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ANALYTIC OPERATOR-VALUED GENERALIZED
FEYNMAN INTEGRALS ON FUNCTION SPACE

Seung Jun Chang* and Il Yong Lee**

Abstract. In this paper we use a generalized Brownian motion
process to defined an analytic operator-valued generalized Feynman
integral. We then obtain explicit formulas for the analytic operator-
valued generalized Feynman integrals for functionals of the form

F (x) = f

( ∫ T

0

α1(t)dx(t), · · · ,

∫ T

0

αn(t)dx(t)

)
,

where x is a continuous function on [0, T ] and {α1, · · · , αn} is an
orthonormal set of functions from (L2

a,b[0, T ], ‖ · ‖a,b).

1. Introduction

Since the Feynman integral was introduced by R. P. Feynman in 1948,
there has been considerable progress on the Feynman integration theory.
In [1], Cameron and Storvick introduced the analytic operator-valued
function space “Feynman integral”, Jan

q (F ), which mapped an L2(R)
function ψ into an L2(R) function (Jan

q (F )ψ) on the classical Wiener
space C0[0, T ].

The function space Ca,b[0, T ] induced by generalized Brownian motion
process was introduced by J. Yeh in [6] and was used extensively by
Chang and Chung in [3]. In [2, 4], the authors defined a generalized
analytic Feynman integral and a generalized Fourier-Feynman transform
on Ca,b[0, T ] and studied their properties and related topics.
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In this paper we use a generalized Brownian motion process to define
the analytic operator-valued generalized Feynman integral. We then ob-
tain explicit formulas for the generalized analytic operator-valued Feyn-
man integrals of functionals of the form

F (x) = f

( ∫ T

0
α1(t)dx(t), · · · ,

∫ T

0
αn(t)dx(t)

)
where x is a continuous function on [0, T ] and {α1, · · · , αn} is an or-
thonormal set of functions from (L2

a,b[0, T ], ‖ · ‖a,b). We also give several
examples for our results. The Wiener process used in [1] is free of drift
and is stationary in time while the stochastic process used in this pa-
per as well as in [2-4, 6] is nonstationary in time, is subject to a drift
a(t), and can be used to explain the position of the Ornstein-Uhlenbeck
process in an external force field [5].

2. Definitions and preliminaries

Let D = [0, T ] and let (Ω,B, P ) be a probability measure space. A
real-valued stochastic process Y on (Ω,B, P ) and D is called a gener-
alized Brownian motion process if Y (0, ω) = 0 almost everywhere and
for 0 = t0 < t1 < · · · < tn ≤ T , the n-dimensional random vector
(Y (t1, ω), · · · , Y (tn, ω)) is normally distributed with the density func-
tion

K(~t, ~η) =
(
(2π)n

n∏
j=1

(b(tj)− b(tj−1))
)−1/2

· exp
{
−1

2

n∑
j=1

((ηj − a(tj))− (ηj−1 − a(tj−1)))2

b(tj)− b(tj−1)

}
,

(2.1)

where ~η = (η1, · · ·, ηn), η0 = 0, ~t = (t1, · · · , tn), a(t) is an absolutely
continuous real-valued function on [0, T ] with a(0) = 0, a′(t) ∈ L2[0, T ],
and b(t) is a strictly increasing, continuously differentiable real-valued
function with b(0) = 0 and b′(t) > 0 for each t ∈ [0, T ].

As explained in [7, pp.18-20], Y induces a probability measure µ on
the measurable space (RD,BD) where RD is the space of all real-valued
functions x(t), t ∈ D, and BD is the smallest σ-algebra of subsets of RD

with respect to which all the coordinate evaluation maps et(x) = x(t)
defined on RD are measurable. The triple (RD,BD, µ) is a probability
measure space. This measure space is called the function space induced
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by the generalized Brownian motion process Y determined by a(·) and
b(·).

We note that the generalized Brownian motion process Y determined
by a(·) and b(·) is a Gaussian process with mean function a(t) and co-
variance function r(s, t) = min{b(s), b(t)}. By Theorem 14.2 [7, p.187],
the probability measure µ induced by Y , taking a separable version, is
supported by Ca,b[0, T ] (which is equivalent to the Banach space of con-
tinuous functions x on [0, T ] with x(0) = 0 under the sup norm). Hence
(Ca,b[0, T ],B(Ca,b[0, T ]), µ) is the function space induced by Y where
B(Ca,b[0, T ]) is the Borel σ-algebra of Ca,b[0, T ].

A subset B of Ca,b[0, T ] is said to be scale-invariant measurable
(s.i.m.) if ρB is B(Ca,b[0, T ])-measurable for all ρ > 0, and a scale-
invariant measurable set N is said to be a scale-invariant null set if
µ(ρN) = 0 for all ρ > 0. A property that holds except on a scale-
invariant null set is said to hold scale-invariant almost everywhere (s-
a.e.). If two functionals F and G defined on Ca,b[0, T ] are equal s-a.e.,
then we write F ≈ G.

Let L2
a,b[0, T ] be the set of functions on [0, T ] which are Lebesgue

measurable and square integrable with respect to the Lebesgue-Stieltjes
measures on [0, T ] induced by a(·) and b(·); i.e.,

L2
a,b[0, T ]

=
{
v :

∫ T

0
v2(s)db(s) <∞ and

∫ T

0
v2(s)d|a|(s) <∞

}(2.2)

where |a|(t) denotes the total variation of the function a on the interval
[0, t].

For u, v ∈ L2
a,b[0, T ], let

(2.3) (u, v)a,b =
∫ T

0
u(t)v(t)d[b(t) + |a|(t)].

Then (·, ·)a,b is an inner product on L2
a,b[0, T ] and ‖u‖a,b =

√
(u, u)a,b is

a norm on L2
a,b[0, T ]. In particular, note that ‖u‖a,b = 0 if and only if

u(t) = 0 a.e. on [0, T ]. Furthermore, (L2
a,b[0, T ], ‖ · ‖a,b) is a separable

Hilbert space. Let {φj}∞j=1 be a complete orthonormal set of real-valued
functions of bounded variation on [0, T ] such that

(φj , φk)a,b =

{
0 , j 6= k

1 , j = k
.
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Then for each v ∈ L2
a,b[0, T ], the Paley-Wiener-Zygmund(PWZ) stochas-

tic integral 〈v, x〉 is defined by the formula

(2.4) 〈v, x〉 = lim
n→∞

∫ T

0

n∑
j=1

(v, φj)a,bφj(t)dx(t)

for all x ∈ Ca,b[0, T ] for which the limit exists; one can show that for
each v ∈ L2

a,b[0, T ], the PWZ stochastic integral 〈v, x〉 exists for µ-a.e.
x ∈ Ca,b[0, T ] and is a Gaussian random variable on Ca,b[0, T ] with mean∫ T
0 v(s)da(s) and variance

∫ T
0 v2(s)db(s). If v is of bounded variation on

[0, T ], then the PWZ integral 〈v, x〉 equals the Riemann-Stieltjes integral∫ T
0 v(t)dx(t) for µ-a.e. x ∈ Ca,b[0, T ]. For more details, see [4]. We next

give the definition of the analytic operator-valued function space integral
as an element of L(L2(R), L2(R)).

Throughout this paper, let C be the set of complex numbers, C+ =
{λ ∈ C : Re(λ) > 0}. Let C[0, T ] denote the space of real-valued
continuous functions x on [0, T ]. Let F be a functional from C[0, T ] to
C. For each λ > 0, ψ ∈ L2(R) and ξ ∈ R, assume that F (λ−1/2x +
ξ)ψ(λ−1/2x(T ) + ξ) is µ-integrable with respect to x on Ca,b[0, T ], and
let

(2.5) (Iλ(F )ψ)(ξ) =
∫

Ca,b[0,T ]
F (λ−1/2x+ ξ)ψ(λ−1/2x(T ) + ξ)dµ(x).

If Iλ(F )ψ is in L2(R) as a function of ξ and if the correspondence
ψ → Iλ(F )ψ gives an element of L ≡ L(L2(R), L2(R)), the space of con-
tinuous linear operators from L2(R) to L2(R), we say that the operator-
valued function space integral Iλ(F ) exists. Next, suppose there exists
an L-valued function which is analytic in C+ and agrees with Iλ(F ) on
(0,∞) ; then this L-valued function is denoted by Ian

λ (F ) and is called
the analytic operator-valued function space integral of F associated with
λ.

The following notations are used throughout this paper:

(2.6) Ah ≡
∫ T

0
h(t)da(t) and Bh ≡

∫ T

0
h2(t)db(t)

for h ∈ L2
a,b[0, T ]. Furthermore, for all C+,

√
λ = λ1/2 is always chosen

to have positive real part.
Let {α1, · · · , αn} be an orthonormal set of functions from (L2

a,b[0, T ], ‖·
‖a,b) and for j ∈ {1, · · · , n}, let Aj ≡ Aαj and Bj ≡ Bαj . Note that
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for any h ∈ L2
a,b[0, T ], Bh is always positive, while Ah may be positive,

negative or zero.
Next we state a fundamental integration formula for the function

space Ca,b[0, T ].

Theorem 2.1. Let {α1, · · · , αn} be an orthonormal set of functions
from (L2

a,b[0, T ], ‖ · ‖a,b). Let f : Rn → C be Lebesgue measurable, and
let

F (x) = f(〈α1, x〉, · · · , 〈αn, x〉) ≡ f(〈~α, x〉).
Then

(2.7)

E[F ] ≡
∫

Ca,b[0,T ]
f(〈~α, x〉)dµ(x)

=
( n∏

j=1

1
2πBj

) 1
2
∫

Rn

f(~u) exp
{
−

n∑
j=1

[uj −Aj ]2

2Bj

}
d~u

in the sense that if either side exists, both sides exist and equality holds.

3. Analytic operator-valued function space integral of finite
dimensional functionals

Let {α1, · · · , αn} be an orthonormal set of L2
a,b[0, T ] where αj is of

bounded variation on [0, T ]. Let F : C[0, T ] → C be given by

(3.1) F (x) = f

( ∫ T

0
α1(t)dx(t), · · · ,

∫ T

0
αn(t)dx(t)

)
,

where f : Rn → C is a Lebesgue measurable function. In this case, we
see that for x ∈ Ca,b[0, T ], ρ > 0 and ξ ∈ R,

(3.2) F (ρx+ ξ) = f(ρ〈α1, x〉, · · · , ρ〈αn, x〉).

We also note that for each x ∈ Ca,b[0, T ],

(3.3) x(T ) = 〈1, x〉 =
n∑

j=1

(1, αj)a,b〈αj , x〉+ 〈p, x〉

where

(3.4) p = 1−
n∑

j=1

(1, αj)a,bαj

is an element of (span{α1, · · · , αn})⊥.
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Throughout this section we will use the following notation for conve-
nience; for λ ∈ C̃+ and p ∈ L2

a,b[0, T ], let

K(λ; p) =
(

λ

2πBp

n∏
j=1

λ

2πBj

) 1
2

and

H(λ; ~u, un+1) ≡ H(λ; ~u)×H(λ;un+1)

= exp
{
−

n∑
j=1

[
√
λuj −Aj ]2

2Bj

}
exp

{
− [

√
λun+1 −Ap]2

2Bp

}
.

Theorem 3.1. Let F be given by equation (3.1) with

(3.5)
∫

Rn

|f(~u)|2 exp
{
−

n∑
j=1

[
√
λuj −Aj ]2

2Bj

}
d~u <∞.

Then the analytic operator-valued function space integral of F , Ian
λ (F )

exists for all λ ∈ C+ and is given by the formula
(3.6)

(Ian
λ (F )ψ)(ξ) = K(λ; p)

∫
R

∫
Rn

f(~u)

· ψ
( n∑

j=1

(1, αj)a,buj + un+1 + ξ

)
H(λ; ~u, un+1)d~udun+1

where p is given by equation (3.4).

Proof. First note that {α1, · · · , αn, p/‖p‖a,b} is an orthonormal set in
L2

a,b[0, T ]. Using equations (2.5), (3.2), (3.3) and (2.7), we obtain that
for all λ > 0 and ξ ∈ R
(3.7)
(Iλ(F )ψ)(ξ)

=
∫

Ca,b[0,T ]
F (λ−1/2x+ ξ)ψ(λ−1/2x(T ) + ξ)dµ(x)

=
∫

Ca,b[0,T ]
f(λ−1/2〈α1, x〉, · · · , λ−1/2〈αn, x〉)

· ψ
(
λ−1/2

n∑
j=1

(1, αj)a,b〈αj , x〉+ λ−1/2‖p‖a,b〈p/‖p‖a,b, x〉+ ξ

)
dµ(x)
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= K(λ; p/‖p‖a,b)
∫

R

∫
Rn

f(~u)ψ
( n∑

j=1

(1, αj)a,buj + ‖p‖a,bun+1 + ξ

)

· exp
{
−

n∑
j=1

[
√
λuj −Aj ]2

2Bj
−

[
√
λun+1 −Ap/‖p‖a,b

]2

2Bp/‖p‖a,b

}
d~udun+1

= K(λ; p)
∫

R

∫
Rn

f(~u)ψ
( n∑

j=1

(1, αj)a,buj + un+1 + ξ

)

· exp
{
−

n∑
j=1

[
√
λuj −Aj ]2

2Bj
− [

√
λun+1 −Ap]2

2Bp

}
d~udun+1.

Note that for λ ∈ C+,
√
λ = c + di with c2 − d2 > 0. Then for each

f with
∫

Rn |f(~u)|2 exp{−
∑n

j=1
[
√

λuj−Aj ]
2

2Bj
}d~u < ∞ and ψ ∈ L2(R), we

obtain that
(3.8)∣∣∣∣ ∫

R

∫
Rn

f(~u)ψ
( n∑

j=1

(1, αj)a,buj + un+1 + ξ

)
H(λ; ~u, un+1)d~udun+1

∣∣∣∣
≤

∫
Rn

|f(~u)|H(λ : ~u)∫
R

∣∣∣∣ψ( n∑
j=1

(1, αj)a,buj + un+1 + ξ

)∣∣∣∣H(λ;un+1)dun+1d~u

≤
∫

Rn

|f(~u)|H(λ : ~u)
( ∫

R
H(λ;un+1)dun+1

) 1
2

( ∫
R

∣∣∣∣ψ( n∑
j=1

(1, αj)a,buj + un+1 + ξ

)∣∣∣∣2H(λ;un+1)dun+1

) 1
2

d~u

≤
[ ∫

Rn

|f(~u)|2H(λ; ~u)( ∫
R

∣∣∣∣ψ( n∑
j=1

(1, αj)a,buj + un+1 + ξ

)∣∣∣∣2H(λ;un+1)dun+1

)
d~u

] 1
2

( ∫
Rn

H(λ; ~u)d~u
) 1

2
( ∫

R
H(λ;un+1)dun+1

) 1
2

.

Therefore, we have

(3.9) ‖Ian
λ (F )ψ‖2

2
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≤M1M2

∫
R

∫
Rn

∫
R
|f(~u)|2H(λ; ~u)∣∣∣∣ψ( n∑

j=1

(1, αj)a,buj + un+1 + ξ

)∣∣∣∣2H(λ;un+1)dun+1d~udξ

≤M2
1M2‖ψ‖2

2

∫
Rn

|f(~u)|2H(λ; ~u)d~u

where

(3.10) M1 =
∫

R
H(λ;un+1)dun+1 and M2 =

∫
Rn

H(λ; ~u)d~u.

Therefore, for all λ ∈ C+, we have

‖Ian
λ (F )‖ ≤M1M

1/2
2

( ∫
Rn

|f(~u)|2H(λ; ~u)d~u
)1/2

.

Hence we complete the proof as desired.

4. Analytic operator-valued generalized Feynman integral

In this section we study the analytic operator-valued generalized
Feynman integral of functional F given by equation (3.1). We first
give the existence of the analytic operator-valued generalized Feynman
integral.

Let Ian
λ (F ) be the analytic operator-valued function space integral.

Suppose there exists an operator Jan
q (F ) in L(L2(R, νδ), L2(R, ν−σ)) for

some δ, σ > 0 such that

(4.1) ‖Ian
λ (F )ψ − Jan

q (F )ψ‖L2(R,ν−σ) → 0

as λ → −iq through C+where ν is a measure on B(R) with dνδ =
exp{δη2}dη; then Jan

q (F ) is called the analytic operator-valued general-
ized Feynman integral of F with parameter q.

Fix q ∈ R − {0}. Then as λ → −iq through values in C+, c =
Re(

√
λ) →

√
|q|/2 and d = Im(

√
λ) →

√
|q|/2. Then for all λ ∈ C̃+,√

λ = c+ di with c2 − d2 > 0

(4.2)

|H(λ;u1, · · · , un, un+1)|

= exp
{
−

n∑
j=1

[(c2 − d2)u2
j − 2cAjuj +A2

j ]
2Bj

−
[(c2 − d2)u2

n+1 − 2cApun+1 +A2
p]

2Bp

}
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≤ exp
{ n∑

j=1

cAjuj

Bj
+
cApun+1

Bp

}

≤ exp
{ n∑

j=1

√
|q||Ajuj |
Bj

+

√
|q||Apun+1|

Bp

}
.

Theorem 4.1. Let F be given by equation (3.1) with

(4.3)
∫

Rn

|f(~u)| exp
{ n∑

j=1

√
|q||Ajuj |
Bj

}
d~u <∞

for q ∈ R−{0}. Then the analytic operator-valued generalized Feynman
integral of F , Jan

q (F ) exists and is given by the formula
(4.4)

(Jan
q (F )ψ)(ξ) = K(−iq; p)

∫
R

∫
Rn

f(~u)

· ψ
( n∑

j=1

(1, αj)a,buj + un+1 + ξ

)
H(−iq; ~u, un+1)d~udun+1

where p is given by equation (3.4).

Proof. By using equations (4.2) and (4.3), we have for all ψ ∈ L2(R, νδ)
(4.5)∣∣∣∣ ∫

R

∫
Rn

f(~u)ψ
( n∑

j=1

(1, αj)a,buj + un+1 + ξ

)
H(−iq; ~u, un+1)d~udun+1

∣∣∣∣
≤

∫
Rn

|f(~u)| exp
{ n∑

j=1

√
|q||Ajuj |
Bj

}
∫

R

∣∣∣∣ψ( n∑
j=1

(1, αj)a,buj + un+1 + ξ

)∣∣∣∣ exp
{√

|q||Apun+1|
Bp

}
dun+1d~u

≤
∫

Rn

|f(~u)| exp
{ n∑

j=1

√
|q||Ajuj |
Bj

}
( ∫

R
exp

{
2
√
|q||Apun+1|
Bp

−
δu2

n+1

2

}
dun+1

) 1
2
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( ∫
R

∣∣∣∣ψ( n∑
j=1

(1, αj)a,buj + un+1 + ξ

)∣∣∣∣2 exp
{
δu2

n+1

2

}
dun+1

) 1
2

d~u

= M
1/2
1 ‖ψ‖L2(R,νδ)

∫
Rn

|f(~u)| exp
{ n∑

j=1

√
|q||Ajuj |
Bj

}
d~u

where

M1 =
∫

R
exp

{
2
√
|q||Apun+1|
Bp

−
δu2

n+1

2

}
dun+1.

Therefore we have
(4.6)
‖Jan

q (F )ψ‖2
L2(R,ν−σ)

≤M1‖ψ‖2
L2(R,νδ)

∫
R

( ∫
Rn

|f(~u)| exp
{ n∑

j=1

√
|q||Ajuj |
Bj

}
d~u

)2

dν−σ(ξ)

and

‖Jan
q (F )‖ ≤M

1/2
1

( ∫
Rn

|f(~u)| exp
{ n∑

j=1

√
|q||Ajuj |
Bj

}
d~u

)
.

To show that Jan
q (F ) exists and is given by equation (4.4) it suffices to

show that

(4.7) lim
λ→−iq

∫
R

∣∣∣∣(Ian
λ (F )ψ)(ξ)− (Jan

q (F )ψ)(ξ)
∣∣∣∣2dν−σ(ξ) = 0.

But for all λ ∈ C+,
√
λ = c+ di with c2 − d2 > 0,

(4.8)∣∣∣∣ ∫
R

∫
Rn

f(~u)ψ
( n∑

j=1

(1, αj)a,buj + un+1 + ξ

)
H(λ; ~u, un+1)d~udun+1

−
∫

R

∫
Rn

f(~u)ψ
( n∑

j=1

(1, αj)a,buj + un+1 + ξ

)
H(−iq; ~u, un+1)d~udun+1

∣∣∣∣2
≤ 2

∣∣∣∣ ∫
R

∫
Rn

f(~u)ψ
( n∑

j=1

(1, αj)a,buj + un+1 + ξ

)
H(λ; ~u, un+1)d~udun+1

∣∣∣∣2
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+ 2
∣∣∣∣ ∫

R

∫
Rn

f(~u)ψ
( n∑

j=1

(1, αj)a,buj + un+1 + ξ

)
H(−iq; ~u, un+1)d~udun+1

∣∣∣∣2
≤ 2

( ∫
Rn

|f(~u)| exp
{ n∑

j=1

cAjuj

Bj

}
( ∫

R
exp

{
−
δu2

n+1

2Bp
+

2cApun+1

Bp

}
dun+1

) 1
2

( ∫
R

∣∣∣∣ψ( n∑
j=1

(1, αj)a,buj + un+1 + ξ

)∣∣∣∣2 exp
{
δu2

n+1

2Bp

}
dun+1

) 1
2

d~u

)2

+ 2
( ∫

R2

|f(~u)| exp
{ n∑

j=1

√
−iqAjuj

Bj

}
( ∫

R
exp

{
−
δu2

n+1

2Bp
+

2
√
−iqApun+1

Bp

}
dun+1

) 1
2

( ∫
R

∣∣∣∣ψ( n∑
j=1

(1, αj)a,buj + un+1 + ξ

)∣∣∣∣2 exp
{
δu2

n+1

2Bp

}
dun+1

) 1
2

d~u

)2

= 4‖ψ‖L2(R,νδ)M1

( ∫
Rn

|f(~u)| exp
{ n∑

j=1

cAjuj

Bj

}
d~u

)2

.

Hence by using equations (3.8), (4.5) and the Dominated Convergence
Theorem, we have the desired result.

In the following example, we exhibit the analytic operator-valued
generalized Feynman integral Jan

q (F ).

Example 4.2. Let f(u1, u2) = exp{−(u2
1 + u2

2)} and let

F (x) = f

( ∫ T

0
α1(t)dx(t),

∫ T

0
α2(t)dx(t)

)
where α ≡ α1(t) = (b(T ) + |a|(T ))−1/2 and {α1, α2} are orthonormal.
Then the analytic operator-valued generalized Feynman integral of F ,
Jan

q (F ) exists and is given by the formula

(Jan
q (F )ψ)(ξ)

=
( 2∏

j=1

−iq
2πBj

) 1
2
∫

R2

exp{−(u2
1 + u2

2)}ψ(α−1u1 + ξ)
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· exp
{
−

2∑
j=1

[
√
−iquj −Aj ]2

2Bj

}
du1du2

=
(

−iq
2B2 − iq

) 1
2

exp
{

(−iq)A2
2(2B2 + iq)

2B2(4B2
2 + q2)

}
·
(
−iq

2πB1

) 1
2
∫

R
ψ(α−1u1 + ξ) exp

{
− u2

1 −
[
√
−iqu1 −A1]2

2B1

}
du1.
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