• Title/Summary/Keyword: Finsler space with (${\alpha}$, ${\beta}$)-metric

Search Result 26, Processing Time 0.021 seconds

ON TWO-DIMENSIONAL LANDSBERG SPACE WITH A SPECIAL (${\alpha},\;{\beta}$)-METRIC

  • Lee, Il-Yong
    • The Pure and Applied Mathematics
    • /
    • v.10 no.4
    • /
    • pp.279-288
    • /
    • 2003
  • In the present paper, we treat a Finsler space with a special (${\alpha},\;{\beta}$)-metric $L({\alpha},\;{\beta})\;\;C_1{\alpha}+C_2{\beta}+{\alpha}^2/{\beta}$ satisfying some conditions. We find a condition that a Finsler space with a special (${\alpha},\;{\beta}$)-metric be a Berwald space. Then it is shown that if a two-dimensional Finsler space with a special (${\alpha},\;{\beta}$)-metric is a Landsberg space, then it is a Berwald space.

  • PDF

ON DOUGLAS SPACE WITH AN APPROXIMATE INFINITE SERIES (α,β)-METRIC

  • Lee, Il-Yong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.699-716
    • /
    • 2009
  • We deal with a Finsler space $F^n$ with an approximate infinite series $({\alpha},\;{\beta})$-metric $L({\alpha},\;{\beta})$ = ${\beta}{\sum}_{k=0}^{r}(\frac{\alpha}{\beta})^k$ where ${\alpha}<{\beta}$. We introduced a Finsler space $F^n$ with an infinite series $({\alpha},{\beta})$-metric $L({\alpha},\;{\beta})=\frac{\beta^2}{\beta-\alpha}$ and investigated various geometrical properties at [6]. The purpose of the present paper is devoted to finding the condition for a Finsler space $F^n$ with an approximate infinite series $({\alpha},\;{\beta})$-metric above to be a Douglas space.

  • PDF

On the projectively flat finsler space with a special $(alpha,beta)$-metric

  • Kim, Byung-Doo
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.2
    • /
    • pp.407-413
    • /
    • 1996
  • The $(\alpha, \beta)$-metric is a Finsler metric which is constructed from a Riemannian metric $\alpha$ and a differential 1-form $\Beta$; it has been sometimes treat in theoretical physics. In particular, the projective flatness of Finsler space with a metric $L^2 = 2\alpha\beta$ is considered in detail.

  • PDF

ON THE BERWALD CONNECTION OF A FINSLER SPACE WITH A SPECIAL $({\alpha},{\beta})$-METRIC

  • Park, Hong-Suh;Park, Ha-Yong;Kim, Byung-Doo
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.355-364
    • /
    • 1997
  • In a Finsler space, we introduce a special $(\alpha,\beta)$-metric L satisfying $L^2(\alpha,\beta) = c_1\alpha^2 + 2c_2\alpha\beta + c_3\beta^2$, which $c_i$ are constants. We investigate the Berwald connection in a Finsler space with this special $\alpha,\beta)$-metric.

  • PDF

ON PROJECTIVELY FLAT FINSLER SPACES WITH $({\alpha},{\beta})$-METRIC

  • Park, Hong-Suh;Lee, Il-Yong
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.2
    • /
    • pp.373-383
    • /
    • 1999
  • The ($\alpha$,$\beta$)-metric is a Finsler metric which is constructed from a Riemannian metric $\alpha$ and a differential 1-from $\beta$;it has been sometimes treated in theoretical physics. The condition for a Finsler space with an ($\alpha$,$\beta$)-metric L($\alpha$,$\beta$) to be projectively flat was given by Matsumoto [11]. The present paper is devoted to studying the condition for a Finsler space with L=$\alpha$\ulcorner$\beta$\ulcorner or L=$\alpha$+$\beta$\ulcorner/$\alpha$ to be projectively flat on the basis of Matsumoto`s results.

  • PDF

PROJECTIVELY FLAT FINSLER SPACES WITH CERTAIN (α, β)-METRICS

  • Park, Hong-Suh;Park, Ha-Yong;Kim, Byung-Doo;Choi, Eun-Seo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.4
    • /
    • pp.649-661
    • /
    • 2003
  • The ($\alpha,\;\beta$)-metric is a Finsler metric which is constructed from a Riemannian metric $\alpha$ and a differential 1-form $\beta$. In this paper, we discuss the projective flatness of Finsler spaces with certain ($\alpha,\;\beta$)-metrics ([5]) in a locally Minkowski space.

ON PROJECTIVELY FLAT FINSLER SPACE WITH AN APPROXIMATE INFINITE SERIES (α,β)-METRIC

  • Lee, Il-Yong
    • East Asian mathematical journal
    • /
    • v.28 no.1
    • /
    • pp.25-36
    • /
    • 2012
  • We introduced a Finsler space $F^n$ with an approximate infinite series (${\alpha},{\beta}$-metric $L({\alpha},{\beta})={\beta}\sum\limits_{k=0}^r\(\frac{\alpha}{\beta}\)^k$, where ${\alpha}<{\beta}$ and investigated it with respect to Berwald space ([12]) and Douglas space ([13]). The present paper is devoted to finding the condition that is projectively at on a Finsler space $F^n$ with an approximate infinite series (${\alpha},{\beta}$)-metric above.

EQUATIONS OF GEODESIC WITH AN APPROXIMATE INFINITE SERIES (${\alpha},{\beta}$)-METRIC

  • Lee, Il-Yong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.183-200
    • /
    • 2012
  • In the present paper, we consider the condition that is a geodesic equation on a Finsler space with an (${\alpha},\;{\beta}$)-metric. Next we find the conditions that are equations of geodesic on the Finsler space with an approximate infinite series (${\alpha},\;{\beta}$)-metric.

DOUGLAS SPACES OF THE SECOND KIND OF FINSLER SPACE WITH A MATSUMOTO METRIC

  • Lee, Il-Yong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.209-221
    • /
    • 2008
  • In the present paper, first we define a Douglas space of the second kind of a Finsler space with an (${\alpha},{\beta}$)-metric. Next we find the conditions that the Finsler space with an (${\alpha},{\beta}$)-metric be a Douglas space of the second kind and the Finsler space with a Matsumoto metric be a Douglas space of the second kind.

  • PDF

A Finsler space with a special metric function

  • Park, Hong-Suh;Lee, Il-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.2
    • /
    • pp.415-421
    • /
    • 1996
  • In this paper, we shall find the conditions that the Finsler space with a special $(\alpha,\beta)$-metric be a Riemannian space and a Berwald space.

  • PDF