Browse > Article
http://dx.doi.org/10.4313/JKEM.2011.24.3.182

Analysis of Positive Bias Temperature Instability Characteristic for Nano-scale NMOSFETs with La-incorporated High-k/metal Gate Stacks  

Kwon, Hyuk-Min (Department of Electronics Engineering, Chungnam National University)
Han, In-Shik (Department of Electronics Engineering, Chungnam National University)
Park, Sang-Uk (Department of Electronics Engineering, Chungnam National University)
Bok, Jung-Deuk (Department of Electronics Engineering, Chungnam National University)
Jung, Yi-Jung (Department of Electronics Engineering, Chungnam National University)
Kwak, Ho-Young (Department of Electronics Engineering, Chungnam National University)
Kwon, Sung-Kyu (Department of Electronics Engineering, Chungnam National University)
Jang, Jae-Hyung (Department of Electronics Engineering, Chungnam National University)
Go, Sung-Yong (DMS Co., Ltd)
Lee, Weon-Mook (DMS Co., Ltd)
Lee, Hi-Deok (Department of Electronics Engineering, Chungnam National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.24, no.3, 2011 , pp. 182-187 More about this Journal
Abstract
In this paper, PBTI characteristics of NMOSFETs with La incorporated HfSiON and HfON are compared in detail. The charge trapping model shows that threshold voltage shift (${\Delta}V_{\mathrm{T}}$) of NMOSFETs with HfLaON is greater than that of HfLaSiON. PBTI lifetime of HfLaSiON is also greater than that of HfLaON by about 2~3 orders of magnitude. Therefore, high charge trapping rate of HfLaON can be explained by higher trap density than HfLaSiON. The different de-trapping behavior under recovery stress can be explained by the stable energy for U-trap model, which is related to trap energy level at zero electric field in high-k dielectric. The trap energy level of two devices at zero electric field, which is extracted using Frenkel-poole emission model, is 1,658 eV for HfLaSiON and 1,730 eV for HfLaON, respectively. Moreover, the optical phonon energy of HfLaON extracted from the thermally activated gate current is greater than that of HfLaSiON.
Keywords
High-k; HfLaON; HfLaSiON; PBTI; Gate current; Frenkel-poole emission;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. P. Wang, M.-F. Li, C. Ren, X. F. Yu, C. Shen, H. H. Ma, A. Chin, C. X. Zhu, J. Ning, M. B. Yu, and D.-L. Kwong, IEEE Electron Device Lett, 27, 1, 31 (2006).   DOI
2 Y. Yamamoto, K. Kita, K. Kyuno, and A. Toriumi, Jpn. J. Appl. Phys. 1, Regul. Rap. Short Notes, 46, 11, 7251 (2007).   DOI
3 Y. Abe, N. Miyata, Y. Shiraki, and T. Yasuda, Appl. Phys. Lett, 90, 17, 172 (2007).
4 B. J. O'Sullivan, R. Mitsuhashi, G. Pourtois, M. Aoulaiche, M. Houssa, N. Van der Heyden, T. Schram, Y. Harada, G. Groeseneken, P. Absil, S. Biesemans, T. Nakabayashi, A. Ikeda, and M. Niwa, J. Appl. Phys, 104, 4, 044512 (2008).   DOI
5 S. Zafar, A. Callegari, E. Gusev, and M. V. Fischetti, IEDM Technol. Dig., 517 (2002).
6 A. Kerber and E. A. Cartier, IEEE Transactions on Device and Materials Reliability, 9, 2, 147 (2009).   DOI
7 G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, IEEE Transactions on Device and Materials Reliability, 5, 1, 5 (2005).   DOI
8 F. Crupi, C. Pace, G. Cocorullo, G. Groeseneken, M. Aoulaiche, M. Houssa, Microelectron. Eng, 80, 7, 130 (2005).   DOI
9 S. Kalpat, H. H. Tseng, M. Ramon, M. Moosa, D. Tekleab, P. J. Tobin, D. C. Gilmer, R. I. Hegde, C. Capasso, C. Tracy, and B. E. White, IEEE Transactions on Device and Materials Reliability, 5, 1, 26 (2005).   DOI
10 P. Srinivasan, N. A. Chowdhury, D. Misra,, IEEE Electron Device Lett., 26, 12, 913 (2005).   DOI
11 M. T. Bohr, R. S. Chau, T. Ghani, and K. Mistry, IEEE Spectr, 44, 10, 29, (2007).   DOI
12 D. A. Buchanan, IBM J. Res. Dev, 43, 245 (1999).   DOI
13 E. P. Gusev, Electrochem. Soc., 477 (2000).
14 G. Bersuker, J. H. Sim, C. D. Yong, R. Choi, P. M. Zeitzoff, G. A. Brown, B. H. Lee, and R. W. Murto, Microelectron. Reliab, 44, 9, 1509 (2004).   DOI
15 A. Kerber et al., Proc. Int. Reliability Physics Symp, 41 (2003).
16 P. D. Kirsch, M. A. Quevedo-Lopez, S. A. Krishnan, C. Krug, H. AlShareef, C. S. Park, R. Harris, N. Moumen, A. Neugroschel, and G. Bersuker, IEDM Technol. Dig, 1 (2006).
17 P. D. Kirsch, P. Sivasubramani, J. Huang, C. D. Young, M. A. Quevedo-Lopez, H. C. Wen, H. Alshareef, K. Choi, C. S. Park, K. Freeman, M. M. Hussain, G. Bersuker, H. R. Harris, P. Majhi, R. Choi, P. Lysaght, B. H. Lee, H. H. Tseng, R. Jammy, T. S. Boscke, D. J. Lichtenwalner, J. S. Jur, and A. I. Kingon, Phys. Lett, 92, 9, 092 901 (2008).
18 P. Sivasubramani, T. S. Boscke, J. Huang, C. D. Young, P. D. Kirsch, S. A. Krishnan, M. A. Quevedo-Lopez, S. Govindarajan, B. S. Ju, H. R. Harris, D. J. Lichtenwalner, J. S. Jur, A. I. Kingon, J. Kim, B. E. Gnade, R. M. Wallace, G. Bersuker, B. H. Lee, and R. Jammy, VLSI Symp. Technol. Dig, 68 (2007).
19 C. Y. Kang, P. D. Kirsch, B. H. Lee, H. H. Tseng, and R. Jammy, IEEE Transactions on Device and Materials Reliability, 9, 2, 171 (2009).   DOI