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ANALYTIC OPERATOR-VALUED GENERALIZED
FEYNMAN INTEGRALS ON FUNCTION SPACE

SEUNG JUN CHANG* AND IL YONG LEE**

ABSTRACT. In this paper we use a generalized Brownian motion
process to defined an analytic operator-valued generalized Feynman
integral. We then obtain explicit formulas for the analytic operator-
valued generalized Feynman integrals for functionals of the form

Fla) :f(/OTal(t)dx(t),~-~ ,/OTan(t)da:(t)),

where z is a continuous function on [0,7] and {a1, - ,an} is an
orthonormal set of functions from (L2 ,[0, 7], || - |la.s)-

1. Introduction

Since the Feynman integral was introduced by R. P. Feynman in 1948,
there has been considerable progress on the Feynman integration theory.
In [1], Cameron and Storvick introduced the analytic operator-valued
function space “Feynman integral”, Ji*(F'), which mapped an L?(R)
function ¢ into an L*(R) function (J2*(F)v) on the classical Wiener
space Cy[0,T7.

The function space C, [0, T'] induced by generalized Brownian motion
process was introduced by J. Yeh in [6] and was used extensively by
Chang and Chung in [3]. In [2, 4], the authors defined a generalized
analytic Feynman integral and a generalized Fourier-Feynman transform
on Cyp[0,T] and studied their properties and related topics.
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In this paper we use a generalized Brownian motion process to define
the analytic operator-valued generalized Feynman integral. We then ob-
tain explicit formulas for the generalized analytic operator-valued Feyn-
man integrals of functionals of the form

Plz) = f</OT on(t)dz (1), - - ,/OT an(t)dfc(t)>

where z is a continuous function on [0,7] and {ay,---,ay,} is an or-
thonormal set of functions from (LZ’b[O, T) | - |la,p). We also give several
examples for our results. The Wiener process used in [1] is free of drift
and is stationary in time while the stochastic process used in this pa-
per as well as in [2-4, 6] is nonstationary in time, is subject to a drift
a(t), and can be used to explain the position of the Ornstein-Uhlenbeck
process in an external force field [5].

2. Definitions and preliminaries

Let D = [0,7T] and let (€2, B, P) be a probability measure space. A
real-valued stochastic process Y on (2,8, P) and D is called a gener-
alized Brownian motion process if Y (0,w) = 0 almost everywhere and
for 0 =ty < t1 < --- < t, <T, the n-dimensional random vector
(Y(t1,w), - ,Y(ty,w)) is normally distributed with the density func-
tion

(b(t;) — b(t;1)))

=

K(&,7) = ((2n)"
(2.1)

J
{ 1
- exp —5

where 7 = (1, - 7n), Mo = 0, t = (t1,--- ,tn), a(t) is an absolutely
continuous real-valued function on [0, 7] with a(0) = 0, a/(t) € L?[0,TY,
and b(t) is a strictly increasing, continuously differentiable real-valued
function with 5(0) = 0 and ¥'(¢) > 0 for each t € [0, T].

As explained in [7, pp.18-20], Y induces a probability measure p on
the measurable space (R?, BP) where R” is the space of all real-valued
functions x(t), t € D, and BY is the smallest o-algebra of subsets of R”
with respect to which all the coordinate evaluation maps e;(z) = z(t)
defined on RP are measurable. The triple (RD ,BP. ) is a probability
measure space. This measure space is called the function space induced

((m; — a(t;)) — (nj—1 — a(tj1)))2}
- b(t;) — b(tj-1) ’
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by the generalized Brownian motion process Y determined by a(-) and
b(+).

We note that the generalized Brownian motion process Y determined
by a(-) and b(-) is a Gaussian process with mean function a(t) and co-
variance function 7(s,t) = min{b(s),b(t)}. By Theorem 14.2 [7, p.187],
the probability measure p induced by Y, taking a separable version, is
supported by Cq [0, T] (which is equivalent to the Banach space of con-
tinuous functions x on [0, 7] with z(0) = 0 under the sup norm). Hence
(Capl0,T7, B(Cyp]0,T7), 1) is the function space induced by Y where
B(Cq[0,T]) is the Borel o-algebra of C, [0, T].

A subset B of Cy[0,T] is said to be scale-invariant measurable
(sim.) if pB is B(Cgp[0,T])-measurable for all p > 0, and a scale-
invariant measurable set /N is said to be a scale-invariant null set if
w(pN) = 0 for all p > 0. A property that holds except on a scale-
invariant null set is said to hold scale-invariant almost everywhere (s-
a.e.). If two functionals F' and G defined on C, ;[0,T] are equal s-a.e.,
then we write F' =~ G.

Let L2,[0,7] be the set of functions on [0,7] which are Lebesgue
measurable and square integrable with respect to the Lebesgue-Stieltjes
measures on [0, 7] induced by a(-) and b(-); i.e.,

L [0, 7]
= {v : /OT v?(s)db(s) < oo and /OT v (s)d|a|(s) < oo}

where |a|(t) denotes the total variation of the function a on the interval
[0,¢].
For u,v € L?,[0,T), let

(2.2)

T
(2.3) (U, 0)gp = /0 u(t)v(t)d[b(t) + |a|(t)]-

Then (-,-)q, is an inner product on Lib[O, T) and |[ullap = /(u, w)qp is
a norm on L?L’b[O,T]. In particular, note that ||u[|,p = 0 if and only if
u(t) = 0 a.e. on [0,7]. Furthermore, (szb[O,T], | - [la,p) is & separable
Hilbert space. Let {¢; };’il be a complete orthonormal set of real-valued
functions of bounded variation on [0, 7] such that

0 ,J7#k

(¢4, Pk)ap = {1 ik
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Then for each v € L2 [0, T, the Paley-Wiener-Zygmund(PWZ) stochas-
tic integral (v, x) is defined by the formula

T n
(2.4) (v,x) = lim ; Z(%@)a,b%‘(t)dw(t)
j=1

for all x € C,[0,T] for which the limit exists; one can show that for
each v € Liyb[O,T], the PWZ stochastic integral (v,z) exists for p-a.e.
x € Cyp[0,T] and is a Gaussian random variable on C, ;[0, T'] with mean
fOT v(s)da(s) and variance fOT v2(s)db(s). If v is of bounded variation on
[0, 77, then the PWZ integral (v, ) equals the Riemann-Stieltjes integral
fOT v(t)dx(t) for p-a.e. © € Cqpl0,T]. For more details, see [4]. We next
give the definition of the analytic operator-valued function space integral
as an element of £(L?(R), L?(R)).

Throughout this paper, let C be the set of complex numbers, C; =
{A € C : Re(\) > 0}. Let C[0,7] denote the space of real-valued
continuous functions x on [0,7]. Let F' be a functional from C[0,7] to
C. For each A > 0, 1 € L*(R) and ¢ € R, assume that F(A\~Y2z +
EY(ATV22(T) + €) is p-integrable with respect to z on C, [0, T], and
let

25) ((F))(©) = / FOY22 + (A Y2(T) + E)dp().

Ca,b[ovT]
If I\(F)y is in L?(R) as a function of ¢ and if the correspondence
Y — I\(F)1 gives an element of £ = L(L?(R), L?(R)), the space of con-
tinuous linear operators from L?(R) to L?(R), we say that the operator-
valued function space integral I(F') exists. Next, suppose there exists
an L-valued function which is analytic in C; and agrees with I (F') on
(0,00) ; then this £-valued function is denoted by I§"(F') and is called
the analytic operator-valued function space integral of F' associated with
A
The following notations are used throughout this paper:

T T
(2.6) Ay = / h(t)da(t) and By = / B2 (#)db(t)
0 0
for h € Lib[(), T]. Furthermore, for all C,, v/ A = /2 is always chosen
to have positive real part.
Let {a1, - ,a,} be an orthonormal set of functions from (L2 [0, T7, ||-
lap) and for j € {1,--- ,n}, let A; = A,, and B; = B,,. Note that
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for any h € Lib[(),T], By, is always positive, while A, may be positive,
negative or zero.

Next we state a fundamental integration formula for the function
space Cq [0, T7.

THEOREM 2.1. Let {aq,--- ,an} be an orthonormal set of functions
from (L2 ,]0,T), || - |lap). Let f:R™ — C be Lebesgue measurable, and
let

F(.%’) = f(<0417$>> T 7<O‘n7$>) = f(<627x>)
Then

(2.7)

TR ) "y = AP
:(H%Bj) Rnf(u)eXp{_ jQBjj }du

in the sense that if either side exists, both sides exist and equality holds.

3. Analytic operator-valued function space integral of finite
dimensional functionals

Let {1, -+ ,an} be an orthonormal set of L?,[0, 7] where a; is of
bounded variation on [0,T]. Let F : C[0,T] — C be given by

(3.1) Fla) = f</0T an(t)dz (1), - - ,/OT an(t)dx(t)),

where f : R® — C is a Lebesgue measurable function. In this case, we
see that for z € Cy[0,7], p > 0 and £ € R,

We also note that for each = € C,;[0, T,

n

(3:3) 2(T) = (Lz) =Y (1,a))ap(aj,z) + (p, )
where

(3.4) p=1-=) (L, aj)ape;

is an element of (span{ay, -, an})—.
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Throughout this section we will use the following notation for conve-
nience; for A € C; and p € Lib[(), T, let

1
A o N \?

K(\;p) =
()\7]9) (27‘(’Bp o 27rBj)

and

H (X U ung1) = H(A @) x H(A; Un+1)

ep{ - S A AR o (| hy — A

Jj=1

THEOREM 3.1. Let F' be given by equation (3.1) with

an [ @res{ -3 MU o

=1

Then the analytic operator-valued function space integral of F', I{"(F)
exists for all A € C and is given by the formula
(3.6)

@ ENE =K [ [ (@)
R JR®
0 ( Z(]-a Qj)aplj + Ung1 + 5) H (N @, up 1) diidug, 11
j=1
where p is given by equation (3.4).

Proof. First note that {1, -, an,p/||p|lap} is an orthonormal set in
Lib[O,T]. Using equations (2.5), (3.2), (3.3) and (2.7), we obtain that
for all A > 0 and £ € R
(3.7)

(IN(F))(8)

= / FOY22 + &N 22(T) + €)du(z)
Co.5[0,T]

_/ f(>\_1/2<0é1,.’£>,"- a)\_1/2<ana$>)
Ca b[o T]

w(x”z S (0 a3)aplag, ) + A V2 [pllas 0/ [Pl ) + 5) dy()
j=1
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= KO/ lole) [ [ 00 ( (10051005 + s + )
j=1

-exp{ - En: [VAw; — AP — [VAUn+1 = AP/IIP\\a,b]2

= 25 2Byp/|plla.s

}dﬁdunH

)\ D / o f < (Laj)a,buj + Up41 + 5)

7j=1
= [V = AP [V = A
exp { ]z—; 2B, 2B, dtdun 1.

Note that for A € Cg, VA =c+di Wlth 2 — d? > 0. Then for each
f with [5. | f(@)]* exp{— > i [\f“QJB }du < oo and ¢ € L%(R), we
obtain that

(3.8)

n

f(ﬁ)"(ﬂ( E (1, aj)mbuj + Un+1 + f) H()\; ’U:, un+1)dﬁdun+1
R JR™ .
Jj=1

n

< [ r@iHe:a
(0 ( Z(lv Qj)a bty + Unt1 + E) ‘H()\; Unt1)dUp1dT

JATe>

< [ @i [ a0 )
n R
n 2
1/)<Z(1,aj)a7buj + Upt1 —i—§> H(\; Un+1)dun+1> du

(L2
< [ [ is@paoa)
(L]+(2

(0 < Z(L Qj)ablj + Unt1 + f)

=1

< RHH()\ ;4)d > (/H)\unﬂ)dunH) '

Therefore, we have

(3.9) I3 (F)l3

1
2

2

N

H()\, un+1)dun+1> dﬁ:|

D=
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< [ [ [ir@pao)
"‘p < Z(l’ aj)a,buj + Upt+1 + §>
j=1

QWMWAVWWMWﬁ

where

(3.10) M = / HOtner)duny and My = | H(:@)di.
R Rn

2
H()‘§ un-i-l)dun—i-ldﬁdf

Therefore, for all A € C, we have

1/2
nwwmﬂmd%/mwmww@.

Rn

Hence we complete the proof as desired. ]

4. Analytic operator-valued generalized Feynman integral

In this section we study the analytic operator-valued generalized
Feynman integral of functional F' given by equation (3.1). We first
give the existence of the analytic operator-valued generalized Feynman
integral.

Let I{"(F) be the analytic operator-valued function space integral.
Suppose there exists an operator J2*(F) in L(L*(R,v;), L*(R,v_g)) for
some d,0 > (0 such that

(4.1) 5" (F) Y — @ (E)Yl L2 rp_y) — O

as A — —ig through Ciwhere v is a measure on B(R) with dvs =
exp{dn®}dn; then J3"(F) is called the analytic operator-valued general-
ized Feynman integral of F' with parameter q.

Fix ¢ € R — {0}. Then as A — —ig through values in C;, ¢ =
Re(vVA) — +/]q]/2 and d = Im(v/A) — /|q|/2. Then for all A € C,
VA =c+di with ¢ —d?> >0

|H(>\7 UL, """, Un, un-i—l)’

{ 2 [(¢ = d)uf — 2cAju; + AF)
=expq —

e

i=1

(4.2)

(2 — 22, — 2eAguni + A2
2B,
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n
cA;u; cAyu
§exp{ 7% + P n+1}

j=1 B; By
< exp { Zn: V0dllAjug| N V]l Aptin 1] }
j=1 J B,

THEOREM 4.1. Let F be given by equation (3.1) with

(4.3) /Rn )| exp { Z Vil 4, u]|}

for ¢ € R—{0}. Then the analytic operator-valued generalized Feynman
integral of I, J3"(F') exists and is given by the formula
(4.4)

I EE) = Ki=iaip) [ [ 1@

0 ( 2(17 ) apUj + Unt1 + 5) H (—iq; U, up 1) dtidun 11

j=1
where p is given by equation (3.4).

Proof. By using equations (4.2) and (4.3), we have for all ¢ € L*(R, vs)

‘ / f(a) < > (1, a5)apty + unt1 + 5) H(—iq; @, upt1)didun 11
R JRn

j=1

a5

n

w(Z(l, ) abtty + Un i1 + 5)

j=1

q| ’A u]]}
< exp{
[r@rew{ 30
2+/1q|| Aptin, )
</ exp{ |q||Bpu H' u”+1}dun+1>
R

D 2

V0al|Apun
exp { M’Bpw }duanQ’

p

N|=
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- 2 Su2 4 >
</ d’(Z(la @j)abtj + Unt1 + £> exp {;”}dunH) di
R °
7j=1

A
= M| ||w||L2R,,5)/ exp{zw?l ugl}

where

21/]q]|A Su?
M, — / eXp{ la||Aptnst1| Un+1}dun+1.
R

B, 2
Therefore we have
(4.6)
|’J§H(F)¢H%2(R,y,[,)

) " A\
< Milldlmn [ < /| If(U)IeXp{;Bj”}du> v (€)

and

e < ([ 1@ exp{zm’“f’} )

To show that Ji"(F) exists and is given by equation (4.4) it suffices to
show that

2

(4.7) lim dv_,(&) = 0.

A——iq JR

(LM (EF)P)(E) = (Jg" (F)9)(€)

But for all A € C4, VA = ¢+ di with ¢ — d? > 0,

f ﬁ < (1, ij)mbu]‘ + Up+1 + f) H()\; i, un+1)dﬁdun+1
Rn
7j=1

2

- / f(ﬁW ( Z(lv aj)a,buj + Upt1 + £> H(_iQS u, un—i—l)dﬁdun—&-l
R JR"™

2

R

f < (1> aj)a,buj + Up41 + 5) H(/\, u, unJrl)dﬁdunJrl
7=1
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2
+2

/ f(ﬁ)’l/l < Z(L aj)a,buj + Up41 + 5) H(_iq; , un+1)dﬁdun+1
R JR™

J=1

n

gz(/Rn\fw)rexp{Zc"gj‘”}

Jj=1

Su? 2cAyu 2
+1 pUntl

exp{ — = 4 }du +1)
(/R 2By By "

n 2 su 1 2
Zb(Z(l, Q) abtj + Unt1 + 5) GXP{ 2;; }dunJrl) dﬁ)
p

(LHE

+2</ﬂ{2|f(ﬁ)|e}<p{jz";\/:gw}

J

SuZ ., 2v/—iqApuni 2
__n n diy,
R e

n 2 Su2 ) 1 2
P ( Z(l, Q;j)aptj + Unt1 + f) exp {g}dunﬂ) dﬁ)
P

(LME

R "eAiui) U\
— il ( [ (@les{ 35S0 bai)
" J

=1

Hence by using equations (3.8), (4.5) and the Dominated Convergence
Theorem, we have the desired result. ]

In the following example, we exhibit the analytic operator-valued
generalized Feynman integral Ji"(F).

EXAMPLE 4.2. Let f(u1,us) = exp{—(u? +u3)} and let

Fw = 1( [ i, [ axwo)

where a = o (t) = (b(T) + |a|(T))~"/? and {1, s} are orthonormal.
Then the analytic operator-valued generalized Feynman integral of F,
JJU(F) exists and is given by the formula

(5 (F)E)(E)
2 . %
(o) Lot +ubpotaus+9

Jj=1
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(1]
2l

B3l

4]

[5]

(6]

(7]

*
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2 -
/iau; — A2
. exp{ - Z [ qQéj ]] }du1dU2

j=1

1
—iq 2 o (—iq)A3(2Bs + iq)
9B, —iq) T\ 2B2(4B2 + )

—ig \ Z [Ziour — Aq2
.(27:;1) /]R¢(a_1u1 +§)exp{ —ui — [ quél 1 }dul.
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