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Abstract. In this paper, we define the ap-Henstock integral and
the ap-Denjoy integral of Banach-valued functions, and we investi-
gate some properties of these two integrals. In particular, we show
that the ap-Henstock integral is equivalent to the ap-Denjoy inte-
gral.

1. Introduction and preliminaries

The ap-Denjoy integral of real valued functions was introduced in
[13]. It is known [13] that the ap-Denjoy integral is equivalent to the
ap-Henstock integral.

In this paper, we define the ap-Henstock integral and ap-Denjoy in-
tegral of Banach-valued functions, and we investigate the relationship of
these two integrals.

Throughout this paper, X is a Banach space with dual X∗.
For a measurable set E of real numbers we denote by |E| its Lebesgue

measure. Let E be a measurable set and let c be a real number. The
density of E at c is defined by

dcE = lim
h→0+

|E ∩ (c− h, c + h)|
2h

provided the limit exists. The point c is called a point of density of E
if dcE = 1. The set Ed represents the set of all points x ∈ E such that
x is a point of density of E. A function F : [a, b] → X is said to be
approximately differentiable at c ∈ [a, b] if there exists a measurable set
E ⊆ [a, b] such that c ∈ Ed and
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lim
x→c
x∈E

F (x)− F (c)
x− c

exists. The approximate derivative of F at c is denoted by F ′
ap(c).

An approximate neighborhood(of ap-nbd) of x ∈ [a, b] is a measurable
set Sx ⊆ [a, b] containing x as a point of density. For every x ∈ E ⊆ [a, b],
choose an ap-nbd Sx ⊆ [a, b] of x. Then we say that S = {Sx : x ∈ E}
is a choice on E. A tagged interval (x, [c, d]) is said to be subordinate to
the choice S = {Sx} if c, d ∈ Sx. Let P = {(xi, [ci, di]) : 1 ≤ i ≤ n} be
a finite collection of non-overlapping tagged intervals. If (xi, [ci, di]) is
subordinate to a choice S for each i, then we say that P is subordinate
to S. Let E ⊆ [a, b]. If P is subordinate to S and each xi ∈ E,
then P is called E-subordinate to S. If P is subordinate to S and
[a, b] =

⋃n
i=1[ci, di], then we say that P is a tagged partition of [a, b]

that is subordinate to S.

2. The ap-Henstock integral of Banach-valued functions

We introduce the ap-Henstock integral of Banach-valued functions.

Definition 2.1. A function f : [a, b] → X is ap-Henstock integrable
on [a, b] if there exists a vector A ∈ X with the following property: for
each ε > 0 there exists a choice S on [a, b] such that ‖f(P) − A‖ < ε
whenever P is a tagged partition of [a, b] that is subordinate to S, where
f(P) = (P)

∑
f(x)|I|. The vector A is called the ap-Henstock integral

of f on [a, b] and is denoted by (AH)
∫ b
a f .

If f is ap-Henstock integrable on [a, b], then f is also ap-Henstock
integrable on any subinterval of [a, b]. Hence, an interval function F can
be defined by F (I) = (AH)

∫
I f . The function F is called the primitive

of f .

It is easy to show the following theorem.

Theorem 2.1. Let f and g be functions mapping [a, b] into X.
(a) If f is ap-Henstock integrable on each [a, c] and [c, b], then f is

ap-Henstock integrable on [a, b] and

(AH)
∫ b

a
f = (AH)

∫ c

a
f + (AH)

∫ b

c
f
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(b) If f and g are ap-Henstock integrable on [a, b] and α, β ∈ R, then
αf + βg is ap-Henstock integrable on [a, b] and

(AH)
∫ b

a
(αf + βg) = α(AH)

∫ b

a
f + β(AH)

∫ b

a
g

Theorem 2.2. Let f : [a, b] → X be ap-Henstock integrable on [a, b].
Then for each x∗ ∈ X∗ the function x∗f is ap-Henstock integrable on
[a, b] and

x∗(AH)
∫ b

a
f = (AH)

∫ b

a
x∗f

Proof. Since f is ap-Henstock integrable on [a, b], for every ε > 0
there exists a choice S on [a, b] such that for any partition P = {(x, I)}
that is subordinate to S we have

‖f(P)− (AH)
∫ b

a
f‖ < ε

For any x∗ ∈ X∗, we have

|x∗f(P)− x∗(AH)
∫ b

a
f | ≤ ‖x∗‖‖f(P)− (AH)

∫ b

a
f‖ < ‖x∗‖ε.

Hence, x∗f is ap-Henstock integrable on [a, b] and

(AH)
∫ b

a
x∗f = x∗(AH)

∫ b

a
f.

Theorem 2.3. Let f : [a, b] → X be a function. If f = 0 al-
most everywhere on [a, b], then f is ap-Henstock integrable on [a, b]
and (AH)

∫ b
a f = 0.

Proof. Let E = {x ∈ [a, b] : ‖f(x)‖ 6= 0} and for each positive integer
n, let En = {x ∈ E : n − 1 ≤ ‖f(x)‖ < n}. Let ε > 0. For each n,
choose an open set On such that En ⊆ On and |On| < ε/n2n.

Define a choice S = {Sx : x ∈ [a, b]} by

Sx =
{ [a, b] if x ∈ [a, b]− E,

On if x ∈ En.

Suppose that P is a tagged partition of [a, b] that is subordinate to
S. For each n, let Pn be the subset of P that has tag in En. We have

‖f(P)‖ ≤
∞∑

n=1

‖f(Pn)‖ <
∞∑

n=1

n|On| <
∞∑

n=1

ε/2n = ε.
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Hence, f is ap-Henstock integrable on [a, b] and (AH)
∫ b
a f=0.

Theorem 2.4. Let f : [a, b] → X be ap-Henstock integrable on [a, b].
Then

(a) the function f is weakly measurable.
(b) If g = f almost everywhere on [a, b], then g is ap-Henstock inte-

grable on [a, b] and

(AH)
∫ b

a
f = (AH)

∫ b

a
g.

Proof. (a) Since x∗f is ap-Henstock integrable for each x∗ ∈ X∗, x∗f
is measurable. Hence f is weakly measurable.

(b) Since f − g = 0 almost everywhere on [a, b], f − g is ap-Henstock
integrable on [a, b] and (AH)

∫ b
a (f − g) = 0 by Theorem 2.3. Hence,

g = f − (f − g) is ap-Henstock integrable on [a, b] and

(AH)
∫ b

a
f − (AH)

∫ b

a
g = (AH)

∫ b

a
(f − g) = 0

Definition 2.2. A function F : [a, b] → X is ACs on a measurable
set E ⊆ [a, b] if for each ε > 0 there exist a positive number δ and a
choice S on E such that ‖(P)

∑
F (I)‖ < ε for every finite collection P

of non-overlapping tagged intervals that is subordinate to S and satisfies
(P )

∑
|I| < δ. The function F is ACGs on E if E can be expressed as

a countable union of measurable sets on each of which F is ACs.

Lemma 2.5. Suppose that f : [a, b] → X and let E ⊆ [a, b]. If |E| = 0,
then for each ε > 0 there exists a choice S on E such that ‖f‖(P) < ε
whenever P is E-subordinate to S, where ‖f‖(P) = (P)

∑
‖f(x)‖|I|.

Proof. For each positive integer n, let En = {x ∈ E : n−1 ≤ ‖f(x)‖ <
n}. Then E =

⋃∞
n=1 En. Let ε > 0. For each n, let Sn = {Sn

x : x ∈ En}
be a choice on En and choose an open set On such that En ⊆ On and
|On| < ε/n2n. For each x ∈ En, let Sx = Sn

x ∩ On. Then S = {Sx : x ∈
E} is a choice on E.

Suppose that P is E-subordinate to S. Let Pn be the subset of P
that tags in En. Then we have

‖f‖(P) =
∞∑

n=1

‖f‖(Pn) <

∞∑
n=1

n|On| <
∞∑

n=1

ε/2n = ε.
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Lemma 2.6. Suppose that F : [a, b] → X is ACGs on [a, b] and let E
be a subset of [a, b]. If |E| = 0, then for each ε > 0 there exists a choice
S of E such that ‖(P)

∑
F (I)‖ < ε for each P that is subordinate to S.

Proof. Suppose that E ⊆ [a, b] is a measurable set of measure zero.
Let E =

⋃∞
n=1 En, where {En} is a sequence of disjoint measurable sets

and F is ACs on each En. Let ε > 0. For each positive integer n, there
exist a choice Sn = {Sn

x : x ∈ En} on En and a positive number δn

such that ‖(P)
∑

F (I)‖ < ε/2n whenever P is En-subordinate to Sn

and (P)
∑
|I| < δn. For each positive integer n, choose an open set

On such that En ⊆ On and |On| < δn. Let Sx = Sn
x ∩ On for each

x ∈ En. Then S = {Sx : x ∈ E} is a choice on E. Suppose that P is
E-subordinate to S. Let Pn be a subset of P that has tags in En and
note that (Pn)

∑
|I| < |On| < δn. Hence, we have

‖(P)
∑

F (I)‖ ≤
∞∑

n=1

‖(Pn)
∑

F (I)‖ <
∞∑

n=1

ε/2n = ε.

Theorem 2.7. If there exists an ACGs function F on [a, b] such that
F ′

ap = f almost everywhere on [a, b], then the function f is ap-Henstock
integrable on [a, b].

Proof. Suppose that there exists an ACGs function F on [a, b] such
that F ′

ap = f almost everywhere on [a, b]. Let

E = {x ∈ [a, b] : F ′
ap(x) 6= f(x)}.

Then |E| = 0. Let D = [a, b]− E and let ε > 0. For each x ∈ D, there
exists a measurable set Dx ⊆ [a, b] such that x ∈ Dd

x and

F ′
ap(x) = lim

y→x
y∈Dx

F (y)− F (x)
y − x

.

Hence, there exists δx > 0 such that for every y ∈ Dx∩ (x−δx, x+δx) =
Sx

‖F (y)− F (x)− F ′
ap(x)(y − x)‖ ≤ ε|y − x|.

If (x, [u, v]) is a tagged interval with u, v ∈ Sx, then

‖F (v)− F (u)− F ′
ap(x)(v − u)‖

≤ ‖F (v)− F (x)− F ′
ap(x)(v − x)‖+ ‖F (x)− F (u)− F ′

ap(x)(x− u)‖
< ε(v − x) + ε(x− u) = ε(v − u).
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Hence, there exists a choice S′ = {Sx : x ∈ D} on D such that ‖f(P)−
F (P)‖ < ε(P)

∑
|I| whenever P is a collection of tagged intervals that

is subordinate to S′.
By Lemmas 2.5 and 2.6, there exists a choice S′′ on E such that

‖f(P)‖ < ε and‖F (P)‖ < ε whenever P is subordinate to S′′. let
S = S′ ∪ S′′. Then S is a choice on [a, b].

Suppose that P is a tagged partition of [a, b] that is subordinate to
S. Let PE be the subset of P that has tags in E and let PD = P −PE .
Then we have

‖f(P)− F (P)‖
≤ ‖f(PD)− F (PD)‖+ ‖f(PE)‖+ ‖F (PE)‖
< ε(b− a + 2).

Hence, f is ap-Henstock integrable on [a, b].

The ap-Henstock integral has the following gemetric property.

Theorem 2.8. If f : [a, b] → X is ap-Henstock integrable on [a, b],
then for every integral [c, d] ⊆ [a, b],

1
d− c

(AH)
∫ d

c
f ∈ cof

(
[c, d]

)
,

where cof
(
[c, d]

)
is the closed convex hull of f

(
[c, d]

)
.

Proof. Suppose that there exists an interval [c, d] such that

1
d− c

(AH)
∫ d

c
f /∈ cof

(
[c, d]

)
.

By the Hahn-Banach Theorem, we can select x∗ ∈ X∗ and a real number
α such that

x∗
( 1

d− c
(AH)

∫ d

c
f
)

< α ≤ x∗f(t)

for all t ∈ [c, d]. Then

1
d− c

(AH)
∫ d

c
x∗f < α ≤ x∗f(t).

Integrating over [c, d], we have

(AH)
∫ d

c
x∗f < α(d− c) ≤ (AH)

∫ d

c
x∗f.

This is a contradiction.
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3. The ap-Denjoy integral of Banach-valued functions.

We introduce the notion of the approximate Lusin function. This
function is used to define the ap-Denjoy integral.

For a function F : [a, b] → X, F can be treated as a function of
intervals be defining F ([c, d]) = F (d)− F (c).

Definition 3.1. Let F : [a, b] → X be a function. The function F
is an approximate Lusin function(or F is an AL function) on [a, b] if
for every measutable set E ⊆ [a, b] of measure zero and for every ε > 0
there exists a choice S on E such that ‖(P)

∑
F (I)‖ < ε for every finite

collection P of non-overlapping tagged intervals that is E-subordinate
to S.

From Lemma 2.6, we get the following theorem

Theorem 3.1. If F : [a, b] → X is ACGs on [a, b], then F is an AL
function on [a, b].

Definition 3.2. A function f : [a, b] → X is ap-Denjoy integrable
on [a, b] if there exists an AL function F on [a, b] such that F is approx-
imately differentiable almost everywhere on [a, b] and F ′

ap = f almost
everywhere on [a, b]. The function f is ap-Denjoy integrable on a mea-
surable set E ⊆ [a, b] if fχE is ap-Denjoy integrable on [a, b].

If we add the condition F (a) = 0, then the function F is unique. We
will denote this function F (x) by (AD)

∫ x
a f .

It is easy to show that if f : [a, b] → X is ap-Denjoy integrable on
[a, b], then f is ap-Denjoy integrable on every subinterval of [a, b]. This
gives rise to an interval function F such that F (I) = (AD)

∫
I f for every

subinterval I ⊆ [a, b]. The function F is called the primitive of f .
From the definition of the ap-Denjoy integral, we get the following

theorem.

Theorem 3.2. Let f : [a, b] → X be ap-Denjoy integrable on [a, b]
and let F (x) = (AD)

∫ x
a f for each x ∈ [a, b]. Then the function F is

approximately differentiable almost everywhere on [a, b] and F ′
ap = f

almost everywhere on [a, b].

Theorem 3.3. Let f : [a, b] → X and let c ∈ (a, b).
(a) If f is ap-Denjoy integrable on [a, b], then f is ap-Denjoy inte-

grable on every subinterval of [a, b].
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(b) If f is ap-Denjoy integrable on each of the intervals [a, c] and [c, b],
then f is ap-Denjoy integrable on [a, b] and

(AD)
∫ b

a
f = (AD)

∫ c

a
f + (AD)

∫ b

c
f.

Proof. (a) Let [c, d] be any subinterval on [a, b]. Let F (x) = (AD)
∫ x
a f

for each x ∈ [a, b]. Since F is an AL function on [a, b] and F ′
ap = f almost

everywhere on [a, b], F is an AL function on [c, d] and F ′
ap = f almost

everywhere on [c, d]. Hence, f is ap-Denjoy integrable on [c, d].
(b) Since f is ap-Denjoy integrable on each of intervals [a, c] and [c, b],

there exist AL functions F and G such that F ′
ap = f almost everywhere

on [a, c] and G′
ap = f almost everywhere on [c, b] respectively. Define

H : [a, b] → X by

H(x) =
{

F (x),

F (c) + G(x),

if x ∈ [a, c];

if x ∈ (c, b].

Then H is an AL function on [a, b] and H ′
ap = f almost everywhere on

[a, b]. Hence f is ap-Denjoy integrable on [a, b] and H(b) = F (c)+G(b),
i.e.,

(AD)
∫ b

a
f = (AD)

∫ c

a
f + (AD)

∫ b

c
f

We can easily get the following theorem.

Theorem 3.4. Suppose that f and g are ap-Denjoy integrable on
[a, b]. Then

(a) kf is ap-Denjoy integrable on [a, b] and (AD)
∫ b
a kf = k(AD)

∫ b
a f

for each k ∈ R,

(b) f + g is ap-Denjoy integrable on [a, b] and (AD)
∫ b
a (f + g) =

(AD)
∫ b
a f + (AD)

∫ b
a g.

Theorem 3.5. A function f : [a, b] → X is ap-Denjoy integrable on
[a, b] if and only if there exists an ACGs function F on [a, b] such that
F ′

ap = f almost everywhere on [a, b].

Proof. Suppose that there exists an ACGs function F on [a, b] such
that F ′

ap = f almost everywhere on [a, b]. Then F is an AL function by
Theorem 3.1. Hence, f is ap-Denjoy integrable on [a, b].

Conversely, suppose that f is ap-Denjoy integrable on [a, b] and let
F (x) = (AD)

∫ x
a f for each x ∈ [a, b]. Then F is an AL function such
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that F ′
ap = f almost everywhere on [a, b]. Let E = {x ∈ [a, b] : F ′

ap(x) 6=
f(x)}. Then |E| = 0. Since F is an AL function, F is ACs on E. For
each positive integer n, let

En = {x ∈ [a, b]− E : n− 1 ≤ ‖f(x)‖ < n}.
Fix n and let ε > 0. Since F is approximately differentiable for each

x ∈ En, there exist a measurable set Ax containing x as a point of
density and a positive number δx such that∥∥∥F (y)− F (x)

y − x
− f(x)

∥∥∥ < ε

i.e.,
‖F (y)− F (x)− f(x)(y − x)‖ < ε|y − x|,

if y ∈ Ax ∩ (x− δx, x + δx). For each x ∈ En, let

Sx = Ax ∩ (x− δx, x + δx)
Then S = {Sx : x ∈ En} is a choice En. Suppose that P is a finite
collection of non-overlapping tagged intervals that is En-subordinate to
S and satisfies µ(P) < ε

n . Then since ‖F (P)− f(P)‖ < εµ(P), we have

‖F (P)‖ ≤ ‖F (P)− f(P)‖+ ‖f(P)‖
< εµ(P) + nµ(P)

< (b− a + 1)ε

Hence, F is ACs on En. Since [a, b] = [∪∞n=1En] ∪ E, F is ACGs on
[a, b].

Theorem 3.6. Let f : [a, b] → X be ap-Denjoy integrable on [a, b]
and let F (x) = (AD)

∫ x
a f for each x ∈ [a, b]. Then F is approximately

continuous on [a, b].

Proof. From the definition of the ap-Denjoy integral, F is approxi-
mately differentiable almost everywhere on [a, b]. Let E be the set of all
non-differentiable points in [a, b]. Then E is a measurable set of measure
zero. Since F is approximately continuous on [a, b]−E, it is sufficient to
show that F is approximately continuous on E. Let c ∈ E and let ε > 0.
Since F is an AL function, there exists a choice S = {Sx : x ∈ E} such
that ‖(P)

∑
F (I)‖ < ε for every finite collection P of non-overlapping

tagged intervals that is E-subordinate to S. If x ∈ Sc ∩ (c − η, c + η)
for some η > 0, then the tagged interval (c, [c, x])(or(c, [x, c])) is E-
subordinate to S. Hence, ‖F (x)− F (c)‖ = ‖F ([c, x])‖ < ε. This shows
that F is approximately continuous on E.
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From Theorem 2.7 and 3.5, we can get the following result.

Theorem 3.7. If a function f : [a, b] → X is ap-Denjoy integrable
on [a, b], then f is ap-Henstock integrable on [a, b].
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