• Title/Summary/Keyword: Flash Memory Test

Search Result 43, Processing Time 0.024 seconds

PMBIST for NAND Flash Memory Pattern Test (NAND Flash Memory Pattern Test를 위한 PMBIST)

  • Kim, Tae-Hwan;Chang, Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.79-89
    • /
    • 2014
  • It has been an increase in consumers who want a high-capacity and fast speed by the newly diffused mobile device(Smart phones, Ultra books, Tablet PC). As a result, the demand for Flash Memory is constantly increasing. Flash Memory is separated by a NAND-type and NOR-type. NAND-type Flash Memory speed is slow, but price is cheaper than the NOR-type Flash Memory. For this reason, NAND-type Flash Memory is widely used in the mobile market. So Fault Detection is very important for Flash Memory Test. In this paper, Proposed PMBIST for Pattern Test of NAND-type Flash Memory improved Fault detection.

TLC NAND-type Flash Memory Built-in Self Test (TLC NAND-형 플래시 메모리 내장 자체테스트)

  • Kim, Jin-Wan;Chang, Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.72-82
    • /
    • 2014
  • Recently, the size of semiconductor industry market is constantly growing, due to the increase in diffusion of smart-phone, tablet PC and SSD(Solid State Drive). Also, it is expected that the demand for TLC NAND-type flash memory would gradually increase, with the recent release of TLC NAND-type flash memory in the SSD market. There have been a lot of studies on SLC NAND flash memory, but no research on TLC NAND flash memory has been conducted, yet. Also, a test of NAND-type flash memory is depending on a high-priced external equipment. Therefore, this study aims to suggest a structure for an autonomous test with no high-priced external test device by modifying the existing SLC NAND flash memory and MLC NAND flash memory test algorithms and patterns and applying them to TLC NAND flash memory.

Pattern Testable NAND-type Flash Memory Built-In Self Test (패턴 테스트 가능한 NAND-형 플래시 메모리 내장 자체 테스트)

  • Hwang, Phil-Joo;Kim, Tae-Hwan;Kim, Jin-Wan;Chang, Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.122-130
    • /
    • 2013
  • The demand and the supply are increasing sharply in accordance with the growth of the Memory Semiconductor Industry. The Flash Memory above all is being utilized substantially in the Industry of smart phone, the tablet PC and the System on Chip (SoC). The Flash Memory is divided into the NOR-type Flash Memory and the NAND-type Flash Memory. A lot of study such as the Built-In Self Test (BIST), the Built-In Self Repair (BISR) and the Built-In Redundancy Analysis (BIRA), etc. has been progressed in the NOR-type fash Memory, the study for the Built-In Self Test of the NAND-type Flash Memory has not been progressed. At present, the pattern test of the NAND-type Flash Memory is being carried out using the outside test equipment of high price. The NAND-type Flash Memory is being depended on the outside equipment as there is no Built-In Self Test since the erasure of block unit, the reading and writing of page unit are possible in the NAND-type Flash Memory. The Built-In Self Test equipped with 2 kinds of finite state machine based structure is proposed, so as to carry out the pattern test without the outside pattern test equipment from the NAND-type Flash Memory which carried out the test dependant on the outside pattern test equipment of high price.

Self-adaptive testing to determine sample size for flash memory solutions

  • Byun, Chul-Hoon;Jeon, Chang-Kyun;Lee, Taek;In, Hoh Peter
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.2139-2151
    • /
    • 2014
  • Embedded system testing, especially long-term reliability testing, of flash memory solutions such as embedded multi-media card, secure digital card and solid-state drive involves strategic decision making related to test sample size to achieve high test coverage. The test sample size is the number of flash memory devices used in a test. Earlier, there were physical limitations on the testing period and the number of test devices that could be used. Hence, decisions regarding the sample size depended on the experience of human testers owing to the absence of well-defined standards. Moreover, a lack of understanding of the importance of the sample size resulted in field defects due to unexpected user scenarios. In worst cases, users finally detected these defects after several years. In this paper, we propose that a large number of potential field defects can be detected if an adequately large test sample size is used to target weak features during long-term reliability testing of flash memory solutions. In general, a larger test sample size yields better results. However, owing to the limited availability of physical resources, there is a limit on the test sample size that can be used. In this paper, we address this problem by proposing a self-adaptive reliability testing scheme to decide the sample size for effective long-term reliability testing.

An Audio Comparison Technique for Verifying Flash Memories Mounted on MP3 Devices (MP3 장치용 플래시 메모리의 오류 검출을 위한 음원 비교 기법)

  • Kim, Kwang-Jung;Park, Chang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.5
    • /
    • pp.41-49
    • /
    • 2010
  • Being popularized the use of portable entertainment/information devices, the demand on flash memory has been also increased radically. In general, flash memory reveals various error patterns by the devices it is mounted, and thus the memory makers are trying to minimize error ratio in the final process through not only the electric test but also the data integrity test under the same condition as real application devices. This process is called an application-level memory test. Though currently various flash memory testing devices have been used in the production lines, most of the works related to memory test depend on the sensual abilities of human testers. In case of testing the flash memory for MP3 devices, the human testers are checking if the memory has some errors by hearing the audio played on the memory testing device. The memory testing process like this has become a bottleneck in the flash memory production line. In this paper, we propose an audio comparison technique to support the efficient flash memory test for MP3 devices. The technique proposed in this paper compares the variance change rate between the source binary file and the decoded analog signal and checks automatically if the memory errors are occurred or not.

Reallocation Data Reusing Technique for BISR of Embedded Memory Using Flash Memory (플래시 메모리를 이용한 내장 메모리 자가 복구의 재배치 데이타 사용 기술)

  • Shim, Eun-Sung;Chang, Hoon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.8
    • /
    • pp.377-384
    • /
    • 2007
  • With the advance of VLSI technology, the capacity and density of memories is rapidly growing. In this paper, We proposed a reallocation algorithm for faulty memory part to efficient reallocation with row and column redundant memory. Reallocation information obtained from faulty memory by only every test. Time overhead problem occurs geting reallocation information as every test. To its avoid, one test resulted from reallocation information can save to flash memory. In this paper, reallocation information increases efficiency using flash memory.

MLC NAND-type Flash Memory Built-In Self Test for research (MLC NAND-형 Flash Memory 내장 자체 테스트에 대한 연구)

  • Kim, Jin-Wan;Kim, Tae-Hwan;Chang, Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.61-71
    • /
    • 2014
  • As the occupancy rate of the flash memory increases in the storage media market for the embedded system and the semi-conductor industry grows, the demand and supply of flash memory is increasing by a big margin. They are especially used in large quantity in the smart phones, tablets, PC, SSD and Soc(System on Chip) etc. The flash memory is divided into the NOR type and NAND type according to the cell arrangement structure and the NAND type is divided into the SLC(Single Level Cell) and MLC(Multi Level Cell) according to the number of bits that can be stored in each cell. Many tests have been performed on NOR type such as BIST(Bulit-In Self Test) and BIRA(Bulit-In Redundancy Analysis) etc, but there is little study on the NAND type. For the case of the existing BIST, the test can be proceeded using external equipments like ATE of high price. However, this paper is an attempt for the improvement of credibility and harvest rate of the system by proposing the BIST for the MLC NAND type flash memory of Finite State Machine structure on which the pattern test can be performed without external equipment since the necessary patterns are embedded in the interior and which uses the MLC NAND March(x) algorithm and pattern which had been proposed for the MLC NAND type flash memory.

A Design and Implementation of Flash Memory Simulator (플래시 메모리 시뮬레이터의 설계 및 구현)

  • Jeong, Jae-Yong;Noh, Sam-Hyuk;Min, Sang-Lyull;Cho, Yoo-Kun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.1
    • /
    • pp.36-45
    • /
    • 2002
  • This paper introduces the design and implementation of a flash memory simulator to emulate a real flash memory. Since this simulator provides exact execution time information and parameter testing functions as well as the type, total capacity, block size, and page size of flash memory, it can be used as a real flash memory as viewed by the operating system. Furthermore, the simulator provides time logging functions of the internal routines of the flash memory management software allowing the monitoring of bottlenecks within the software. Finally, we show the performance measurements of applications under the Linux operating systems on both the simulator and a test board verifying the simulator's use as a replacement for real flash memory.

Built-In Self Repair for Embedded NAND-Type Flash Memory (임베디드 NAND-형 플래시 메모리를 위한 Built-In Self Repair)

  • Kim, Tae Hwan;Chang, Hoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.5
    • /
    • pp.129-140
    • /
    • 2014
  • BIST(Built-in self test) is to detect various faults of the existing memory and BIRA(Built-in redundancy analysis) is to repair detected faults by allotting spare. Also, BISR(Built-in self repair) which integrates BIST with BIRA, can enhance the whole memory's yield. However, the previous methods were suggested for RAM and are difficult to diagnose disturbance that is NAND-type flash memory's intrinsic fault when used for the NAND-type flash memory with different characteristics from RAM's memory structure. Therefore, this paper suggests a BISD(Built-in self diagnosis) to detect disturbance occurring in the NAND-type flash memory and to diagnose the location of fault, and BISR to repair faulty blocks.

Fault Test Algorithm for MLC NAND-type Flash Memory (MLC NAND-형 플래시 메모리를 위한 고장검출 테스트 알고리즘)

  • Jang, Gi-Ung;Hwang, Phil-Joo;Chang, Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.4
    • /
    • pp.26-33
    • /
    • 2012
  • As the flash memory has increased the market share of data storage in imbedded system and occupied the most of area in a system, It has a profound impact on system reliability. Flash memory is divided NOR/NAND-type according to the cell array structure, and is classified as SLC(Single Level Cell)/MLC(Multi Level Cell) according to reference voltage. Although NAND-type flash memory is slower than NOR-type, but it has large capacity and low cost. Also, By the effect of demanding mobile market, MLC NAND-type is widely adopted for the purpose of the multimedia data storage. Accordingly, Importance of fault detection algorithm is increasing to ensure MLC NAND-type flash memory reliability. There are many researches about the testing algorithm used from traditional RAM to SLC flash memory and it detected a lot of errors. But the case of MLC flash memory, testing for fault detection, there was not much attempt. So, In this paper, Extend SLC NAND-type flash memory fault detection algorithm for testing MLC NAND-type flash memory and try to reduce these differences.