JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 23, No. 1, March 2010

ANALYTIC OPERATOR-VALUED GENERALIZED FEYNMAN INTEGRALS ON FUNCTION SPACE

SEUNG JUN CHANG* AND IL YONG LEE**

ABSTRACT. In this paper we use a generalized Brownian motion process to defined an analytic operator-valued generalized Feynman integral. We then obtain explicit formulas for the analytic operatorvalued generalized Feynman integrals for functionals of the form

$$F(x) = f\bigg(\int_0^T \alpha_1(t)dx(t), \cdots, \int_0^T \alpha_n(t)dx(t)\bigg),$$

where x is a continuous function on [0,T] and $\{\alpha_1, \dots, \alpha_n\}$ is an orthonormal set of functions from $(L^2_{a,b}[0,T], \|\cdot\|_{a,b})$.

1. Introduction

Since the Feynman integral was introduced by R. P. Feynman in 1948, there has been considerable progress on the Feynman integration theory. In [1], Cameron and Storvick introduced the analytic operator-valued function space "Feynman integral", $J_q^{\rm an}(F)$, which mapped an $L^2(\mathbb{R})$ function ψ into an $L^2(\mathbb{R})$ function $(J_q^{\rm an}(F)\psi)$ on the classical Wiener space $C_0[0, T]$.

The function space $C_{a,b}[0,T]$ induced by generalized Brownian motion process was introduced by J. Yeh in [6] and was used extensively by Chang and Chung in [3]. In [2, 4], the authors defined a generalized analytic Feynman integral and a generalized Fourier-Feynman transform on $C_{a,b}[0,T]$ and studied their properties and related topics.

Received September 13, 2009; Revised November 30, 2009; Accepted January 18, 2010.

²⁰⁰⁰ Mathematics Subject Classification: Primary 60J25, 28C20.

Key words and phrases: analytic operator-valued function space integral, analytic operator-valued generalized Feynman integral.

Correspondence should be addressed to Il Yong Lee, iylee@dankook.ac.kr.

Seung Jun Chang and Il Yong Lee

In this paper we use a generalized Brownian motion process to define the analytic operator-valued generalized Feynman integral. We then obtain explicit formulas for the generalized analytic operator-valued Feynman integrals of functionals of the form

$$F(x) = f\left(\int_0^T \alpha_1(t)dx(t), \cdots, \int_0^T \alpha_n(t)dx(t)\right)$$

where x is a continuous function on [0, T] and $\{\alpha_1, \dots, \alpha_n\}$ is an orthonormal set of functions from $(L^2_{a,b}[0,T], \|\cdot\|_{a,b})$. We also give several examples for our results. The Wiener process used in [1] is free of drift and is stationary in time while the stochastic process used in this paper as well as in [2-4, 6] is nonstationary in time, is subject to a drift a(t), and can be used to explain the position of the Ornstein-Uhlenbeck process in an external force field [5].

2. Definitions and preliminaries

Let D = [0, T] and let (Ω, \mathcal{B}, P) be a probability measure space. A real-valued stochastic process Y on (Ω, \mathcal{B}, P) and D is called a generalized Brownian motion process if $Y(0, \omega) = 0$ almost everywhere and for $0 = t_0 < t_1 < \cdots < t_n \leq T$, the *n*-dimensional random vector $(Y(t_1, \omega), \cdots, Y(t_n, \omega))$ is normally distributed with the density function

(2.1)

$$K(\vec{t},\vec{\eta}) = \left((2\pi)^n \prod_{j=1}^n (b(t_j) - b(t_{j-1})) \right)^{-1/2} \\
\cdot \exp\left\{ -\frac{1}{2} \sum_{j=1}^n \frac{((\eta_j - a(t_j)) - (\eta_{j-1} - a(t_{j-1})))^2}{b(t_j) - b(t_{j-1})} \right\},$$

where $\vec{\eta} = (\eta_1, \dots, \eta_n)$, $\eta_0 = 0$, $\vec{t} = (t_1, \dots, t_n)$, a(t) is an absolutely continuous real-valued function on [0, T] with a(0) = 0, $a'(t) \in L^2[0, T]$, and b(t) is a strictly increasing, continuously differentiable real-valued function with b(0) = 0 and b'(t) > 0 for each $t \in [0, T]$.

As explained in [7, pp.18-20], Y induces a probability measure μ on the measurable space $(\mathbb{R}^D, \mathcal{B}^D)$ where \mathbb{R}^D is the space of all real-valued functions x(t), $t \in D$, and \mathcal{B}^D is the smallest σ -algebra of subsets of \mathbb{R}^D with respect to which all the coordinate evaluation maps $e_t(x) = x(t)$ defined on \mathbb{R}^D are measurable. The triple $(\mathbb{R}^D, \mathcal{B}^D, \mu)$ is a probability measure space. This measure space is called the function space induced

by the generalized Brownian motion process Y determined by $a(\cdot)$ and $b(\cdot)$.

We note that the generalized Brownian motion process Y determined by $a(\cdot)$ and $b(\cdot)$ is a Gaussian process with mean function a(t) and covariance function $r(s,t) = \min\{b(s), b(t)\}$. By Theorem 14.2 [7, p.187], the probability measure μ induced by Y, taking a separable version, is supported by $C_{a,b}[0,T]$ (which is equivalent to the Banach space of continuous functions x on [0,T] with x(0) = 0 under the sup norm). Hence $(C_{a,b}[0,T], \mathcal{B}(C_{a,b}[0,T]), \mu)$ is the function space induced by Y where $\mathcal{B}(C_{a,b}[0,T])$ is the Borel σ -algebra of $C_{a,b}[0,T]$.

A subset B of $C_{a,b}[0,T]$ is said to be scale-invariant measurable (s.i.m.) if ρB is $\mathcal{B}(C_{a,b}[0,T])$ -measurable for all $\rho > 0$, and a scaleinvariant measurable set N is said to be a scale-invariant null set if $\mu(\rho N) = 0$ for all $\rho > 0$. A property that holds except on a scaleinvariant null set is said to hold scale-invariant almost everywhere (sa.e.). If two functionals F and G defined on $C_{a,b}[0,T]$ are equal s-a.e., then we write $F \approx G$.

Let $L^2_{a,b}[0,T]$ be the set of functions on [0,T] which are Lebesgue measurable and square integrable with respect to the Lebesgue-Stieltjes measures on [0,T] induced by $a(\cdot)$ and $b(\cdot)$; i.e.,

(2.2)
$$\begin{aligned} L_{a,b}^2[0,T] \\ &= \left\{ v : \int_0^T v^2(s) db(s) < \infty \text{ and } \int_0^T v^2(s) d|a|(s) < \infty \right\} \end{aligned}$$

where |a|(t) denotes the total variation of the function a on the interval [0, t].

For $u, v \in L^2_{a,b}[0,T]$, let

(2.3)
$$(u,v)_{a,b} = \int_0^T u(t)v(t)d[b(t) + |a|(t)].$$

Then $(\cdot, \cdot)_{a,b}$ is an inner product on $L^2_{a,b}[0,T]$ and $||u||_{a,b} = \sqrt{(u,u)_{a,b}}$ is a norm on $L^2_{a,b}[0,T]$. In particular, note that $||u||_{a,b} = 0$ if and only if u(t) = 0 a.e. on [0,T]. Furthermore, $(L^2_{a,b}[0,T], ||\cdot||_{a,b})$ is a separable Hilbert space. Let $\{\phi_j\}_{j=1}^{\infty}$ be a complete orthonormal set of real-valued functions of bounded variation on [0,T] such that

$$(\phi_j, \phi_k)_{a,b} = \begin{cases} 0 & , \ j \neq k \\ 1 & , \ j = k \end{cases}.$$

Then for each $v \in L^2_{a,b}[0,T]$, the Paley-Wiener-Zygmund(PWZ) stochastic integral $\langle v, x \rangle$ is defined by the formula

(2.4)
$$\langle v, x \rangle = \lim_{n \to \infty} \int_0^T \sum_{j=1}^n (v, \phi_j)_{a,b} \phi_j(t) dx(t)$$

for all $x \in C_{a,b}[0,T]$ for which the limit exists; one can show that for each $v \in L^2_{a,b}[0,T]$, the PWZ stochastic integral $\langle v, x \rangle$ exists for μ -a.e. $x \in C_{a,b}[0,T]$ and is a Gaussian random variable on $C_{a,b}[0,T]$ with mean $\int_0^T v(s)da(s)$ and variance $\int_0^T v^2(s)db(s)$. If v is of bounded variation on [0,T], then the PWZ integral $\langle v, x \rangle$ equals the Riemann-Stieltjes integral $\int_0^T v(t)dx(t)$ for μ -a.e. $x \in C_{a,b}[0,T]$. For more details, see [4]. We next give the definition of the analytic operator-valued function space integral as an element of $\mathcal{L}(L^2(\mathbb{R}), L^2(\mathbb{R}))$.

Throughout this paper, let \mathbb{C} be the set of complex numbers, $\mathbb{C}_+ = \{\lambda \in \mathbb{C} : \operatorname{Re}(\lambda) > 0\}$. Let C[0,T] denote the space of real-valued continuous functions x on [0,T]. Let F be a functional from C[0,T] to \mathbb{C} . For each $\lambda > 0$, $\psi \in L^2(\mathbb{R})$ and $\xi \in \mathbb{R}$, assume that $F(\lambda^{-1/2}x + \xi)\psi(\lambda^{-1/2}x(T) + \xi)$ is μ -integrable with respect to x on $C_{a,b}[0,T]$, and let

(2.5)
$$(I_{\lambda}(F)\psi)(\xi) = \int_{C_{a,b}[0,T]} F(\lambda^{-1/2}x + \xi)\psi(\lambda^{-1/2}x(T) + \xi)d\mu(x).$$

If $I_{\lambda}(F)\psi$ is in $L^{2}(\mathbb{R})$ as a function of ξ and if the correspondence $\psi \to I_{\lambda}(F)\psi$ gives an element of $\mathcal{L} \equiv \mathcal{L}(L^{2}(\mathbb{R}), L^{2}(\mathbb{R}))$, the space of continuous linear operators from $L^{2}(\mathbb{R})$ to $L^{2}(\mathbb{R})$, we say that the operatorvalued function space integral $I_{\lambda}(F)$ exists. Next, suppose there exists an \mathcal{L} -valued function which is analytic in \mathbb{C}_{+} and agrees with $I_{\lambda}(F)$ on $(0,\infty)$; then this \mathcal{L} -valued function is denoted by $I_{\lambda}^{\mathrm{an}}(F)$ and is called the analytic operator-valued function space integral of F associated with λ .

The following notations are used throughout this paper:

(2.6)
$$A_h \equiv \int_0^T h(t) da(t) \text{ and } B_h \equiv \int_0^T h^2(t) db(t)$$

for $h \in L^2_{a,b}[0,T]$. Furthermore, for all \mathbb{C}_+ , $\sqrt{\lambda} = \lambda^{1/2}$ is always chosen to have positive real part.

Let $\{\alpha_1, \dots, \alpha_n\}$ be an orthonormal set of functions from $(L^2_{a,b}[0,T], \|\cdot\|_{a,b})$ and for $j \in \{1, \dots, n\}$, let $A_j \equiv A_{\alpha_j}$ and $B_j \equiv B_{\alpha_j}$. Note that

for any $h \in L^2_{a,b}[0,T]$, B_h is always positive, while A_h may be positive, negative or zero.

Next we state a fundamental integration formula for the function space $C_{a,b}[0,T]$.

THEOREM 2.1. Let $\{\alpha_1, \dots, \alpha_n\}$ be an orthonormal set of functions from $(L^2_{a,b}[0,T], \|\cdot\|_{a,b})$. Let $f : \mathbb{R}^n \to \mathbb{C}$ be Lebesgue measurable, and let

$$F(x) = f(\langle \alpha_1, x \rangle, \cdots, \langle \alpha_n, x \rangle) \equiv f(\langle \vec{\alpha}, x \rangle).$$

Then

(2.7)
$$E[F] \equiv \int_{C_{a,b}[0,T]} f(\langle \vec{\alpha}, x \rangle) d\mu(x) \\ = \left(\prod_{j=1}^{n} \frac{1}{2\pi B_j}\right)^{\frac{1}{2}} \int_{\mathbb{R}^n} f(\vec{u}) \exp\left\{-\sum_{j=1}^{n} \frac{[u_j - A_j]^2}{2B_j}\right\} d\vec{u}$$

in the sense that if either side exists, both sides exist and equality holds.

3. Analytic operator-valued function space integral of finite dimensional functionals

Let $\{\alpha_1, \dots, \alpha_n\}$ be an orthonormal set of $L^2_{a,b}[0,T]$ where α_j is of bounded variation on [0,T]. Let $F: C[0,T] \to \mathbb{C}$ be given by

(3.1)
$$F(x) = f\left(\int_0^T \alpha_1(t)dx(t), \cdots, \int_0^T \alpha_n(t)dx(t)\right),$$

where $f : \mathbb{R}^n \to \mathbb{C}$ is a Lebesgue measurable function. In this case, we see that for $x \in C_{a,b}[0,T]$, $\rho > 0$ and $\xi \in \mathbb{R}$,

(3.2)
$$F(\rho x + \xi) = f(\rho \langle \alpha_1, x \rangle, \cdots, \rho \langle \alpha_n, x \rangle).$$

We also note that for each $x \in C_{a,b}[0,T]$,

(3.3)
$$x(T) = \langle 1, x \rangle = \sum_{j=1}^{n} (1, \alpha_j)_{a,b} \langle \alpha_j, x \rangle + \langle p, x \rangle$$

where

(3.4)
$$p = 1 - \sum_{j=1}^{n} (1, \alpha_j)_{a,b} \alpha_j$$

is an element of $(\operatorname{span}\{\alpha_1, \cdots, \alpha_n\})^{\perp}$.

Throughout this section we will use the following notation for convenience; for $\lambda \in \tilde{\mathbb{C}}_+$ and $p \in L^2_{a,b}[0,T]$, let

$$K(\lambda; p) = \left(\frac{\lambda}{2\pi B_p} \prod_{j=1}^n \frac{\lambda}{2\pi B_j}\right)^{\frac{1}{2}}$$

and

$$\begin{split} H(\lambda; \vec{u}, u_{n+1}) &\equiv H(\lambda; \vec{u}) \times H(\lambda; u_{n+1}) \\ &= \exp\bigg\{ -\sum_{j=1}^n \frac{[\sqrt{\lambda}u_j - A_j]^2}{2B_j} \bigg\} \exp\bigg\{ -\frac{[\sqrt{\lambda}u_{n+1} - A_p]^2}{2B_p} \bigg\}. \end{split}$$

THEOREM 3.1. Let F be given by equation (3.1) with

(3.5)
$$\int_{\mathbb{R}^n} |f(\vec{u})|^2 \exp\left\{-\sum_{j=1}^n \frac{[\sqrt{\lambda}u_j - A_j]^2}{2B_j}\right\} d\vec{u} < \infty.$$

Then the analytic operator-valued function space integral of F, $I_{\lambda}^{\mathrm{an}}(F)$ exists for all $\lambda \in \mathbb{C}_{+}$ and is given by the formula
(3.6)

$$(I_{\lambda}^{an}(F)\psi)(\xi) = K(\lambda;p) \int_{\mathbb{R}} \int_{\mathbb{R}^n} f(\vec{u})$$
$$\cdot \psi \left(\sum_{j=1}^n (1,\alpha_j)_{a,b} u_j + u_{n+1} + \xi \right) H(\lambda;\vec{u},u_{n+1}) d\vec{u} du_{n+1}$$

where p is given by equation (3.4).

Proof. First note that $\{\alpha_1, \dots, \alpha_n, p/||p||_{a,b}\}$ is an orthonormal set in $L^2_{a,b}[0,T]$. Using equations (2.5), (3.2), (3.3) and (2.7), we obtain that for all $\lambda > 0$ and $\xi \in \mathbb{R}$

$$(3.7)$$

$$(I_{\lambda}(F)\psi)(\xi)$$

$$= \int_{C_{a,b}[0,T]} F(\lambda^{-1/2}x + \xi)\psi(\lambda^{-1/2}x(T) + \xi)d\mu(x)$$

$$= \int_{C_{a,b}[0,T]} f(\lambda^{-1/2}\langle\alpha_{1}, x\rangle, \cdots, \lambda^{-1/2}\langle\alpha_{n}, x\rangle)$$

$$\cdot \psi\left(\lambda^{-1/2}\sum_{j=1}^{n} (1, \alpha_{j})_{a,b}\langle\alpha_{j}, x\rangle + \lambda^{-1/2} \|p\|_{a,b}\langle p/\|p\|_{a,b}, x\rangle + \xi\right) d\mu(x)$$

Analytic operator-valued generalized Feynman integrals

$$= K(\lambda; p/||p||_{a,b}) \int_{\mathbb{R}} \int_{\mathbb{R}^{n}} f(\vec{u}) \psi \left(\sum_{j=1}^{n} (1, \alpha_{j})_{a,b} u_{j} + ||p||_{a,b} u_{n+1} + \xi \right)$$

$$\cdot \exp \left\{ -\sum_{j=1}^{n} \frac{[\sqrt{\lambda}u_{j} - A_{j}]^{2}}{2B_{j}} - \frac{[\sqrt{\lambda}u_{n+1} - A_{p/||p||_{a,b}}]^{2}}{2B_{p/||p||_{a,b}}} \right\} d\vec{u} du_{n+1}$$

$$= K(\lambda; p) \int_{\mathbb{R}} \int_{\mathbb{R}^{n}} f(\vec{u}) \psi \left(\sum_{j=1}^{n} (1, \alpha_{j})_{a,b} u_{j} + u_{n+1} + \xi \right)$$

$$\cdot \exp \left\{ -\sum_{j=1}^{n} \frac{[\sqrt{\lambda}u_{j} - A_{j}]^{2}}{2B_{j}} - \frac{[\sqrt{\lambda}u_{n+1} - A_{p}]^{2}}{2B_{p}} \right\} d\vec{u} du_{n+1}.$$

Note that for $\lambda \in \mathbb{C}_+$, $\sqrt{\lambda} = c + di$ with $c^2 - d^2 > 0$. Then for each f with $\int_{\mathbb{R}^n} |f(\vec{u})|^2 \exp\{-\sum_{j=1}^n \frac{[\sqrt{\lambda}u_j - A_j]^2}{2B_j}\} d\vec{u} < \infty$ and $\psi \in L^2(\mathbb{R})$, we obtain that (3.8)

$$\begin{split} \left| \int_{\mathbb{R}} \int_{\mathbb{R}^{n}} f(\vec{u}) \psi \bigg(\sum_{j=1}^{n} (1, \alpha_{j})_{a,b} u_{j} + u_{n+1} + \xi \bigg) H(\lambda; \vec{u}, u_{n+1}) d\vec{u} du_{n+1} \right| \\ &\leq \int_{\mathbb{R}^{n}} |f(\vec{u})| H(\lambda : \vec{u}) \\ &\int_{\mathbb{R}} \bigg| \psi \bigg(\sum_{j=1}^{n} (1, \alpha_{j})_{a,b} u_{j} + u_{n+1} + \xi \bigg) \bigg| H(\lambda; u_{n+1}) du_{n+1} d\vec{u} \\ &\leq \int_{\mathbb{R}^{n}} |f(\vec{u})| H(\lambda : \vec{u}) \bigg(\int_{\mathbb{R}} H(\lambda; u_{n+1}) du_{n+1} \bigg)^{\frac{1}{2}} \\ & \bigg(\int_{\mathbb{R}} \bigg| \psi \bigg(\sum_{j=1}^{n} (1, \alpha_{j})_{a,b} u_{j} + u_{n+1} + \xi \bigg) \bigg|^{2} H(\lambda; u_{n+1}) du_{n+1} \bigg)^{\frac{1}{2}} d\vec{u} \\ &\leq \bigg[\int_{\mathbb{R}^{n}} |f(\vec{u})|^{2} H(\lambda; \vec{u}) \\ & \bigg(\int_{\mathbb{R}} \bigg| \psi \bigg(\sum_{j=1}^{n} (1, \alpha_{j})_{a,b} u_{j} + u_{n+1} + \xi \bigg) \bigg|^{2} H(\lambda; u_{n+1}) du_{n+1} \bigg) d\vec{u} \bigg|^{\frac{1}{2}} \\ & \bigg(\int_{\mathbb{R}^{n}} H(\lambda; \vec{u}) d\vec{u} \bigg)^{\frac{1}{2}} \bigg(\int_{\mathbb{R}} H(\lambda; u_{n+1}) du_{n+1} \bigg)^{\frac{1}{2}}. \end{split}$$
Therefore, we have

(3.9)

$$\|I_{\lambda}^{\mathrm{an}}(F)\psi\|_{2}^{2}$$

Seung Jun Chang and Il Yong Lee

$$\leq M_1 M_2 \int_{\mathbb{R}} \int_{\mathbb{R}^n} \int_{\mathbb{R}} |f(\vec{u})|^2 H(\lambda; \vec{u}) \\ \left| \psi \left(\sum_{j=1}^n (1, \alpha_j)_{a,b} u_j + u_{n+1} + \xi \right) \right|^2 H(\lambda; u_{n+1}) du_{n+1} d\vec{u} d\xi \\ \leq M_1^2 M_2 \|\psi\|_2^2 \int_{\mathbb{R}^n} |f(\vec{u})|^2 H(\lambda; \vec{u}) d\vec{u}$$

where

(3.10)
$$M_1 = \int_{\mathbb{R}} H(\lambda; u_{n+1}) du_{n+1} \quad \text{and} \quad M_2 = \int_{\mathbb{R}^n} H(\lambda; \vec{u}) d\vec{u}.$$

Therefore, for all $\lambda \in \mathbb{C}_+$, we have

$$\|I_{\lambda}^{an}(F)\| \le M_1 M_2^{1/2} \left(\int_{\mathbb{R}^n} |f(\vec{u})|^2 H(\lambda; \vec{u}) d\vec{u} \right)^{1/2}$$

Hence we complete the proof as desired.

1 /0

4. Analytic operator-valued generalized Feynman integral

In this section we study the analytic operator-valued generalized Feynman integral of functional F given by equation (3.1). We first give the existence of the analytic operator-valued generalized Feynman integral.

Let $I_{\lambda}^{\mathrm{an}}(F)$ be the analytic operator-valued function space integral. Suppose there exists an operator $J_q^{\mathrm{an}}(F)$ in $\mathcal{L}(L^2(\mathbb{R},\nu_{\delta}), L^2(\mathbb{R},\nu_{-\sigma}))$ for some $\delta, \sigma > 0$ such that

(4.1)
$$\|I_{\lambda}^{\mathrm{an}}(F)\psi - J_{q}^{\mathrm{an}}(F)\psi\|_{L^{2}(\mathbb{R},\nu_{-\sigma})} \to 0$$

as $\lambda \to -iq$ through \mathbb{C}_+ where ν is a measure on $\mathcal{B}(\mathbb{R})$ with $d\nu_{\delta} = \exp\{\delta\eta^2\}d\eta$; then $J_q^{\mathrm{an}}(F)$ is called the analytic operator-valued generalized Feynman integral of F with parameter q.

Fix $q \in \mathbb{R} - \{0\}$. Then as $\lambda \to -iq$ through values in \mathbb{C}_+ , $c = \operatorname{Re}(\sqrt{\lambda}) \to \sqrt{|q|/2}$ and $d = \operatorname{Im}(\sqrt{\lambda}) \to \sqrt{|q|/2}$. Then for all $\lambda \in \tilde{\mathbb{C}}_+$, $\sqrt{\lambda} = c + di$ with $c^2 - d^2 > 0$

(4.2)
$$|H(\lambda; u_1, \cdots, u_n, u_{n+1})| = \exp\left\{-\sum_{j=1}^n \frac{[(c^2 - d^2)u_j^2 - 2cA_ju_j + A_j^2]}{2B_j} - \frac{[(c^2 - d^2)u_{n+1}^2 - 2cA_pu_{n+1} + A_p^2]}{2B_p}\right\}$$

Analytic operator-valued generalized Feynman integrals

$$\leq \exp\bigg\{\sum_{j=1}^{n} \frac{cA_{j}u_{j}}{B_{j}} + \frac{cA_{p}u_{n+1}}{B_{p}}\bigg\}$$
$$\leq \exp\bigg\{\sum_{j=1}^{n} \frac{\sqrt{|q|}|A_{j}u_{j}|}{B_{j}} + \frac{\sqrt{|q|}|A_{p}u_{n+1}|}{B_{p}}\bigg\}.$$

THEOREM 4.1. Let F be given by equation (3.1) with

(4.3)
$$\int_{\mathbb{R}^n} |f(\vec{u})| \exp\left\{\sum_{j=1}^n \frac{\sqrt{|q|} |A_j u_j|}{B_j}\right\} d\vec{u} < \infty$$

for $q \in \mathbb{R} - \{0\}$. Then the analytic operator-valued generalized Feynman integral of F, $J_q^{an}(F)$ exists and is given by the formula (4.4)

$$(J_q^{an}(F)\psi)(\xi) = K(-iq;p) \int_{\mathbb{R}} \int_{\mathbb{R}^n} f(\vec{u})$$
$$\cdot \psi \left(\sum_{j=1}^n (1,\alpha_j)_{a,b} u_j + u_{n+1} + \xi\right) H(-iq;\vec{u},u_{n+1}) d\vec{u} du_{n+1}$$

where p is given by equation (3.4).

Proof. By using equations (4.2) and (4.3), we have for all
$$\psi \in L^2(\mathbb{R}, \nu_{\delta})$$

(4.5)

$$\left| \int_{\mathbb{R}} \int_{\mathbb{R}^n} f(\vec{u}) \psi \left(\sum_{j=1}^n (1, \alpha_j)_{a,b} u_j + u_{n+1} + \xi \right) H(-iq; \vec{u}, u_{n+1}) d\vec{u} du_{n+1} \right|$$

$$\leq \int_{\mathbb{R}^n} |f(\vec{u})| \exp \left\{ \sum_{j=1}^n \frac{\sqrt{|q|} |A_j u_j|}{B_j} \right\}$$

$$\int_{\mathbb{R}} \left| \psi \left(\sum_{j=1}^n (1, \alpha_j)_{a,b} u_j + u_{n+1} + \xi \right) \right| \exp \left\{ \frac{\sqrt{|q|} |A_p u_{n+1}|}{B_p} \right\} du_{n+1} d\vec{u}$$

$$\leq \int_{\mathbb{R}^n} |f(\vec{u})| \exp \left\{ \sum_{j=1}^n \frac{\sqrt{|q|} |A_j u_j|}{B_j} \right\}$$

$$\left(\int_{\mathbb{R}} \exp \left\{ \frac{2\sqrt{|q|} |A_p u_{n+1}|}{B_p} - \frac{\delta u_{n+1}^2}{2} \right\} du_{n+1} \right)^{\frac{1}{2}}$$

$$\left(\int_{\mathbb{R}} \left| \psi \left(\sum_{j=1}^{n} (1, \alpha_{j})_{a, b} u_{j} + u_{n+1} + \xi \right) \right|^{2} \exp\left\{ \frac{\delta u_{n+1}^{2}}{2} \right\} du_{n+1} \right)^{\frac{1}{2}} d\vec{u}$$
$$= M_{1}^{1/2} \|\psi\|_{L^{2}(\mathbb{R}, \nu_{\delta})} \int_{\mathbb{R}^{n}} |f(\vec{u})| \exp\left\{ \sum_{j=1}^{n} \frac{\sqrt{|q|} |A_{j} u_{j}|}{B_{j}} \right\} d\vec{u}$$

where

$$M_1 = \int_{\mathbb{R}} \exp\left\{\frac{2\sqrt{|q|}|A_p u_{n+1}|}{B_p} - \frac{\delta u_{n+1}^2}{2}\right\} du_{n+1}.$$

Therefore we have (4.6)

$$\|J_{q}^{(n,0)}(F)\psi\|_{L^{2}(\mathbb{R},\nu_{\sigma})}^{2} \leq M_{1}\|\psi\|_{L^{2}(\mathbb{R},\nu_{\delta})}^{2} \int_{\mathbb{R}} \left(\int_{\mathbb{R}^{n}} |f(\vec{u})| \exp\left\{\sum_{j=1}^{n} \frac{\sqrt{|q|}|A_{j}u_{j}|}{B_{j}}\right\} d\vec{u}\right)^{2} d\nu_{-\sigma}(\xi)$$

and

$$\|J_q^{\mathrm{an}}(F)\| \le M_1^{1/2} \bigg(\int_{\mathbb{R}^n} |f(\vec{u})| \exp\bigg\{ \sum_{j=1}^n \frac{\sqrt{|q|} |A_j u_j|}{B_j} \bigg\} d\vec{u} \bigg).$$

To show that $J^{\rm an}_q(F)$ exists and is given by equation (4.4) it suffices to show that

(4.7)
$$\lim_{\lambda \to -iq} \int_{\mathbb{R}} \left| (I_{\lambda}^{\mathrm{an}}(F)\psi)(\xi) - (J_{q}^{\mathrm{an}}(F)\psi)(\xi) \right|^{2} d\nu_{-\sigma}(\xi) = 0.$$

But for all
$$\lambda \in \mathbb{C}_+$$
, $\sqrt{\lambda} = c + di$ with $c^2 - d^2 > 0$,
(4.8)
 $\left| \int_{\mathbb{R}} \int_{\mathbb{R}^n} f(\vec{u}) \psi \left(\sum_{j=1}^n (1, \alpha_j)_{a,b} u_j + u_{n+1} + \xi \right) H(\lambda; \vec{u}, u_{n+1}) d\vec{u} du_{n+1} - \int_{\mathbb{R}} \int_{\mathbb{R}^n} f(\vec{u}) \psi \left(\sum_{j=1}^n (1, \alpha_j)_{a,b} u_j + u_{n+1} + \xi \right) H(-iq; \vec{u}, u_{n+1}) d\vec{u} du_{n+1} \right|^2$
 $\leq 2 \left| \int_{\mathbb{R}} \int_{\mathbb{R}^n} f(\vec{u}) \psi \left(\sum_{j=1}^n (1, \alpha_j)_{a,b} u_j + u_{n+1} + \xi \right) H(\lambda; \vec{u}, u_{n+1}) d\vec{u} du_{n+1} \right|^2$

Analytic operator-valued generalized Feynman integrals

$$\begin{split} &+ 2 \bigg| \int_{\mathbb{R}} \int_{\mathbb{R}^{n}} f(\vec{u}) \psi \bigg(\sum_{j=1}^{n} (1, \alpha_{j})_{a,b} u_{j} + u_{n+1} + \xi \bigg) H(-iq; \vec{u}, u_{n+1}) d\vec{u} du_{n+1} \bigg|^{2} \\ &\leq 2 \bigg(\int_{\mathbb{R}^{n}} |f(\vec{u})| \exp \bigg\{ \sum_{j=1}^{n} \frac{cA_{j}u_{j}}{B_{j}} \bigg\} \\ &\qquad \left(\int_{\mathbb{R}} \exp \bigg\{ -\frac{\delta u_{n+1}^{2}}{2B_{p}} + \frac{2cA_{p}u_{n+1}}{B_{p}} \bigg\} du_{n+1} \bigg)^{\frac{1}{2}} \bigg|^{2} \\ &\qquad \left(\int_{\mathbb{R}} \bigg| \psi \bigg(\sum_{j=1}^{n} (1, \alpha_{j})_{a,b} u_{j} + u_{n+1} + \xi \bigg) \bigg|^{2} \exp \bigg\{ \frac{\delta u_{n+1}^{2}}{2B_{p}} \bigg\} du_{n+1} \bigg)^{\frac{1}{2}} d\vec{u} \bigg)^{2} \\ &+ 2 \bigg(\int_{\mathbb{R}^{2}} |f(\vec{u})| \exp \bigg\{ \sum_{j=1}^{n} \frac{\sqrt{-iq}A_{j}u_{j}}{B_{j}} \bigg\} \\ &\qquad \left(\int_{\mathbb{R}} \exp \bigg\{ -\frac{\delta u_{n+1}^{2}}{2B_{p}} + \frac{2\sqrt{-iq}A_{p}u_{n+1}}{B_{p}} \bigg\} du_{n+1} \bigg)^{\frac{1}{2}} \\ &\qquad \left(\int_{\mathbb{R}} \bigg| \psi \bigg(\sum_{j=1}^{n} (1, \alpha_{j})_{a,b} u_{j} + u_{n+1} + \xi \bigg) \bigg|^{2} \exp \bigg\{ \frac{\delta u_{n+1}^{2}}{2B_{p}} \bigg\} du_{n+1} \bigg)^{\frac{1}{2}} d\vec{u} \bigg)^{2} \\ &= 4 \|\psi\|_{L^{2}(\mathbb{R}, \nu_{\delta})} M_{1} \bigg(\int_{\mathbb{R}^{n}} |f(\vec{u})| \exp \bigg\{ \sum_{j=1}^{n} \frac{cA_{j}u_{j}}{B_{j}} \bigg\} d\vec{u} \bigg)^{2}. \end{split}$$

Hence by using equations (3.8), (4.5) and the Dominated Convergence Theorem, we have the desired result. $\hfill \Box$

In the following example, we exhibit the analytic operator-valued generalized Feynman integral $J_q^{an}(F)$.

EXAMPLE 4.2. Let $f(u_1, u_2) = \exp\{-(u_1^2 + u_2^2)\}$ and let

$$F(x) = f\left(\int_0^T \alpha_1(t) dx(t), \int_0^T \alpha_2(t) dx(t)\right)$$

where $\alpha \equiv \alpha_1(t) = (b(T) + |a|(T))^{-1/2}$ and $\{\alpha_1, \alpha_2\}$ are orthonormal. Then the analytic operator-valued generalized Feynman integral of F, $J_q^{\mathrm{an}}(F)$ exists and is given by the formula

$$(J_q^{an}(F)\psi)(\xi) = \left(\prod_{j=1}^2 \frac{-iq}{2\pi B_j}\right)^{\frac{1}{2}} \int_{\mathbb{R}^2} \exp\{-(u_1^2 + u_2^2)\}\psi(\alpha^{-1}u_1 + \xi)$$

$$\cdot \exp\left\{-\sum_{j=1}^{2} \frac{[\sqrt{-iq}u_{j} - A_{j}]^{2}}{2B_{j}}\right\} du_{1} du_{2}$$

$$= \left(\frac{-iq}{2B_{2} - iq}\right)^{\frac{1}{2}} \exp\left\{\frac{(-iq)A_{2}^{2}(2B_{2} + iq)}{2B_{2}(4B_{2}^{2} + q^{2})}\right\}$$

$$\cdot \left(\frac{-iq}{2\pi B_{1}}\right)^{\frac{1}{2}} \int_{\mathbb{R}} \psi(\alpha^{-1}u_{1} + \xi) \exp\left\{-u_{1}^{2} - \frac{[\sqrt{-iq}u_{1} - A_{1}]^{2}}{2B_{1}}\right\} du_{1}.$$

References

- [1] R. H. Cameron and D.A. Storvick, An operator valued function space integral and a related integral equation, J. Math. and Mech. 18 (1968), 517-552.
- [2] S. J. Chang, J. G. Choi and D. Skoug, Integration by parts formulas involving generalized Fourier-Feynman transforms on function space, Trans. Amer. Math. Soc. 355 (2003), 2925-2948.
- [3] S. J. Chang and D. M. Chung, Conditional function space integrals with applications, Rocky Mountain J. of Math. 26 (1996), 37-62.
- [4] S. J. Chang and D. Skoug, Generalized Fourier-Feynman transforms and a first variation on function space, Integral Transforms and Special Functions 14 (2003), 375-393.
- [5] E. Nelson, Dynamical Theories of Brownian Motion (2nd edition), Math. Notes, Princeton University Press, Princeton, 1970.
- [6] J. Yeh, Singularity of Gaussian measures on function spaces induced by Brownian motion processes with non-stationary increments, Ill. J. Math. 15 (1971), 37-46.
- [7] _____, Stochastic Processes and the Wiener Integral, Marcel Dekker, Inc., New York, 1973.

*

Department of Mathematics Dankook University Cheonan 330-714, Republic of Korea *E-mail*: sejchang@dankook.ac.kr

**

Department of Mathematics Dankook University Cheonan 330-714, Republic of Korea *E-mail*: iylee@dankook.ac.kr