skoug gave a formula for express-
ing conditional Wiener integrals in terms of ordinary Wiener integrals;
namely that for A > 0,

E [F(\™12z)|] A" 22(T)](n)

(3.7) _E [F <x1/2w(-) — AT + %”)}'

Thus we have that

(3.8)  E2™[F(z)|x(T)](n) = E2™ [F (‘”(') - bi(%“’(T) * %n)]

and
(3.9) E:nfq [F(z)|z(T)](n) = E:nfq [F (1;() — b—l)(%$(T) + bb((*T))Tl>]

where in (3.8) and (3.9) the existence of either side implies the existence
of the other side and their equality.

Next we define the CGFFT and the CGCP.

DEFINITION 3.3. For A € C4,n € R and y € Cup[0,7T], let
T\(F|X)(y,n) denote the conditional analytic function space integral
of F(y + z) given X (z) = z(T); that is to say

IA(FI1X)(y,n) = EZ™[F(y + =)|2(T)] ()

= 52 [P (3 +20) - giba(r) + o)

Then for p € [1, 2] we define the CGFFT, Tq(p) (F)X) of F, by the formula
()‘ € C+)a

(3.10)

Limoo i qTA(F|X)(y,m), 1<p<2

(3.11) TP(F|X)(y,n) = { limy— i 75 (F|X) (y, ) p=1

if it exists. Note that for p =1

(3.12) T (FIX)(y,n) = B2 [F (y(~> () - 5”(%:1:(7’) T —n)]
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And we define the CGCP ((F xG)|X)(y,n) (if it exists) by the formula
((F* G)xlX) (y,m)

_ { B3 [F(A2)G(2)le(T)](n), A€ Cy
B [FZ)GE)Ne(T (), A= —ig, ¢ €R, ¢#0
) b()=(T)

( ran y()+z( b(")n
Egm(F( V2 b(T)V2 + b(T)\/i)

()==() 4 b()=(T) b()n
-G(¥ 7ty T b(T)ﬁ)]’ reCy

_ ) pentyrpou()te() _ b(E(T) | b()n
| B PR - S T RnYs)

O ==y | bO)=(T)  _b()n
G( V2 +b(T)\/§ b(T)ﬂ)]’

\ /\:_anqGRaq7éo
Again if A\ = —ig, we will denote ((F*GQ)»|X)(y,n) by ((F*G)q|X)(y,n).

REMARK 3.2. By using (3.9) and (2.14) we see that the conditional

generalized analytic Feynman integral g2t [F(z)|z(T)](n) is given by
the formula
(3.14)

anf, — x __7‘_ 2 i’U,Z
BRI = [ ew{-gt b gt

a,bl™?

b (3) %(u, o) - ZG) %ula(T) 4 ium}df(u)

where u; = (u,b')/b(T) if it exists. But the integral on the right-hand
side of (3.14) might not exist if the real part of

(3.13)

_é%(u b)+;ulb(T) (%)%(u,a’)—i(é)éula(T)+iU1n

is positive. However

exp{—;—q(u b) + —'—ulb(T)

|4 1
+z<é) (u,a) —z(é) uya(T) +iu1n}|
_{exp{ \/——va’)+ = (v, b’)ggg} g>0

a(T
exp { A5 (v, @) = Az )R} a<0,
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and so the conditional generalized analytic Feynman integral
E; e F(2)|2(T)) ()

exist provided the associated measure f satisfies the condition

1 T
(3.15) /L o exp{m /O lu(s)[d[lal(s)+b(s)]}|df(u)| < 0.

In our next theorem, we obtain the CGFFT of a functional in
S(Lz4[0,T]).

THEOREM 3.1. Let ¢y be a nonzero real number and let F' be an ele-
ment of S (Li’b[O, T) whose associated measure f satisfies the condition
(3.15) with g replaced with ¢g. Then for all p € [1,2] and all real ¢
with |g| > |go|, the CGFFT of F, TP (F|X) exists and is given by the
formula
(3.16)

TP (FIX)(y,m) =/

L

+ z(é) (u, 0) — 1(9 %ula(T)}df(u)

for s-a.e. y € Cy [0, T] where u; = (u,b)/b(T).

- . Loy Lo
exps i{u, y) +iun — —(u,b') + —uib(T
s o TP B )+ D

Proof. First of all, using (3.10), the Fubini theorem, and (2.14), we
obtain, for all A > 0.

TA(F1X)(y,n)

_ /L s om {<u v+ <;‘(1?)> n}
o ool e~ Syt

= /Li,b[o,:r] exp {i(u, y) + iu1n} By [exp{ {u — ul,w)}]df(U)

(3.17)

-
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:/ exp{ (u,y) + Z16177
L2 ,[0,T)
(¥ + %(u—ubaﬁ}df(u)

1
= exp { i(u,y) + suin — —(u?, b bT
Ly it 5620 4 b

+ s lwd) - ﬁulam}df(u)

for s-a.e. y € Cop(0,7]. But the last expression above is analytic
throughout C, and is continuous in C,. Thus we have the equation
(3.16). In addition, by using the condition (3.15) above, we see that for
all real ¢ with |g| > |qo]

TP (F|X)(y,n)]

s/LmT] {\/Eq— @1 lal) + 5000 Hiarw < oo

Hence we have the desired result. O

In our next theorem, we obtain the CGCP of functionals in
S(LZ 5[0, 7).

THEOREM 3.2. Let gy be a nonzero real number and let F and G be
elements of S(L? 4[0,T]) whose associated measures f and g satisfy the
condition
(3.18)

S som = v [ wtoalali) o) bl + gt < .

Then their CGCP ((F *G)4|X) exists for all p € [1,2] and all real ¢ with
lgl > |qo| and is given by the formula

(F*G) gl X)(y,m)

/ b[OT / 0.7 eXp{ {u+v,y) + %(m —1)n

(3.19) ((u _ U) b/) ” (Ul — U1)2b(T)

4

+i <-2%) %(u —vd) - z(%}) : (uy — vl)a(T)}df(u)dg(v)
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for s-a.e. y € Cy [0, T] where uy = (u,d)/b(T) and vy = (v,b")/b(T).

Proof. By using (3.13), the Fubini theorem, and (2.14), we have that
for all A > 0,

- xpd = i(u— v, b)
) Livbm/f: or’ {5t v + oo}

B fexp] - via) - %;b%;—)xm}]df(u)dg(v)

3.20 ~Jrz o /Li,b[o,n eXp{%(u +v,y) + %(ul — m)n}
(3.20) - E, [exp{ L{(u =)~ (- ”1)’m>H lu)ds()

V2
)
N exp U+U’y U1 — U
Lz,bm/Lg,b[o,n {m< )+ 5~y
1 , 1
~ = ((u=)%,b) + —(uy — v1)b(T)

4
@

+ —(u—v,ad') — T

(ur vl)am}df(u)dg(v)

for ssa.e. y € C,p[0,7]. But the last expression above is analytic
through out C, and is continuous on C,. Thus we have the equation
(3.19) above. In addition, the condition (3.18) will imply the existence
of the equation (3.19). a

REMARK 3.3. Let F, G, f, g,and ¢¢ be as in Theorem 3.2. Then if
G =1, then for all p € [1,2] and all real ¢ with |g| > |qo],
(3.21)

F*1 X)) (y, —_—/ ex {—— u,y) + —uin — — (u?, b
(F71X)(y,m) v o) p \/5< Y) 75 4q( )

4Lqu1b(T) (.2%) Y ) - 1(2-2_) %ulam}df(u)

for s-a.e. y € Cup[0,T]. Similarly, if F = 1, then for all p € [1,2] and

-
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all real ¢ with |q| > |qol,
(3.22)

CGi0wn=[ el e - o= 08 )

+ o oNT) - (2—q)<) +i(5) %vla@)}dg(v)

for s-a.e. y € Cy[0,T] where u; and v; are as in Theorem 3.2 above.

In our next theorem, we obtain the CGFFT of the CGCP of functional
in S(Li,b[()? T])

THEOREM 3.3. Let gy be a nonzero real number and let F and G be
elements of S (szb[O, T)) whose associated measures f and g satisfy the
condition
(3.23)

2 T ) )
/Lz:‘b[o,n exp{ N /0 [u(s)ld[lal(s) +b(s)] } [1df ()] + dg(w)]] < o0

Then for all p € [1,2] and all real q with |q| > |qol,

TP (((F % Q) gl X) (o m)1X) (w, 12)s T (Fy 1X) ()1 X) (w,m12)
and Tq(p)((*quX)(~, m )| X)(y,n2) all exist and

TP (((F % G)gl X) (-, m)1X) (y, 1m2)
= TP ((F1X) (-, m)|X) (@ m2) TP (Gl X) (-, )| X)) (y, 72)

for s-a.e. y € Copl0,T] where F; and *G, are given as in equation
(2.13).

Also both of the expressions in (3.24) are given by
(3.25)

72 + M o fm—m
exp (u+v,y +zu( )+w( )
/L2 OT/L2 ,[0,7) { ) "\TV2 "\ V2

2q(u + 02 b))+ 2q(u1~|~1)1)lJ(T)

+2i <2iq) (u,a) — 22(2'(]) %ula(T)}df(u)dg(v)

for s-a.e. y € Cyp[0,T).

(3.24)
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Proof. By using (3.10), (3.13), the Fubini theorem, and (2.14), we
have that for all A > 0,

Ta(((F * GIAIX) (- m)IX) (y, 72)

B2 (B m)X) 5 )T GalX)m) X ()

for s-a.e. y € C,p[0,T]. But both of the expressions on the right-
hand side of equation (3.26) are analytic functions of A through C,,
and are continuous functions of A on (f:_,_ for all y € C,[0,7]. Thus
equation (3.24) is established. Moreover the condition (3.23) will ensure
the existence of the both sides of equation (3.24) above. Hence we have
the desired result. |

REMARK 3.4. Let F, G, f, g, and gg be as in Theorem 3.3 above.
Then we have the followings:
(i) By using the expression in (3.25), we see that

TE ((F71X)(,m)IX )y, m2) = T (Fy1X) (-, m2) 1 X) (y,m)
and
TP ("Gl X) (1)1 X) (g m2) = T ((*Gal X) (-, —m2) | X) (g, —m).

Using these above, we obtain the following alternative form

TP (((F % G)g) X) ()| X) (¥, 72)

(3.27) (5) ¢ e (B (e
= TP ((FG1X) (5 m2)1X) (g, m) TP (Gl X) (-, —m2)| X ) (y, —=m)
for s-a.e. y € Cy [0, T7.

(ii) If a(t) = 0, then by using equations (3.21), (3.22) and (3.11), we
have

TE) (B2 X)(-,m1) 1 X) (g, m2) = TP (F|X) (_}/_ n2 + 771)

V2

S

and

TP (Gl X) ()1 X) (y, m2) = TP (G X) (l’ nz\;im)'

S
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Hence we have
T (((F * G)gl X) (-, m)1X) (y, m2)

_ T(P)(F[X)(\g_ Wz\J/r_ﬁ1>T(p)(GlX)<5§ 772\/{71)

for s-a.e. y € Cy[0,T].
In [22], Park and Skoug established this equation for a Banach algebra

S.

In our next theorem we obtain an expression for the CGCP of
CGFFT’s of functionals in S(L2 ,[0,TY]).

THEOREM 3.4. Let qo be a nonzero real number and let F and G be
elements of § (Li,b[o, T)) whose associated measures f and g satisfy the
condition

(1+v2) [T
(3.28) /Li,b[o,TJ eXp{—\/——%l— /0 u(s)ld|al(s) + b(s)]}
- [ldf (w)] + |dg(w)]] < oo

Then for all p € [1,2] and all real q with |g| > |qo|, the following CGCP
exists and

(TP FIX)Cm) * TP (GIX)(4m2)) g1 X) (9, 78)

n3
exp uU+0,Y —Hu( +——>
/L2 o:r]/L2 [0,7] { ( ) n\m V2

73 7 , 1
3.29 +( - 05) - gl o)+ g+ )

+i<;—qi)%(u —v,d) —z(;qz> 1(u1 — v1)a(T)
ny (%) (u+v,a) — z(%) : (ur + vl)a(T)}df(u)dg(v)

for s-a.e. y € C,4[0,T).

Proof. By using equations (3.19) and (3.16), we can easily obtain the
equation (3.29) above. Moreover, the condition (3.28) will imply the
existence of the equation (3.29). 8
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REMARK 3.5. Let F, G, f, g,and ¢y be as in Theorem 3.4. Then by

using (3.11), (3.19), the Fubini theorem, and (2.14), we have that for all
p € [1,2] and all real ¢ with |g| > |qgo|

TE) ((F % G)—g)X) (-, 1)1 ) (g 1)

/ / exp{ (u+wv,y)
2,100,171 /L2 [0,T]

) + . —
+iuy <774\/§773> +ivy (774\/5773>

~ Z—é(?ﬂ + 6uv + v2,0') + 4—Zq(u% + 6uyvy + v)b(T)

+z<;;) 1 (u—v,d) —i(;—(j)%(ul — vy)a(T)

i (-;-) %(u +u,d) — z(é) %(ul + Ul)a(T)}df(u)dg(v).

In particular, by using (3.21), (3.22) and (3.30) above, we obtain
(3.31)

T (B, 1) (1)l X) (g, )
:/ 0] eXP{\%( Y) + i <774:/r§773) - Zi(;(uz,b')—l- %}ufb(T)
() () i
(s
and

) (wa) =i £) wialr ) bartu
(3.32)

T (G X) (-, m)1X) (3, 710)

/ o exp{\}i@ y) +ZU1<774\;§773> — 21%(”2’61) %v%b(T)
( ) ( qi)lvla(:r)
< :

(3.30)

[\

Q| e

[\~

q
) (v,a ~z<.) vla(T)}dg(v).

| e
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Furthermore, we also using (3.21), (3.22) and (3.29), we obtain
(3.33)

(TP (FIX)(m)) g1 X) (y, m2)

i . 72 tLogan, b oo
= exps —{u,y) +iu (77 +——)———u,b + —uib(T
/Lz‘bm {Stwa+ina(m+ 22) - Z028) + b

4 z(%)(ua) _ z(%) %ula(T)

and
(3.34)

((TEPUGIX) ()=l X) (5, m2)

_ /L o exp{%(v,y) +in (m - %) _ ZL%(v?,b') + Zl%vfb(T)
_ z(%) *(v,0) +z<%) *v1a(T)
+z<§) *w.a) — z(%) Evla(T)}dg(v).

A close examination of the right-hand sides of (3.31) and (3.33) shows
that they are equal if {ny,72, 73,74} is in the solution set of the equation

(3.35) V2 + 2 =13 + 74

Also, a close examination of the right-hand sides of (3.32) and (3.34)
shows that they are equal if {91,72,73,74} is in the solution set of the
equation

(3.36) V201 — 12 = 13 — 4.

THEOREM 3.5. Let F, G, f, g,and gg be as in Theorem 3.4. Then
we have the followings:

(i) If {m,m2,m3,n4} satisfy the equation (3.35), then for all p € [1,2]
and all real ¢ with |q| > |qo],

(3.37) (TP (F1X) (-, m)) =gl X) (W m2) = TN (F* (1 X) (1)1 ) (9, 7)
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for s-a.e. y € Cq[0,T).

(ii) If {m1,m2,m3,m4} satisfy the equation (3.36), then for all p € [1, 2]
and all real ¢ with |q| > |qo|,
(3.38)

(TP GIX) 1)) =l X) (s 12) = T Gl X) (1) X))
for s-a.e. y € Cy [0, 7).

Following are some interesting special cases of (3.37) and (3.38), re-
spectively.

(TP FIX)(m)) gl X) (v, m2)
= (TP(FIX)(, 12/ V)| X)(y, V2m1)

39 = TO((F* | X) (- m2) | X) (y, V21)
= T ((F2 4| X) (-, V20) | X) (3, 72)
and
(TP (G1X) (-, 1)) =g Xy, 72)
5.40) = ("(TP(GIX)(, ~12/V2)) =gl X)(y, —v/2m1)
' = TN ("G =gl X)(-,12)| X) (v, Vo)

T ((*C—gl X) (-, —V21) 1 X) (9, —12).

References

[1] M. D. Brue, A Functional Transform for Feynman Integrals Similar to the
Fourier Transform, thesis, University of Minnesota, Minneapolis, 1972.

[2] R.H. Cameron and D. A. Storvick, An Lo analytic Fourier-Feynman transform,
Michigan Math. J. 23 (1976), 1-30.

, Some Banach algebras of analytic Feynman integrable functionals, An-
alytic Functions Kozubnik, 1979, Lecture Notes in Math., Springer Berlin 798
(1980), 18-67.

[4] K. S. Chang and J. S. Chang, Evaluation of some conditional Wiener integrals,
Bull. Korean Math. Soc. 21 (1984), 99-106.

[3] K. 8. Chang, T. S. Song and 1. Yoo, Analytic Fourier-Feynman transform and
first variation on abstract Wiener space, J. Korean Math. Soc. 38 (2001), no. 2,
485-501.

{6] S.J. Chang and D. M. Chung, Conditional function space integrals with appli-
cations, Rocky Mountain J. of Math. 26 (1996), no. 1, 37-62.




(7]

[13]
[14]
[15)
[16]
(17]

[18]

[19]

[22]

[23]

Conditional generalized Fourier-Feynman transform 93

S. J. Chang and J. G. Choi, Multiple L, analytic generalized Fourier-Feynman
transforms on the Banach algebra, submitted for publication.

S. J. Chang, J. G. Choi and D. Skoug, Integration by parts formulas involving
generalized Fourier-Feynman transforms on function space, Trans. Amer. Math.
Soc. 355, no. 7, 2925-2948.

S. J. Chang and D. Skoug, Parts formulas involving conditional Feynman inte-
grals, Bull. Austral. Math. Soc. 65 (2002), 353-369.

, Generalized Fourier-Feynman transforms and a first variation on func-
tion space, Integral Transforms and Special Functions 14 (2003), no. 5, 375-393.
D. M. Chung, Scale invariant measurability in abstract Wiener space, Pacific J.
Math. 130 (1987), 27-40.

D. M. Chung and S. J. Kang, Conditional Wiener integrals and an integral
equation, J. Korean Math. Soc. 25 (1988), no. 1, 37-52.

D. M. Chung and D. Skoug, Conditional analytic Feynman integrals and a
related Schrédinger equation, SIAM J. Math. Anal. 20 (1989), no. 4, 950-965.

D. M. Chung, C. Park and D. Skoug, Generalized Feynman integrals via condi-
tional Feynman integrals, Michigan Math. J. 40 (1993), 377-391.

T. Huffman, C. Park and D. Skoug, Analytic Fourier-Feynman transforms and
conwvolution, Trans. Amer. Math. Soc. 347 (1995), 661-673.

, Convolution and Fourier-Feynman transforms, Rocky Mountain J.
Math. 27 (1997), 827-841.

, Convolutions and Fourier-Feynman transforms of functionals involving
multiple integrals, Michigan Math. J. 43 (1996), 247-261.

G. W. Johnson and M. L. Lapidus,, The Feynman Integral and Feynman’s Oper-
ational Calculus, Oxford Mathematical Monographs, Clarendon Press, Oxford,
2000.

G. W. Johnson and D. L. Skoug, An L, analytic Fourier-Feynman transform,
Michigan Math. J. 26 (1979), no. 1, 103-127.

, Scale-invariant measurability in Wiener space, Pacific J. Math 83
(1979), no. 1, 157-176.

C. Park and D. Skoug, A Kac-Feynman integral equation for conditional Wiener
integrals, Journal of Integral Equations and Applications 3 (1991), no. 3, 411-
427.

, Conditional Fourier-Feynman transforms and conditional convolution
products, J. Korean Math. Soc. 38 (2001), no. 1, 61-76.

J. Yeh, Stochastic Processes and the Wiener Integral, Marcel Dekker, Inc., New
York, 1973.

DEPARTMENT OF M ATHEMATICS, DANKOOK UNIVERSITY, CHEONAN 330-714, KOREA
E-mail: sejchang@ dankook.ac.kr

jgchoi@ dankook.ac.kr



