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ON DOUGLAS SPACE WITH AN APPROXIMATE
INFINITE SERIES (a,3)-METRIC

IL-YoNG LEE*

ABSTRACT. We deal with a Finsler space F™ with an approximate infinite
T
series (a, 8)-metric L(c,8) = 8 > (%)k, where a < (3. We introduced
k=0

ﬂQ

a Finsler space F™ with an infinite series («,3)-metric L(a, 3) =

and investigated various geometrical properties at [6]. The purpose of the
present paper is devoted to finding the condition for a Finsler space F'™ with
an approximate infinite series («, 3)-metric above to be a Douglas space.

1. Introduction
A Finsler metric L(a, 3) in a differentiable manifold M™ is called an
(a, B)-metric, if L is a positively homogeneous function of degree one of a

/2 and a one-form § = b;(z)y* on M™.

Riemannian metric o = (a;;(z)y'y?)
The interesting and important examples of an («,3)-metric are Randers
metric o + 3, Kropina metric o?/3 and Matsumoto metric a?/(a — 3). The
notion of an («, #)-metric was introduced by M. Matsumoto (cf. [10]) and
has been studied by many authors.

A Finsler space is called a Berwald space if the Berwald connection is
linear. Berwald spaces are specially interesting and important, because the
connection is linear, and many examples of Berwald spaces have been known.

The notion of a Douglas space was introduced by S. Bacsé and M. Mat-

sumoto [2] as a generalization of a Berwald space from the viewpoint of
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geodesic equations. It is remarkable that a Finsler space is a Douglas space,
if and only if the Douglas tensor vanishes identically.

The present paper is devoted to finding the condition that the Finsler
space F™ with the approximate infinite series (a, 3)-metric L = (3 ZT: (%)k
be a Douglas space (Theorem 3.1, 3.2). =

2. Preliminaries

Let us consider the r-th series («, 3)-metric

(2.1) L(a,f) = ﬁgo (g)k

where we assume a < .

Then the metric above(cf. [12]) is called an approximate infinite series
(v, B)-metric or the rth approzimate infinite series (., 3)-metric.

If r =1, then L = a4 § is a Randers metric. The conditions that the
Randers space be a Berwald space and a Douglas space are found in [11],
respectively. If r = 2, then L = a + ( + % is treated in [9] as an («, )-
metric that a locally Minkowski space is flat-parallel. If » = oo, then this

metric (2.1) is expressed as the form

' r o k ﬁ2
(2.2) Ko = Jim 93 (ﬁ) -

Then the metric above ([6]) is called an infinite series («, 3)-metric. We
have not at all investigated the geometrical meaning on the metric above by
this time. It is remarkable that this metric (2.2) is the difference between a
Randers metric and a Matsumoto metric.

On the other hand, the geodesics of a Finsler space F" = (M", L) are

given by the system of differential equations including the function

4Gi($, y) = g% (yT3j8TL2 - ajLQ).
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For an («, #)-metric L(«, 3) the space R™ = (M™,«) is called the associ-
ated Riemannian space with F" = (M™, L(a, 8)) ([1], [7]). The covariant
differentiation with respect to the Levi-Civita connection 7;’x(x) of R" is

denoted by (;). We put (a”) = (a;;)~*, and use the symbols as follows:

1 1 . ‘ . 4
—_ — 7 . wr 1 . r
Tij = 5(%’ +bjii), Sij = §(bz’;j —bji), 'y =a"r, s';=a"s.,,

ri=0br"j,8; = bps"y, b =a"b,, b® =a"*b.bs.
According to [8], if 2Ly + ay? Lo # 0, where 42 = b2a? — 32, then the
function G*(x,y) of F™ with an (a, 3)-metric is written in the form
2GZ = ’)/Oio + 2Bz,

(2.3) . alg BLg ;, oL 1 . o .
B = 7 * i [Saa P A X4
oo {TE0 -t (-5 b

where L, = OL/0a, Lg = OL/0B and Ly, = 0?L/dada, the subscript 0

means the contraction by y* and we put

aB(rooLa — 2soaLp)
2(52[/& + 05’72Laa) .

(2.4) c* =

We shall denote the homogeneous polynomials in (3°) of degree r by hp(r)
for brevity. For example, yo%¢ is hp(2).
From the former of (2.3) the Berwald connection BI'= (G,%,G";,0) of
F" with an (a, #)-metric is given by
Gij = 8JG1 = ’ygij + Bij,
G’y = G’ ="k + Bj'k,
where we put B; = QjBi and B’y = 3kBij. Bi(z,y) is called the difference
vector ([8]). On account of [8], B, is determined by

(2'5) LaBjtiyjyt + OéLg(Bjtibt — bj;i)yj =0,

where 5, = a;;y'. Consequently we have
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THEOREM 2.1. ([5]) The Finsler space F™ (n > 2) with an approximate
infinite series (a, [§)-metric (2.1) is a Berwald space if and only if bj.; = 0,

and then the Berwald connection is essentially Riemannian (v, v0';,0).

A Finsler space F" with an (a, 3)-metric is a Douglas space, if and only
if BY = Biy/ — By’ is hp(3) ([2]). From the latter of (2.3) B is written

as follows:

L o o 27,
- B(Szoyj—sjoyz)‘Fa —

2.6 BY =
(2:6) L, BLq

CH(b'y’ —b'y").

We shall state the following lemma for later:

LEMMA 2.2. ([3]) If o® = 0(mod J3), that is, a;;(z)y'y’ contains b;(z)y’
as a factor, then the dimension is equal to two and b? vanishes. In this case

we have § = d;(x)y® satisfying o = 3§ and d;b* = 2.

3. Douglas space

In the present section, we find the condition that a Finsler space F™ with
the rth approximate infinite series («, )-metric (2.1) be a Douglas space. In
the n-dimensional Finsler space F™ with the rth approximate infinite series

(a, B)-metric (2.1), we have

we B (G) e ()

(3.1) . s
1 «
Laa_ﬁ];)k(k—l) <5> .
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Substituting (3.1) into (2.6), we have
2;)1@ (g)k_l {53 Zk (g)k_l +a(b?a? — 3?) kzokr(k -
<g>k_2}3“+2ak§; 1) )
(3.2) a(b?a® — %) Zk —1) (
—a3kZ:0k;(k;— 1) <g> ) {TOOZk
+ 20 ’;(k —1) (g) }(biyj — by) = 0.

We shall divide our consideration into two cases of which r is even or odd.
(1) Case of r = 2h, where h is a positive integer.

Then the equation (3.2) is rewritten as follows:

2h 2h
26 Z kak_lﬁQh_k{62 Z kak_lﬁgh_k
k=0 k=0

2h
e = ) 3 Kk - 1ot -2+
k=0
+2az Yok g2h- k{52zk k—1g2h—k
2h
O[(b20l2 _ /32) Z k‘(k _ 1)ak—252h—k}(si0yj _ Sjoyi)
k=0
2h 2h
—ad Z k‘(k‘ - 1)ak_2ﬂ2h_k{ﬂ7”‘oo Z kak—lﬂ2h—k
k=0 k=0

+20éS() Z kﬂZh k}(blyj _ bjy’b) =0.
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The above is rewritten as the following form

[2ﬁ3{(M2 +a’K?) +2aKM} 4 28(0%a” — 3*){a*(KP + MQ)

+a(MP+a*KQ)}| BY + [26*{a*(KL + o MN)
gy TOEM QKN 42080’ - B{(LP +a'NQ)
+ o(LQ + QZNP)}} (s'oy’ — sloy") — [a25r00{a2(MQ + KP)
+a(MP +a’KQ)} + 2aso{(LP + a*NQ)
+a(LQ +a®NP)}| by’ —by') =0,
where
h h
K = Z 2ka2h—2g2h—2k, I = Z(Qk — 1)k g2h—2k
=1 k=0
(3.4) - =0
M = (2k + 1)a2k62h_2k_1, N — 9ka2k—232h—2k—1
k=0 k=1
and
h
P= Z 2%k(2k — 1)a2k 25202k,
(3.5) k=1

h—1

Q — Z(2k, + 1)2]60(2k_2ﬁ2h_2k_1.
k=1

Suppose that the Finsler space F™ is a Douglas space, that is, BY are

hp(3). Separating (3.3) in the rational and irrational terms of 3*, we have
26 {F(M? + a?K?) + a?(b?a® — f2)(KP + MQ)} BY
+20°{B*(KL+ o’ MN) + (b*a® — §%)(LP

+a'NQ)}(s'oy’ — 7 0y") — a*{Broo(KP + MQ)

+250(LP + a'NQ) Y (b'y? — biy') + a [25{252KM

+ (%% — B2)(MP + o®KQ)YBY + 2{*(LM + o*KN)
+a®(b?a® — B*)(LQ + o®NP)}(s'oy’ — s70y")

— o {Broo(MP + o*KQ) + 20°s0(LQ + o> NP)} (b'y’ — b'y")

=0,
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because « is irrational and K, L, M, N, P, Q are rational polynomials of

y*. Hence the equation (3.6) is divided into two equations as follows:
28{B*(M* + o*K?) + o*(b*a® — 8°)(KP + MQ)} BY
+20*{B*(KL+ o’ MN) + (b?a® — ) (LP + o' NQ) } (s 0y’

e s'oy") — ' {Broo(KP + MQ) + 250 (LP + a'NQ) } (b'y’ — V'y/")
=0,

26 {26°KM + (b*a® — 8*)(MP + o*KQ)} BY

+2{B*(LM + o*KN) + a?(b?a® — 8*)(LQ + o> NP)} (s'oy’

— s70y") — o {Broo(MP + o> KQ) + 20%so(LQ + o’ NP) } (b'y?
—Vy) =0.

(3.8)

Eliminating B from (3.7) and (3.8), we obtain
(3.9) R(s'oy’ — s'oy’) + a*S(b'y’ = ¥'y") =0,

where

R =2a*{3*(KL+ a®?MN) + (b*’a? — B*)(LP + a*NQ)}
{268°KM + (ba® — 8°)(MP + o’ KQ)}
— 2 B2(M? + a®K?) + a2(b%a? — B%)(KP + MQ)}
{B2(LM + o*KN) + a2(b%a® — 52)(LQ + a2NP)},

S = {B2(M? + o®K?) + o2(b2a? — B2)(KP + MQ}
{Broo(MP + o*KQ) + 20%so(LQ + o*NP)}
— a®{Broo(MQ + KP) + 2s0(LP + o*NQ)}
{26°KM + (b°a® — B%)(MP + o*KQ)}.

(3.10)

Transvection of (3.9) by b;y; leads to

(3.11) Rsg + Sy = 0.



706 Il-Yong Lee

The terms of (3.11) which does not contain o are found in 233" (8s¢ — rqo)-

Hence there exists hp(8h) : Vg, such that
(3.12) 23%" (Bso — roo) = a*Vip,.
Then it will be better to divide our consideration into two cases as follows:
(A) Vg, =0 and (B) Va, 20, o # 0 (mod. ).

First, the case of (A) leads to rog = fBso, that is, 2r;; = b;s; + b;s;.

Therefore, substituting rog = (s into (3.11), we have
(3.13) so(R+~%81) =0,

where
Sy = {B*(M? 4+ o®’K?) + o*y*(KP + MQ)}{B*(MP + o*KQ)
+202(LQ + o®?NP)} — o*{B*(KP + MQ) + 2(LP + o*NQ)}
{262°KM +~+*(MP + o*KQ)}.
If R+~2%S; =0 in (3.13), then we obtain
R++%8, = b%a®S, + R — 3%8,
= 02”8y + (@ Ry +26%F1) — (0?55, + 26% 1)
= a?(b*S; + Ry — 3%53) = 0,
where
Ry = 2{B*(KL + a®?MN) +~+*(LP + o*NQ)}{28*°KM
+2(MP +a’KQ)} — 2{B*K?* + v*(KP + MQ)}
{B*(LM + o*KN) + a®>y*(LQ + o*NP)}
— 232 M?*{a?B*KN ++*(LQ + o*NP)}
— 26 MP Ly 4 25* 364 2 My + 30252 T MT + o MY,
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Sy = {PK? +*(KP + MQ)}{B*(MP + o’ KQ)
+20*(LQ 4+ o®>NP)} — {B*(KP + MQ) + 2(LP + o*NQ)}
{26°KM +7*(MP + o’ KQ)} + *M*{3°KQ
+2(LQ + o> NP)} + p*M3 P, +28*" 2 (a* M3
4 3a2ﬁ2h71M12 4 3/84h72M1),

h
Ll — Z(zk o 1)a2k_252h_2k,
k=1
h—1
]\4’1 — Z(Qk 4 1)a2k72ﬁ2h72k71’
k=1

h
Py =) 2k(2k — 1)a*h1p2h2k,
k=2

Thus the term of b25; + Ry — 3255 = 0 which does not contain o? is
2(b? — 7)3%"=1. Thus there exists hp(8h — 3) : Vg,_3 such that

200> = 7)B*" 7 = Vs,

where we assume b?> # 7. Hence we have Vg,_3 = 0, which leads to a
contradiction, that is, R +v2S; # 0. Therefore, we have sy = 0 from (3.13)
and we obtain rop = 0 easily. Substituting sy = 0 and r¢p = 0 into (3.10),
we have
(3.14) R(s'0y’ — s7oy") = 0.
If R =0, then from the former of (3.10), we have
202 {B*(KL + o*MN) +~*(LP + o*NQ)}{26*°KM
(3.15)  +92(MP +?KQ)} — 2{8*(M? + o*K?) + o*y*(KP + MQ)}
{B*(LM + o*KN) + o*y*(LQ + o*NP)} = 0.
The term of (3.15) which does not contain a2 is 26%+1. Thus there exists

hp(8h — 1) : Vgp—1 such that

258h+1 = 012‘/8]1_1,
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from which we have Vg1 = 0. It is a contradiction, that is, R # O.
Therefore we obtain sy’ —s7gy® = 0in (3.14). Transvection of this equation
by y; gives s'o = 0, which implies s;; = 0. Consequently, we have r;; =
s;5 = 0, that is, b;;; = 0 is obtained.

Secondly, we treat the case (B). The equation (3.12) shows that there

exists a function k = k(z) satisfying

(3.16) Bso — roo = k(z)a?.
Substituting (3.16) into (3.11) and using (3.10), we have
(3.17) b2S + soR1 — 3255 = 0,

where
Sy = P M*{F2s0KQ — kB(MP + a*KQ) + 250(LQ + o’ NP)}

+{BK? + (K P+ MQ)}{B(Bs0 — ka®)(MP + o’ KQ)
+20%50(LQ + a*NP)} — {B(Bso — ka?)(MQ + KP)
+250(LP + a*NQ)}H23° KM 4+ ~*(MP + o*KQ)}
+ Py (058" M? + 30 3550 M2 + 30264+ 250 M,
+ B g0) 4 2620250 (0 M3 + 3028201 M2 4 36%h20).

The term of (3.17) which seemingly does not contain a? is included in the

term as follows : 2{(b?> — 7)sg — kB}3%"~1, where we assume b? # 7. Thus
there exists hp(8h — 2) : Vgp,—o such that

2{(b? — T)so — kB}B" ! = a®Vgp_o.

From o? # (mod f3), it follows that Vgj,_» must vanish and hence we have

_ k)
b2 -7

(318) S0 ﬁ

From (3.18), we have s; = k(x)b;/(b*> — 7). Transvection of the above by
b’ leads to k(z)b> = 0. Hence we get k(x) = 0. Substituting k(z) = 0
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into (3.16) and (3.18), we obtain sp = 0 and ro9 = 0. From (3.9), we have
R(s%0y’ — s7gy’) = 0. If R = 0, then it is a contradiction. Hence R # 0.
Therefore, we obtain s'gy/ — s/py* = 0. Transcevtion of this equation by
y; gives s'g = 0, that is, s;; = 0. Hence both the case (A) and (B) lead to
r;j = 0 and s;; = 0, that is, b;.; = 0.

Conversely if b;,; = 0, then we have B* = 0 from (2.6), so F™ is a Douglas
space.

(2) Case of r = 2h + 1, where h is a positive integer.

We find the condition that the odd approximate infinite series (a, 3)-
metric (2.1) be a Douglas space in the same way as the case of r = 2h.

The equation (3.2) is written as the following form

2h+1 { 2h+1

2/@ Z kak*l/@?h*kﬂrl ﬁ2 Z kak*lﬂQh*kJrl
k=0 k=0

2h+1
+ay? > k(k— 1)ak_2ﬂ2h_k+1}B”
k=0

2h+1 2h+1
1 20 Z (k _ 1)Oék,82h_k+l{ﬂ2 Z kak_lﬂ2h_k+1
k=0 k=0
2h+1
+ 05’72 Z ]{(k _ 1)Ozk2ﬁ2hk+1}(8ioyj _ Sjoyi)
k=0

2h+1 2h+1
- O[B Z k‘(k - 1)ak_2,82h_k+1{ﬂroo Z kak:—l/BQh—k—‘rl
k=0 k=0

2h+1
+ 2as Z (k — 1)ak,6’2hk+1}(biy7 —by") = 0.
k=0

The above is rewritten as follows:
26(0 + afK){#*(0 + aBK) + ay*(T + alU)} BY
+20(BL + @’ K){3%(0 + afK) + ar*(T + aU)}(s'0y’ — s 0y")
—a3(T + aU){Broo(O + aBK) + 2ase(BL + o> K) }(b'y? — by")
=0,

(3.19)
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where K and L are defined by (3.5) and we put

h
(3.20) 0 => (2k+1)a* 2"
=0
and
h
T — Z 2k<2k . 1)a2k72ﬂ2h72k+17
(3.21) o

U=> (2k+1)2ka 252,
k=1

Suppose that the Finsler space F™ is a Douglas space, that is, BY are

hp(3). Separating (3.19) in the rational and irrational terms of y, we obtain
26{0(8°0 + a*+°U) + &K (8°K ++*T)} BY
+ 202 {BL(B*K + v*T) + o*K (%0 + o*y?U)} (s' 0y’ — 7 oy")
— a™{BT(BrooK + 2s0L) + U(BrooO + 2a’so K) }(b'y’ — b'y")
(3.22) +a|26{0(B°K +~°T) + BK(8°0 + o*+*U)} BY
+ 2{BL(F*0 + a*y*U) + *K(B*K + v*T)}(s" 0y’ — 7 oy/")
—{a*T(Brop0 + 2a*soK) + a*BU (Broo K + 259 L)} (b'y? — b7y")
=0.

Since « is irrational and K, L, O, T' and U are rational polynomials of

y*, the equation (3.22) is divided into two equations in the following forms
26{0(8%0 + o*y°U) + o*BK (B’ K +~*T)} BY
+ 202 {BL(B°K +¥°T) + o> K(8°0 + o*7*U) }s' oy’ — 57 0y")
— oM BT (BrooK + 2s0L) + U(BrooO + 2a*so K)} (b'y? — b y")
=0,

(3.23)

268{O(B*K +7*T) + BK(8°0 + o*~+°U)} B + 2{BL(5°O
(3.24) + ?Y2U) + * K (K +°T) (s' 0y’ — s70y') — {aPT(BrooO
+ 20150 K) 4+ U (BrooK + 2s0L)}(b'y? — by') = 0.
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Eliminating B¥ from (3.23) and (3.24), we have
(3.25) V(s'oy’ — s'oy") + a®W(b'y’ —b'y") =0,

where

V =20*{BL(G*K + +*T) + o> K (8?0 + o4*U)}
{O(B°K +~°T) + BK (80 + o*4*U)}
—2{0(B?0 + o*7?U) + &*BK (B K ++*T)}
{BL(B°0 + o®4°U) + o' K (°K ++°T)},

W ={0(B%0 + o*y?U) + ?BK (B*K + +*T)}
{T(BrooO + 2a*soK) + o*BU (BrooK + 2s0L)}
— a{BT(BrooK + 2s0L) + U(BrogO + 2a*soK)}
{O(B°K +~°T) + BK (%0 + o*4*U)}.

(3.26)

Transvection of (3.25) by b;y; leads to
(3.27) Vsg+ Wr? =0.

The terms of (3.27) which does not contain a? are found in 28%+4(3s

—7r00). Therefore there exists h,(8h +4) : Vgp44 such that
(3.28) 2354 (Bso — roo) = & Vanta

We assumed that o # 0 (mod. 3). Hence it will be better to divide our

consideration into two cases as follows:
(A%) Vanya=0 and (B°) Vinia #0.

First, the case of (AY) leads to 799 = 3sg, that is, 2r;; = bis; + bjs;.
Thus, substituting ro9 = (s into (3.27) and using the second equation of
(3.26), we obtain

(3.29) so(V + Wiy?) =0,
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where
W1 = {O(5?0 + o*72U) + o*BK (P K +~+°T)}

{T (3?0 +2a*K) + o*BU (B K + 2L)}
— {BT(B*T +2L) + U(B*0 + 2*K)}
{O(F°K +~°T) + BK (%0 + o*4*U)}.
If there is V + W12 = 0 in (3.29), then we have
V 4+ Wiy?
=0 *W +V — 8°W,

(3.30) = b2a’W, + (a2V1 + 2ﬂ8h+5) _ (a262W2 n 258“5)
— 2(B2W, + Vi — 2Ws)
=0,

where

Vi = 2{BL(B’K +~°T) + o’ K(8°0 + o*+*U)}

{O(B°K ++°T) + BK (%0 + a*42U)}

—2{BL(F*0 + &*+*U) + 'K (B°K +~°T)}

{y20U + BK(B*K +~+*T)} — 28°0*{B7*LU + *K (° K

+~2T)} — 285L,0% 4 262536410, 4 3026202 + o*03),

Wy = {T(8%0 +22*K) + o*pU(B*K +2L)}

{y*0U + BK(3*K +~°T) + 26°"20, + o*3203%}
—{BT(B*K +2L) + U(B*0 + 2a*K)}{O(B* K + ~°T)
+ BK (B0 + ®4?U)} + p*"2{202KT + BU(B*K + 2L)

+ ﬂ2(a201T1 + BZth + 2ﬂ2h_101},
h
Ol — 2(2]{: + 1)a2k—252h—2k’

k=1

h
Tl — Z 2k(2k . 1)a2k_4[32h_2k+1.
k=2
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If V+Wiy? = 0 in (3.30), then the term of this equation which does not
contain o? is included in b?W; + Vi — 32Ws, = 0. Therefore, the term of
b2W, 4+ Vi — 32W, which does not contain a? is 2(b? — 1)3%"+3, where we
assume b* # 1. Hence there exist hy(8h + 1) : Vgp41 such that

2(b2 . 1),68h+3 — 042V8h+1-

Since a? # 0 (mod. f3), we have Vgj, 1 = 0, which leads to a contradiction.
Thus we get V +Wiv2 # 0. Hence we have sg = 0 from (3.29) and we obtain
roo = 0 easily. Substituting sg = 0 and rgp = 0 into the second equation of
(3.26), we get
(3.31) V(s'oy’ —s7oy") = 0.

If V =0, then from the first equation of (3.26), we have

20*(BL(°K +°T) + o K(8°0 + a*y°U)}
{O(B°K +~°T) + BK (520 + a®+2U)}
—2{0(B°0 + a®y°U) + o” K (B°K ++°T)}
{BL(B*0 + o*+*U) + o* K (B°K ++*T)} = 0.
The term of (3.32) which does not contain o? is 268"+, Thus there exists

hp(8h 4+ 3) : Vgpys such that

(3.32)

26315 = a2 Vip,y3,

which leads to Vgp13 = 0. It is a contradiction. Hence we have V # 0,
which leads to s’oy’ — s7py’ = 0 in (3.31). Transvection of the above by y;
gives s'g = 0, which implies s;; = 0. Consequently, we obtain r;; = s;; = 0,
that is, b;.; = 0 is obtained.

Secondly, we treat the case (BY). In the case of (BY) we investigate
Vania # 0 and o # 0 (mod. ). The equation (3.28) shows that there

exists a function f = f(x) satisfying

(3.33) Bso — roo = f(x)a?.
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Substituting (3.33) into (3.27) and using (3.26), we have
soVA4 V2W = soV + b2a? W5 — 32 W5
— 80(042‘/1 + 2I88h+5) + b2C¥2W3 _ 52W3

530 = a?(soV1 + b*W3) + 28505y — B2,
= a?(soVi + b2W3) + 28855y — 32(26% 350 + a2W))
= a?(soVh + b*W5 — 32W)y)
= 07

where

Wy = 2683355 + a®(C + B*soD),
C = Bs0T{y*0U + BK(B°K +~v°T)} + 2O [soBU(B°K + 2L)
— f(@)BTO + a*(2soKT — f(2)B°KU)] — B*s0O{T(B*°K
+2L) + BOU2BK —T) — o*[8°0{20”so K — f(z)B(BKT
+OU)}(28K —T) + s0B{T(3*K + 2L) + BOU}(b*OT
+ BV KU) — {50BU(B*K + 2L) — f(2)BTO + o* (250 KT
— f(@)BKU)HY?0U + BK (B K +v*T)} + o {20250 K
— f()B(BKT + OU)}(b*OT + By*KU)],
D = 687101 + Ty + o?[33%"0F + o*0} + T1(38*" Oy
+38%a?0% + a*0})],
Wy = C+ B*%oD,
which take the follow of form
(3.35) soVi + b2 W3 — 32W, = 0.

2

Thus the term of (3.35) which seemingly does not contain o is included

in the term: 2{(b*> — 10)so + f(x)3}B8%"*3. Thus there exists hp(8h + 2) :
Vsn42 such that

2{(b” — 10)s0 + f(2)B} %"+ = a®Vansa.
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From o2 # 0 (mod. f3), if follows that Vg2 must vanish and hence we have

_ f(@)
10 — b2

(3.36) 50 B,

where we assume b? # 10. Therefore, we have s; = f(z)b;/(10 — b?) by
virture of (3.36). Transvection of the above by b’ leads to f(z)b* = 0.
Hence we have f(z) = 0. Substituting f(z) = 0 into (3.33) and (3.36), we
obtain sg = 0 and 799 = 0. From (3.25), we have V(s%oy’ — s7oy®) = 0. If
V =0, then it is a contradiction. Thus V' # 0 is obtained. Therefore, we
have s'oy? — s/py’ = 0. Transvection of this equation by y; gives s’g = 0.
Hence both the case (A°) and (BY) lead to r;; = 0 and s;; = 0, that is,
bi;; = 0 is concluded.

Conversely, if b;.; = 0, then we have BY = ( by virture of (2.6). Hence
the Finsler space F™ (n > 2) with (2.1) is a Douglas space.

Thus we have the following

THEOREM 3.1. An n-dimensional Finsler space F™ (n > 2) with an
approximate infinite series (a, 3)-metric (2.1) provided b* # 1, 7, 10 is a
Douglas space if and only if b;.; = 0 is obtained.

By Theorem 2.1 and Theorem 3.1, we have

THEOREM 3.2. If an n-dimensional Finsler space F™ (n > 2) with an
approximate infinite series («, 3)-metric (2.1) provided b*> # 1, 7, 10 is a

Douglas space, then it is a Berwald space.
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