• 제목/요약/키워드: Frenkel-Poole emission current

검색결과 24건 처리시간 0.019초

원자층 증착 방법에 의한 $Ta_2O_5$ 박막의 전기적 특성 (The Electrical Properties of $Ta_2O_5$ Thin Films by Atomic Layer Deposition Method)

  • 이형석;장진민;장용운;이승봉;문병무
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 일렉트렛트 및 응용기술
    • /
    • pp.41-46
    • /
    • 2002
  • In this work, we studied electrical characteristics and leakage current mechanism of Au/$Ta_2O_5$/Si metal-oxide-semiconductor (MOS) devices. $Ta_2O_5$ thin film (63nm) was deposited by atomic layer deposition (ALD) method at temperature of $235^{\circ}C$. The structures of the $Ta_2O_5$ thin films were examined by X-Ray Diffraction (XRD). From XRD, the structure of $Ta_2O_5$ was single phase and orthorhombic. From capacitance-voltage (C-V) analysis, the dielectric constant was 19.4. The temperature dependence of current-voltage (I-V) characteristics of $Ta_2O_5$ thin film was studied from 300 to 423 K. In ohmic region (<0.5 MVcm${-1}$), the resistivity was $2.4056{\times}10^{14}({\Omega}cm)$ at 348 K. The Schottky emission is dominant in lower temperature range from 300 to 323 K and Poole-Frenkel emission dominant in higher temperature range from 348 to 423 K.

  • PDF

Unusual Electrical Transport Characteristic of the SrSnO3/Nb-Doped SrTiO3 Heterostructure

  • De-Peng Wang;Rui-Feng Niu;Li-Qi Cui;Wei-Tian Wang
    • 한국재료학회지
    • /
    • 제33권6호
    • /
    • pp.229-235
    • /
    • 2023
  • An all-perovskite oxide heterostructure composed of SrSnO3/Nb-doped SrTiO3 was fabricated using the pulsed laser deposition method. In-plane and out-of-plane structural characterization of the fabricated films were analyzed by x-ray diffraction with θ-2θ scans and φ scans. X-ray photoelectron spectroscopy measurement was performed to check the film's composition. The electrical transport characteristic of the heterostructure was determined by applying a pulsed dc bias across the interface. Unusual transport properties of the interface between the SrSnO3 and Nb-doped SrTiO3 were investigated at temperatures from 100 to 300 K. A diodelike rectifying behavior was observed in the temperature-dependent current-voltage (IV) measurements. The forward current showed the typical IV characteristics of p-n junctions or Schottky diodes, and were perfectly fitted using the thermionic emission model. Two regions with different transport mechanism were detected, and the boundary curve was expressed by ln I = -1.28V - 13. Under reverse bias, however, the temperature- dependent IV curves revealed an unusual increase in the reverse-bias current with decreasing temperature, indicating tunneling effects at the interface. The Poole-Frenkel emission was used to explain this electrical transport mechanism under the reverse voltages.

Contact Area-Dependent Electron Transport in Au/n-type Ge Schottky Junction

  • Kim, Hogyoung;Lee, Da Hye;Myung, Hye Seon
    • 한국재료학회지
    • /
    • 제26권8호
    • /
    • pp.412-416
    • /
    • 2016
  • The electrical properties of Au/n-type Ge Schottky contacts with different contact areas were investigated using current-voltage (I-V) measurements. Analyses of the reverse bias current characteristics showed that the Poole-Frenkel effect became strong with decreasing contact area. The contribution of the perimeter current density to the total current density was found to increase with increasing reverse bias voltage. Fitting of the forward bias I-V characteristics by considering various transport models revealed that the tunneling current is dominant in the low forward bias region. The contributions of both the thermionic emission (TE) and the generation-recombination (GR) currents to the total current were similar regardless of the contact area, indicating that these currents mainly flow through the bulk region. In contrast, the contribution of the tunneling current to the total current increased with decreasing contact area. The largest $E_{00}$ value (related to tunneling probability) for the smallest contact area was associated with higher tunneling effect.

MOS구조에서의 원자층 증착 방법에 의한 $Ta_2O_{5}$ 박막의 전기적 특성에 관한 연구 (A Study on the Electrical Properties of $Ta_2O_{5}$ Thin Films by Atomic Layer Deposition Method in MOS Structure)

  • 이형석;장진민;임장권;하만효;김양수;송정면;문병무
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권4호
    • /
    • pp.159-163
    • /
    • 2003
  • ln this work, we studied electrical characteristics and leakage current mechanism of $Ta_2O_{5}$ MOS(Metal-Oxide-Semiconductor) devices. $Ta_2O_{5}$ thin film (63 nm) was deposited by ALD(Atomic Layer Deposition) method at temperature of 235 $^{\circ}C$. The structures of the $Ta_2O_{5}$ thin films were examined by XRD(X-Ray Diffraction). From XRD, it is found that the structure of $Ta_2O_{5}$ is single phase and orthorhombic. From capacitance-voltage (C-V) anaysis, the dielectric constant was 19.4. The temperature dependence of current density-electric field (J-E) characteristics of $Ta_2O_{5}$ thin film was studied at temperature range of 300 - 423 K. In ohmic region (<0.5 MV/cm), the resistivity was 2.456${\times}10^{14}$ ($\omega{\cdot}cm$ at 348 K. The Schottky emission is dominant at lower temperature range from 300 to 323 K and Poole-Frenkel emission is dominant at higher temperature range from 348 to 423 K.

금속-절연층-실리콘 구조에서의 비정질 GeSe 기반 Resistive Random Access Memory의 동작 특성 (Operating Characteristics of Amorphous GeSe-based Resistive Random Access Memory at Metal-Insulator-Silicon Structure)

  • 남기현;김장한;정홍배
    • 한국전기전자재료학회논문지
    • /
    • 제29권7호
    • /
    • pp.400-403
    • /
    • 2016
  • The resistive memory switching characteristics of resistive random access memory (ReRAM) using the amorphous GeSe thin film have been demonstrated at Al/Ti/GeSe/$n^+$ poly Si structure. This ReRAM indicated bipolar resistive memory switching characteristics. The generation and the recombination of chalcogen cations and anions were suitable to explain the bipolar switching operation. Space charge limited current (SCLC) model and Poole-Frenkel emission is applied to explain the formation of conductive filament in the amorphous GeSe thin film. The results showed characteristics of stable switching and excellent reliability. Through the annealing condition of $400^{\circ}C$, the possibility of low temperature process was established. Very low operation current level (set current: ~ ${\mu}A$, reset current: ~ nA) was showed the possibility of low power consumption. Particularly, $n^+$ poly Si based GeSe ReRAM could be applied directly to thin film transistor (TFT).

La이 혼입된 고유전체/메탈 게이트가 적용된 나노 스케일 NMOSFET에서의 PBTI 신뢰성의 특성 분석 (Analysis of Positive Bias Temperature Instability Characteristic for Nano-scale NMOSFETs with La-incorporated High-k/metal Gate Stacks)

  • 권혁민;한인식;박상욱;복정득;정의정;곽호영;권성규;장재형;고성용;이원묵;이희덕
    • 한국전기전자재료학회논문지
    • /
    • 제24권3호
    • /
    • pp.182-187
    • /
    • 2011
  • In this paper, PBTI characteristics of NMOSFETs with La incorporated HfSiON and HfON are compared in detail. The charge trapping model shows that threshold voltage shift (${\Delta}V_{\mathrm{T}}$) of NMOSFETs with HfLaON is greater than that of HfLaSiON. PBTI lifetime of HfLaSiON is also greater than that of HfLaON by about 2~3 orders of magnitude. Therefore, high charge trapping rate of HfLaON can be explained by higher trap density than HfLaSiON. The different de-trapping behavior under recovery stress can be explained by the stable energy for U-trap model, which is related to trap energy level at zero electric field in high-k dielectric. The trap energy level of two devices at zero electric field, which is extracted using Frenkel-poole emission model, is 1,658 eV for HfLaSiON and 1,730 eV for HfLaON, respectively. Moreover, the optical phonon energy of HfLaON extracted from the thermally activated gate current is greater than that of HfLaSiON.

$(SR.Ca)TiO_3$세라믹의 하전입자 거동에 관한 연구 (A study on the behavior of charge particles of $(SR.Ca)TiO_3$ ceramic)

  • 김진사;최운식;신철기;김성열;박현빈;김태성;이준응
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권2호
    • /
    • pp.97-104
    • /
    • 1997
  • In this paper, in order to investigate the behavior of charged particles on (Sr.Ca)TiO$_{3}$ ceramics with paraelectric properties, the characteristics of electrical conduction and thermally stimulated current was measured respectively. As a result, the conduction mechanism is divided into three regions having different mechanism as the current increased. The region I below 200[V/Cm] shows the ohmic conduction. The region B between 200[V/cm] and 2000[V/cm] can be explained by the Poole-Frenkel emission theory, and the region III above 2000[V/cm] is dominated by the tunneling effect. The three peaks of TSC were obtained at the temperature of -20[.deg. C], 20[.deg. C] and 80[.deg. C], respectively. The origins of these peaks are that the .alpha. peak observed at -20[.deg. C] looks like to be ascribed to the ionization excitation from donor level in the grain, and the .alpha.' peak observed at 20 [.deg. C] appears to show up by hopping conduction of the trapped carrier of border between the oxidation layer and the grain, and the .betha. peak observed at 80[.deg. C] seems to be resulted from hopping conduction of existing carrier in the trap site of the border between the oxidation and second phase.

  • PDF

(Sr$_{1-x}.Ca_x)$TiO$_3$세라믹의 Ca변화량얘 따른 전기적인 특성 (Electrical Properies with Ca Contents of the (Sr$_{1-x}.Ca_x)$TiO$_3$Ceramic)

  • 김진사;정일형;신철기;김충혁;최운식;이준웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 춘계학술대회 논문집
    • /
    • pp.318-322
    • /
    • 1997
  • The (Sr$_{l-x}$.Ca$_{x}$)TiO$_3$(0.05$\leq$x$\leq$0.2) ceramics were fabricated to form semiconducting ceramics by sintering at about 1350[$^{\circ}C$] in a reducing atmosphere($N_2$gas). After being fired in a reducing atmosphere, metal oxides, CuO, was painted on the both surface of the specimens to diffuse to the grain boundary. They were annealed at 1100[$^{\circ}C$] for 2 hours and cooled to room temperature. The grain boundary was composed of the continuous insulating layers. The capacitance changes slowly and almost linearly in the temperature region of -30~+85[$^{\circ}C$]. The capacitance characteristics appears a stable value within $\pm$10[%]. The conduction mechanism of the specimens observed in the temperature range of 25~125[$^{\circ}C$], and is divined into three regions haying different mechanism as the current increased: the region I below 230[V/cm] shows the ohmic conduction. The region II can be explained by the Poole-Frenkel emission theory, and the region III is dominated by the tunneling effect.ect.

  • PDF

Metal-Insulator-Metal 캐패시터의 응용을 위한 비정질 BaTi4O9 박막의 전기적 특성 (Electrical Properties of the Amorphous BaTi4O9 Thin Films for Metal-Insulator-Metal Capacitors)

  • 홍경표;정영훈;남산;이확주
    • 한국재료학회지
    • /
    • 제17권11호
    • /
    • pp.574-579
    • /
    • 2007
  • Amorphous $BaTi_4O_9$ ($BT_4$) film was deposited on Pt/Si substrate by RF magnetron sputter and their dielectric properties and electrical properties are investigated. A cross sectional SEM image and AFM image of the surface of the amorphous $BT_4$ film deposited at room temperature showed the film was grown well on the substrate. The amorphous $BT_4$ film had a large dielectric constant of 32, which is similar to that of the crystalline $BT_4$ film. The leakage current density of the $BT_4$ film was low and a Poole-Frenkel emission was suggested as the leakage current mechanism. A positive quadratic voltage coefficient of capacitance (VCC) was obtained for the $BT_4$ film with a thickness of <70 nm and it could be due to the free carrier relaxation. However, a negative quadratic VCC was obtained for the films with a thickness ${\geq}96nm$, possibly due to the dipolar relaxation. The 55 nm-thick $BT_4$ film had a high capacitance density of $5.1fF/{\mu}m^2$ with a low leakage current density of $11.6nA/cm^2$ at 2 V. Its quadratic and linear VCCs were $244ppm/V^2$ and -52 ppm/V, respectively, with a low temperature coefficient of capacitance of $961ppm/^{\circ}C$ at 100 kHz. These results confirmed the potential suitability of the amorphous $BT_4$ film for use as a high performance metal-insulator-metal (MIM) capacitor.

내부 광전자방출 분광법을 이용한 Pt/HfO2/p-Si Metal-Insulator-Semiconductor 커패시터의 쇼트키 배리어 분석 (Characterization of the Schottky Barrier Height of the Pt/HfO2/p-type Si MIS Capacitor by Internal Photoemission Spectroscopy)

  • 이상연;서형탁
    • 한국재료학회지
    • /
    • 제27권1호
    • /
    • pp.48-52
    • /
    • 2017
  • In this study, we used I-V spectroscopy, photoconductivity (PC) yield and internal photoemission (IPE) yield using IPE spectroscopy to characterize the Schottky barrier heights (SBH) at insulator-semiconductor interfaces of Pt/$HfO_2$/p-type Si metal-insulator-semiconductor (MIS) capacitors. The leakage current characteristics of the MIS capacitor were analyzed according to the J-V and C-V curves. The leakage current behavior of the capacitors, which depends on the applied electric field, can be described using the Poole-Frenkel (P-F) emission, trap assisted tunneling (TAT), and direct tunneling (DT) models. The leakage current transport mechanism is controlled by the trap level energy depth of $HfO_2$. In order to further study the SBH and the electronic tunneling mechanism, the internal photoemission (IPE) yield was measured and analyzed. We obtained the SBH values of the Pt/$HfO_2$/p-type Si for use in Fowler plots in the square and cubic root IPE yield spectra curves. At the Pt/$HfO_2$/p-type Si interface, the SBH difference, which depends on the electrical potential, is related to (1) the work function (WF) difference and between the Pt and p-type Si and (2) the sub-gap defect state features (density and energy) in the given dielectric.