• Title/Summary/Keyword: Flash memory cell

Search Result 106, Processing Time 0.029 seconds

A study on characteristics of the scaled SONOSFET NVSM for Flash memory (플래시메모리를 위한 scaled SONOSFET NVSM 의 프로그래밍 조건과 특성에 관한 연구)

  • 박희정;박승진;홍순혁;남동우;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.751-754
    • /
    • 2000
  • When charge-trap SONOS cells are used flash memory, the tunneling program/erase condition to minimize the generation of interface traps was investigated. SONOSFET NVSM cells were fabricated using 0.35$\mu\textrm{m}$ standard memory cell embedded logic process including the ONO cell process. based on retrograde twin-well, single-poly, single metal CMOS process. The thickness of ONO triple-dielectric for memory cell is tunnel oxide of 24${\AA}$, nitride of 74 ${\AA}$, blocking oxide of 25 ${\AA}$, respectively. The program mode(Vg: 7,8,9 V, Vs/Vd: -3 V, Vb: floating) and the erase mode(Vg: -4,-5,-6 V, Vs/Vd: floating, Vb: 3V) by modified Fowler-Nordheim(MFN) tunneling were used. The proposed programming condition for the flash memory of SONOSFET NVSM cells showed less degradation($\Delta$Vth, S, Gm) characteristics than channel MFN tunneling operation. Also the program inhibit conditions of unselected cell for separated source lines NOR-tyupe flash memory application were investigated. we demonstrated that the program disturb phenomenon did not occur at source/drain voltage of 1 V∼4 V and gate voltage of 0 V∼4.

  • PDF

A New Programming Method to Alleviate the Program Speed Variation in Three-Dimensional Stacked Array NAND Flash Memory

  • Kim, Yoon;Seo, Joo Yun;Lee, Sang-Ho;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.566-571
    • /
    • 2014
  • Channel-stacked 3D NAND flash memory is very promising candidate for the next-generation NAND flash memory. However, there is an inherent issue on cell size variation between stacked channels due to the declined etch slope. In this paper, the effect of the cell variation on the incremental step pulse programming (ISPP) characteristics is studied with 3D TCAD simulation. The ISPP slope degradation of elliptical channel is investigated. To solve that problem, a new programming method is proposed, and we can alleviate the $V_T$ variation among cells and reduce the total programming time.

A High Performance Co-design of 26 nm 64 Gb MLC NAND Flash Memory using the Dedicated NAND Flash Controller

  • You, Byoung-Sung;Park, Jin-Su;Lee, Sang-Don;Baek, Gwang-Ho;Lee, Jae-Ho;Kim, Min-Su;Kim, Jong-Woo;Chung, Hyun;Jang, Eun-Seong;Kim, Tae-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.2
    • /
    • pp.121-129
    • /
    • 2011
  • It is progressing as new advents and remarkable developments of mobile device every year. On the upper line reason, NAND FLASH large density memory demands which can be stored into portable devices have been dramatically increasing. Therefore, the cell size of the NAND Flash memory has been scaled down by merely 50% and has been doubling density each per year. [1] However, side effects have arisen the cell distribution and reliability characteristics related to coupling interference, channel disturbance, floating gate electron retention, write-erase cycling owing to shrinking around 20nm technology. Also, FLASH controller to manage shrink effect leads to speed and current issues. In this paper, It will be introduced to solve cycling, retention and fail bit problems of sub-deep micron shrink such as Virtual negative read used in moving read, randomization. The characteristics of retention, cycling and program performance have 3 K per 1 year and 12.7 MB/s respectively. And device size is 179.32 $mm^2$ (16.79 mm ${\times}$ 10.68 mm) in 3 metal 26 nm CMOS.

MLC NAND-type Flash Memory Built-In Self Test for research (MLC NAND-형 Flash Memory 내장 자체 테스트에 대한 연구)

  • Kim, Jin-Wan;Kim, Tae-Hwan;Chang, Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.61-71
    • /
    • 2014
  • As the occupancy rate of the flash memory increases in the storage media market for the embedded system and the semi-conductor industry grows, the demand and supply of flash memory is increasing by a big margin. They are especially used in large quantity in the smart phones, tablets, PC, SSD and Soc(System on Chip) etc. The flash memory is divided into the NOR type and NAND type according to the cell arrangement structure and the NAND type is divided into the SLC(Single Level Cell) and MLC(Multi Level Cell) according to the number of bits that can be stored in each cell. Many tests have been performed on NOR type such as BIST(Bulit-In Self Test) and BIRA(Bulit-In Redundancy Analysis) etc, but there is little study on the NAND type. For the case of the existing BIST, the test can be proceeded using external equipments like ATE of high price. However, this paper is an attempt for the improvement of credibility and harvest rate of the system by proposing the BIST for the MLC NAND type flash memory of Finite State Machine structure on which the pattern test can be performed without external equipment since the necessary patterns are embedded in the interior and which uses the MLC NAND March(x) algorithm and pattern which had been proposed for the MLC NAND type flash memory.

An Equalizing for CCI Canceling in MLC NAND Flash Memory (MLC NAND 플래시 메모리의 CCI 감소를 위한 등화기 설계)

  • Lee, Kwan-Hee;Lee, Sang-Jin;Kim, Doo-Hwan;Cho, Kyoung-Rok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.10
    • /
    • pp.46-53
    • /
    • 2011
  • This paper presents an equalizer reducing CCI(cell-to-cell interference) in MLC NAND flash memory. The CCI is a critical factor which affects occurring data errors in a cell, when surrounding cells are programed. We derived a characteristic equation for CCI considering write procedure of data that is similar with signal equalizing. The model considers the floating gate capacitance coupling effect, the direct field effect, and programming methods of the MLC NAND flash memory. We verify the proposed equalizer comparing with the measured data of 1-block MLC NAND flash memory. As the simulation result, the equalizer shows an error correction ratio about 60% under 20nm NAND process.

A Study on the High Integrated 1TC SONOS flash Memory (고집적화된 1TC SONOS 플래시 메모리에 관한 연구)

  • 김주연;김병철;서광열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.5
    • /
    • pp.372-377
    • /
    • 2003
  • To realize a high integrated flash memory utilizing SONOS memory devices, the NOR type ITC(one Transistor Cell) SONOS flash arrays are fabricated and characterized. This SONOS flash arrays with the common source lines are designed and fabricated by conventional 0.35$\mu\textrm{m}$ CMOS process. The thickness of ONO for memory cells is tunnel oxide of 34${\AA}$, nitride of 73${\AA}$ and blocking oxide of 34${\AA}$ . To investigate operating characteristics, CHEI(Channel Hot Electron Injection) method and bit line method are selected as the program and 4he erase operation, respectively. The disturbance characteristics ,according to the program/erase/read cycling are also examined. The degradation characteristics are investigated and then the reliability of SONOS flash memory is guaranteed.

A Cross Layer Optimization Technique for Improving Performance of MLC NAND Flash-Based Storages (MLC 낸드 플래시 기반 저장장치의 쓰기 성능 개선을 위한 계층 교차적 최적화 기법)

  • Park, Jisung;Lee, Sungjin;Kim, Jihong
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1130-1137
    • /
    • 2017
  • The multi-leveling technique that stores multiple bits in a single memory cell has significantly improved the density of NAND flash memory along with shrinking processes. However, because of the side effects of the multi-leveling technique, the average write performance of MLC NAND flash memory is degraded more than twice that of SLC NAND flash memory. In this paper, we introduce existing cross-layer optimization techniques proposed to improve the performance of MLC NAND flash-based storages, and propose a new integration technique that overcomes the limitations of existing techniques by exploiting their complementarity. By fully exploiting the performance asymmetry in MLC NAND flash devices at the flash translation layer, the proposed technique can handle many write requests with the performance of SLC NAND flash devices, thus significantly improving the performance of NAND flash-based storages. Experimental results show that the proposed technique improves performance 39% on average over individual techniques.

Highly Integrated 3-dimensional NOR Flash Array with Vertical 4-bit SONOS (V4SONOS) (수직형 4-비트 SONOS를 이용한 고집적화된 3차원 NOR 플래시 메모리)

  • Kim, Yoon;Yun, Jang-Gn;Cho, Seong-Jae;Park, Byung-Gook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.1-6
    • /
    • 2010
  • We proposed a highly integrated 3-dimensional NOR Flash memory array by using vertical 4-bit SONOS NOR flash memory. This structure has a vertical channel, so it is possible to have a long enough channel without extra cell area. Therefore, we can avoid second-bit effect, short channel effect, and redistribution of injected charges. And the proposed array structure is based on three-dimensional integration. Thus, we can obtain a NOR flash memory having $1.5F^2$/bit cell size.

Performance and SILC Characteristics of Flash Memory Cell With Ultra thin $N_2O$ Annealed Tunneling Oxide (초박막의 $N_2O$ 어닐링한 터널링 산화막을 갖는 Flash Memory Cell의 SILC 특성 및 성능)

  • Son, Jong-Hyoung;Chong, Jong-Wha
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.10
    • /
    • pp.1-8
    • /
    • 1999
  • In this paper, we have studies the transport mechanism and origin of SILC for the various thickness of wet oxide. Also, SILC characteristics of $N_2O$ annealed oxide was included in this study. We made the flash memory cell with $N_2O$ annealed oxide of 60Athick under $0.25{\mu}m$ design rule, and measured the characteristics of the cell. As a result, we have found that the origin of SILC is due to the trap formed inside of the oxide layer by electrical stress. And we reached the conclusion that the transport mechanism of SILC is ruled by the modified F-N tunneling if the electric field is lower than 8MV/cm or typical F-N tunneling if the electric field is higher than 8MV/cm. We could also confirm the fact that $N_2O$ annealed oxide of 60Athick have an improved resistance effect against SILC. In case that we apply $N_2O$ annealed oxide of 60Athick to the flash memory, we could confirm $10^6$ times endurance and more than 10 years drain disturb, and could get 8V programmable flash memory characteristics.

  • PDF

Trap Generation Analysis by Program/Erase Speed Measurements in 50 nm Nand Flash Memory (50nm 급 낸드플래시 메모리에서의 Program/Erase 스피드 측정을 통한 트랩 생성 분석)

  • Kim, Byoung-Taek;Kim, Yong-Seok;Hur, Sung-Hoi;Yoo, Jang-Min;Roh, Yong-Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.300-304
    • /
    • 2008
  • A novel characterization method was investigated to estimate the trap generation during the program /erase cycles in nand flash memory cell. Utilizing Fowler-Nordheim tunneling current, floating gate potential and oxide electric field, we established a quantitative model which allows the knowledge of threshold voltage (Vth) as a function of either program or erase operation time. Based on our model, the derived results proved that interface trap density (Nit) term is only included in the program operation equation, while both Nit and oxide trap density (Not) term are included in the erase operation equation. The effectiveness of our model was tested using 50 nm nand flash memory cell with floating gate type. Nit and Not were extracted through the analysis of Program/Erase speed with respect to the endurance cycle. Trap generation and cycle numbers showed the power dependency. Finally, with the measurement of the experiment concerning the variation of cell Vth with respect to program/erase cycles, we obtained the novel quantitative model which shows similar results of relationship between experimental values and extracted ones.