• Title/Summary/Keyword: Flip chip bonding

Search Result 147, Processing Time 0.026 seconds

Numerical Analysis of Warpage Induced by Thermo-Compression Bonding Process of Cu Pillar Bump Flip Chip Package (수치해석을 이용한 구리기둥 범프 플립칩 패키지의 열압착 접합 공정 시 발생하는 휨 연구)

  • Kwon, Oh Young;Jung, Hoon Sun;Lee, Jung Hoon;Choa, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.443-453
    • /
    • 2017
  • In flip chip technology, the conventional solder bump has been replaced with a copper (Cu) pillar bump owing to its higher input/output (I/O) density, finer pitch, and higher reliability. However, Cu pillar bump technology faces several issues, such as interconnect shorting and higher low-k stress due to stiffer Cu pillar structure when the conventional reflow process is used. Therefore, the thermal compression bonding (TCB) process has been adopted in the flip chip attachment process in order to reduce the package warpage and stress. In this study, we investigated the package warpage induced during the TCB process using a numerical analysis. The warpage of the TCB process was compared with that of the reflow process.

Design of Dumbbell-type CPW Transmission Lines in Optoelectric Circuit PCBs for Improving Return Loss (광전회로 PCB에서 반사특성 개선을 위한 덤벨 형태의 CPW 전송선 설계)

  • Lee, Jong-Hyuk;Kim, Hwe-Kyung;Im, Young-Min;Jang, Seung-Ho;Kim, Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.408-416
    • /
    • 2010
  • A dumbbell-type CPW transmission-line structure has been proposed to improve the return loss of the transmission line between a driver IC and flip-chip-bonding VCSEL(Vertical Cavity Surface Emitting Laser) in a hybrid opto-electric circuit board(OECB). The proposed structure used a pair of dummy ground solder balls on the ground lines for flip-chip bonding of the VCSEL and designed the dumbbell-type CPW transmission line to improve reflection characteristics. The simulated results revealed that the return loss of the dumbbell-type CPW transmission line was 13-dB lower than the conventional CPW transmission line. A 4-dB improvement in the return loss was obtained using the dummy ground solder balls on the ground lines. The variation rate of the reflection characteristic with the variation of terminal impedances of the transmission line (at the output terminal of the driver IC and the input terminal of the VCSEL) is about ${\pm}2.5\;dB$.

Roadmap toward 2010 for high density/low cost semiconductor packaging

  • Tsukada, Yutaka
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 1999.12a
    • /
    • pp.155-162
    • /
    • 1999
  • A bare chip packaging technology by an encapsulated flip chip bonding on a build-up printed circuit board has emerged in 1991. Since then, it enabled a high density and low cost semiconductor packaging such as a direct chip bonding on mother board and high density surface mount components, such as BGA and CSP. This technology can respond to various requirements from applications and is considered to take over a main role of semiconductor packaging in the next decade.

  • PDF

Effect of Joule Heating on Electromigration Characteristics of Sn-3.5Ag Flip Chip Solder Bump (Joule열이 Sn-3.5Ag 플립칩 솔더범프의 Electromigration 거동에 미치는 영향)

  • Lee, Jang-Hee;Yang, Seung-Taek;Suh, Min-Suk;Chung, Qwan-Ho;Byun, Kwang-Yoo;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.17 no.2
    • /
    • pp.91-95
    • /
    • 2007
  • Electromigration characteristics of Sn-3.5Ag flip chip solder bump were analyzed using flip chip packages which consisted of Si chip substrate and electroplated Cu under bump metallurgy. Electromigration test temperatures and current densities peformed were $140{\sim}175^{\circ}C\;and\;6{\sim}9{\times}10^4A/cm^2$ respectively. Mean time to failure of solder bump decreased as the temperature and current density increased. The activation energy and current density exponent were found to be 1.63 eV and 4.6, respectively. The activation energy and current density exponent have very high value because of high Joule heating. Evolution of Cu-Sn intermetallic compound was also investigated with respect to current density conditions.

Effects of Intermetallic Compounds Formed during Flip Chip Process on the Interfacial Reactions and Bonding Characteristics (플립칩 공정시 반응생성물이 계면반응 및 접합특성에 미치는 영향)

  • Ha, Jun-Seok;Jung, Jae-Pil;Oh, Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.2
    • /
    • pp.35-39
    • /
    • 2012
  • We studied interfacial reaction and bonding characteristics of a flip chip bonding with the viewpoint of formation behavior of intermetallic compounds. For this purpose, Sn-0.7Cu and Sn-3Cu solders were reflowed on the Al/Cu and Al/Ni UBMs. When Sn-0.7Cu was reflowed on the Al/Cu UBM, no intermetallic compounds were formed at the solder/UBM interface. The $Cu_6Sn_5$ intermetallic compounds formed by reflowing Sn-3Cu solder on the Al/Cu UBM were spalled from the interface, resulting in delamination of the solder/UBM interface. On the other hand, the $(Cu,Ni)_6Sn_5$ intermetallic compounds were formed by reflowing of Sn-0.7Cu and Sn-3Cu on the Al/Ni UBM and the interfacial bonding between the Sn-Cu solders and the Al/Ni UBM was kept stable.

The characterization of anisotropic Si wafer etching and fabrication of flip chip solder bump using transferred Si carrier (Si웨이퍼의 이방성 식각 특성 및 Si carrier를 이용한 플립칩 솔더 범프제작에 관한 연구)

  • Mun Won-Cheol;Kim Dae-Gon;Seo Chang-Jae;Sin Yeong-Ui;Jeong Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.16-17
    • /
    • 2006
  • We researched by the characteristic of a anisotropic etching of Si wafer and the Si career concerning the flip chip solder bump. Connectors and Anisotropic Conductive Film (ACF) method was already applied to board-to-board interconnection. In place of them, we have focused on board to board interconnection with solder bump by Si carrier, which has been used as Flip chip bonding technology. A major advantage of this technology is that the Flexible Printed Circuit (FPC) is connected in the same solder reflow process with other surface mount devices. This technology can be applied to semiconductors and electronic devices for higher functionality, integration and reliability.

  • PDF

Microstructure Characterization of the Solders Deposited by Thermal Evaporation for Flip Chip Bonding (진공 증발법에 의해 제조된 플립 칩 본딩용 솔더의 미세 구조분석)

  • 이충식;김영호;권오경;한학수;주관종;김동구
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.2
    • /
    • pp.67-76
    • /
    • 1995
  • The microstructure of 95wt.%Pb/5wt.%Sn and 63wt.%Sn/37wt.%Pb solders for flip chip bonding process has been characterized. Solders were deposited by thermal evaporation and reflowed in the conventional furnace or by rapid thermal annealing(RTA) process. As-deposited films show columnar structure. The microstructure of furnace cooled 63Sn/37Pb solder shows typical lamellar form, but that of RTA treated solder has the structure showing an uniform dispersion of Pb-rich phase in Sn matrix. The grain size of 95Pb/5Sn solder reflowed in the furnace is about $5\mu\textrm{m}$, but the grain size of RTA treated solder is too small to be observed. The microstructure in 63Sn/37Pb solder bump shows the segregation of Pb phase in the Sn rich matrix regardless of reflowing method. The 63Sn/37Pb solder bump formed by RTA process shows more uniform microstructure. These result are related to the heat dissipation in the solder bump.

  • PDF