ON PROJECTIVELY FLAT FINSLER SPACE WITH AN APPROXIMATE INFINITE SERIES (α, β)-METRIC

LL-Yong Lee

Abstract. We introduced a Finsler space F^{n} with an approximate infinite series (α, β)-metric $L(\alpha, \beta)=\beta \sum_{k=0}^{r}\left(\frac{\alpha}{\beta}\right)^{k}$, where $\alpha<\beta$ and investigated it with respect to Berwald space ([12]) and Douglas space ([13]). The present paper is devoted to finding the condition that is projectively flat on a Finsler space F^{n} with an approximate infinite series (α, β)-metric above.

1. Introduction

A Finsler metric function L in a differentiable manifold M^{n} is called an (α, β)-metric, if L is a positively homogeneous function of degree one of a Riemannian metric $\alpha=\left(a_{i j} y^{i} y^{j}\right)^{1 / 2}$ and a non-vanishing 1-form $\beta=b_{i} y^{i}$ on M^{n}. An infinite sereis (α, β)-metric $L(\alpha, \beta)=\beta^{2} /(\beta-\alpha)$ is expressed as an infinite series form, where $\alpha<\beta$. We introduced an approximate infinite series (α, β)-metric $L(\alpha, \beta)=\beta \sum_{k=0}^{r}\left(\frac{\alpha}{\beta}\right)^{k}$ as the r-th finite series (α, β)-metric form and investigated it in [12] and [13].

A change $L \longrightarrow \bar{L}$ of a Finsler metric on a same underlying manifold M^{n} is called projective, if any geodesic in $\left(M^{n}, L\right)$ remains to be a geodesic in $\left(M^{n}, \bar{L}\right)$ and vice versa. A Finsler space is called projective flat if it is projective to a locally Minkowski space. The condition for a Finsler space with (α, β)-metric to be projectively flat was studied by M. Matsumoto [7]. Aikou, Hashiguchi and Yamauchi [2] give interesting results on the projective flatness of Matsumoto space.

The purpose of the present paper is to find condition that is projectively flat on a Finsler space with an approximate infinite series (α, β)-metric.

Received February 14, 2011; Accepted November 17, 2011.
2000 Mathematics Subject Classification. 53B40.
Key words and phrases. Finsler space, projectively flat, infinite series (α, β)-metric, approximate infinite serie (α, β)-metric, homogeneous polynomials in $\left(y^{i}\right)$ of degree r.

This paper was supported by Kyungsung University Research Grant in 2011.

2. Preliminaries

In a Finsler space $\left(M^{n}, L\right)$, the metric

$$
\begin{equation*}
L(\alpha, \beta)=\beta\left\{\sum_{k=0}^{r}\left(\frac{\alpha}{\beta}\right)^{k}\right\} \tag{2.1}
\end{equation*}
$$

is called an approximate infinite series (α, β)-metric. The infinite series (α, β) metric is expressed as

$$
\lim _{r \rightarrow \infty} \beta\left\{\sum_{k=0}^{r}\left(\frac{\alpha}{\beta}\right)^{k}\right\}=\frac{\beta^{2}}{\beta-\alpha}
$$

for $\alpha<\beta$ in (2.1). If $r=0$, then $L=\beta$ is a non-vanishing 1 -form. If $r=1$, then $L=\alpha+\beta$ is a Randers metric. The condition for a Randers space to be projectively flat was given by Hashiguchi-Ichijō [4], and M. Matsumoto [7]. Therefore in this paper, we suppose that $r>1$.

Let $\gamma_{j}{ }^{i}{ }_{k}$ be the Christoffel symbols with respect to α and denote by (;) the covariant differentiation with respect to $\gamma_{j}{ }^{i}{ }_{k}$. From the differential 1-form $\beta(x, y)=b_{i}(x) y^{i}$ we define

$$
\begin{gathered}
2 r_{i j}=b_{i ; j}+b_{j ; i}, \quad 2 s_{i j}=b_{i ; j}-b_{j ; i}=\left(\partial_{j} b_{i}-\partial_{i} b_{j}\right), \\
s_{j}^{i}=a^{i r} s_{r j}, \quad b^{i}=a^{i r} b_{r}, \quad b^{2}=a^{r s} b_{r} b_{s} .
\end{gathered}
$$

We shall denote the homogeneous polynomials in $\left(y^{i}\right)$ of degree r by $h p(r)$ for brevity and the subscription 0 means contraction by y^{i}, for instance, $\mu_{0}=\mu_{i} y^{i}$. In the following we denote $L_{\alpha}=\partial_{\alpha} L, L_{\beta}=\partial_{\beta} L, L_{\alpha \alpha}=\partial_{\alpha} \partial_{\alpha} L$.

Now the following Matsumoto's theorem [7] is well-known.
Theorem 2.1. A Finsler space $\left(M^{n}, L\right)$ with an (α, β)-metric $L(\alpha, \beta)$ is projectively flat if and only if for any point of space M^{n} there exist local coordinate neighborhoods containing the point such that $\gamma_{j}{ }^{i}{ }_{k}$ satisfies:

$$
\begin{align*}
& \left(\gamma_{0}{ }^{i}{ }_{0}-\gamma_{000} y^{i} / \alpha^{2}\right) / 2+\left(\alpha L_{\beta} / L_{\alpha}\right) s_{0}^{i} \\
& +\left(L_{\alpha \alpha} / L_{\alpha}\right)\left(C+\alpha r_{00} / 2 \beta\right)\left(\alpha^{2} b^{i} / \beta-y^{i}\right)=0, \tag{2.2}
\end{align*}
$$

where C is given by

$$
\begin{equation*}
C+\left(\alpha^{2} L_{\beta} / \beta L_{\alpha}\right) s_{0}+\left(\alpha L_{\alpha \alpha} / \beta^{2} L_{\alpha}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(C+\alpha r_{00} / 2 \beta\right)=0 \tag{2.3}
\end{equation*}
$$

The equation (2.3) is rewritten in the form

$$
\begin{gather*}
\left(C+\alpha r_{00} / 2 \beta\right)\left\{1+\left(\alpha L_{\alpha \alpha} / \beta^{2} L_{\alpha}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right)\right\} \tag{2.4}\\
-(\alpha / 2 \beta)\left\{r_{00}-\left(2 \alpha L_{\beta} / L_{\alpha}\right) s_{0}\right\}=0,
\end{gather*}
$$

that is,

$$
C+\alpha r_{00} / 2 \beta=\frac{\alpha \beta\left(r_{00} L_{\alpha}-2 \alpha L_{\beta} s_{0}\right)}{2\left\{\beta^{2} L_{\alpha}+\alpha L_{\alpha \alpha}\left(\alpha^{2} b^{2}-\beta^{2}\right)\right\}} .
$$

Therefore (2.2) leads us to

$$
\begin{gather*}
\left\{L_{\alpha}\left(\alpha^{2} \gamma_{0}{ }^{i}{ }_{0}-\gamma_{000} y^{i}\right)+2 \alpha^{3} L_{\beta} s^{i}{ }_{0}\right\}\left\{\beta^{2} L_{\alpha}+\alpha L_{\alpha \alpha}\left(\alpha^{2} b^{2}-\beta^{2}\right)\right\} \tag{2.5}\\
+\alpha^{3} L_{\alpha \alpha}\left(r_{00} L_{\alpha}-2 \alpha L_{\beta} s_{0}\right)\left(\alpha^{2} b^{i}-\beta y^{i}\right)=0 .
\end{gather*}
$$

We shall state the following lemma for later:

Lemma 2.2. ([3]) If $\alpha^{2} \equiv 0(\bmod \beta)$, that is, $a_{i j}(x) y^{i} y^{j}$ contains $b_{i}(x) y^{i}$ as a factor, then the dimension is equal to two and b^{2} vanishes. In this case we have $\delta=d_{i}(x) y^{i}$ satisfying $\alpha^{2}=\beta \delta$ and $d_{i} b^{i}=2$.

3. Projectively flat space

In the present section, we find the condition that a Finsler space F^{n} with the r-th approximate infinite series (α, β)-metric (2.1) be projectively flat. In the n-dimensional Finsler space F^{n} with the approximate infinite series (α, β) metric (2.1), we have

$$
\begin{gather*}
L_{\alpha}=\sum_{k=0}^{r} k\left(\frac{\alpha}{\beta}\right)^{k-1}, \quad L_{\beta}=-\sum_{k=0}^{r}(k-1)\left(\frac{\alpha}{\beta}\right)^{k} \\
L_{\alpha \alpha}=\frac{1}{\beta} \sum_{k=0}^{r} k(k-1)\left(\frac{\alpha}{\beta}\right)^{k-2} \tag{3.1}
\end{gather*}
$$

Here, by means of (2.5) and (3.1) we have

$$
\begin{align*}
& \left\{\sum_{k=0}^{r} k\left(\frac{\alpha}{\beta}\right)^{k-1}\left(\alpha^{2} \gamma_{0}{ }^{i}{ }_{0}-\gamma_{000} y^{i}\right)-2 \alpha^{3} s^{i}{ }_{0} \sum_{k=0}^{r}(k-1)\left(\frac{\alpha}{\beta}\right)^{k}\right\} \\
& \times\left\{\beta^{2} \sum_{k=0}^{r} k\left(\frac{\alpha}{\beta}\right)^{k-1}+\left(\alpha^{2} b^{2}-\beta^{2}\right) \sum_{k=0}^{r} k(k-1)\left(\frac{\alpha}{\beta}\right)^{k-1}\right\} \\
& +\alpha^{2} \sum_{k=0}^{r} k(k-1)\left(\frac{\alpha}{\beta}\right)^{k-1}\left\{r_{00} \sum_{k=0}^{r} k\left(\frac{\alpha}{\beta}\right)^{k-1}\right. \tag{3.2}\\
& \left.+2 \alpha s_{0} \sum_{k=0}^{r}(k-1)\left(\frac{\alpha}{\beta}\right)^{k}\right\} \times\left(\alpha^{2} b^{i}-\beta y^{i}\right)=0
\end{align*}
$$

We shall divide our consideration in two cases of which r is even or odd.
(1) Case of $r=2 h$, where h is a positive integer.

When $r=2 h$, we have

$$
\begin{align*}
& \sum_{k=0}^{r} k\left(\frac{\alpha}{\beta}\right)^{k-1}=\frac{\beta}{\beta^{2 h}} \sum_{k=0}^{2 h} k \alpha^{k-1} \beta^{2 h-k} \\
& \sum_{k=0}^{r}(k-1)\left(\frac{\alpha}{\beta}\right)^{k}=\frac{1}{\beta^{2 h}} \sum_{k=0}^{2 h}(k-1) \alpha^{k} \beta^{2 h-k} \tag{3.3}\\
& \sum_{k=0}^{r} k(k-1)\left(\frac{\alpha}{\beta}\right)^{k-1}=\frac{1}{\beta^{2 h-1}} \sum_{k=0}^{2 h} k(k-1) \alpha^{k-1} \beta^{2 h-k}
\end{align*}
$$

Separating the rational and irrational parts in y^{i} with respect to (3.3), we obtain

$$
\begin{align*}
& \sum_{k=0}^{2 h} k \alpha^{k-1} \beta^{2 h-k}=\sum_{k=0}^{h-1}(2 k+1) \alpha^{2 k} \beta^{2 h-2 k-1}+\alpha \sum_{k=1}^{h} 2 k \alpha^{2 k-2} \beta^{2 h-2 k} \\
& =M+\alpha K \text {, } \\
& \sum_{k=0}^{2 h}(k-1) \alpha^{k} \beta^{2 h-k}=\sum_{k=0}^{h}(2 k-1) \alpha^{2 k} \beta^{2 h-2 k} \\
& +\alpha^{3} \sum_{k=1}^{h-1} 2 k \alpha^{2 k-2} \beta^{2 h-2 k-1} \tag{3.4}\\
& =L+\alpha^{3} N, \\
& \sum_{k=0}^{2 h} k(k-1) \alpha^{k-1} \beta^{2 h-k}=\alpha^{2} \sum_{k=1}^{h-1}(2 k+1) 2 k \alpha^{2 k-2} \beta^{2 h-2 k-1} \\
& +\alpha \sum_{k=1}^{h} 2 k(2 k-1) \alpha^{2 k-2} \beta^{2 h-2 k} \\
& =\alpha^{2} Q+\alpha P,
\end{align*}
$$

where

$$
\begin{aligned}
K & =\sum_{k=1}^{h} 2 k \alpha^{2 k-2} \beta^{2 h-2 k},
\end{aligned} \quad L=\sum_{k=0}^{h}(2 k-1) \alpha^{2 k} \beta^{2 h-2 k}, ~=\sum_{k=0}^{h-1}(2 k+1) \alpha^{2 k} \beta^{2 h-2 k-1}, \quad N=\sum_{k=1}^{h-1} 2 k \alpha^{2 k-2} \beta^{2 h-2 k-1}, ~=\sum_{k=1}^{h} 2 k(2 k-1) \alpha^{2 k-2} \beta^{2 h-2 k}, \quad Q=\sum_{k=1}^{h-1}(2 k+1) 2 k \alpha^{2 k-2} \beta^{2 h-2 k-1} .
$$

Substituting (3.3) and (3.4) into (3.2), we have

$$
\begin{aligned}
& \left(\alpha^{2} \gamma_{0}{ }^{i}{ }_{0}-\gamma_{000} y^{i}\right) \beta\left[\beta^{2}\left(M^{2}+2 \alpha K M+\alpha^{2} K^{2}\right)+\alpha\left(\alpha^{2} b^{2}-\beta^{2}\right)\{M P\right. \\
& \left.\left.+\alpha(K P+M Q)+\alpha^{2} K Q\right\}\right]-2 \alpha^{3} s^{i}{ }_{0}\left\{\beta^{2}\left(L M+\alpha K L+\alpha^{3} M N+\alpha^{4} K N\right)\right. \\
& +\alpha\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(L P+\alpha L Q+\alpha^{3} N P+\alpha^{4} N Q\right\}+\left(\alpha^{2} b^{i}-\beta y^{i}\right) \alpha^{2}\left[\beta \alpha r_{00}\{M P\right. \\
& \left.\left.+\alpha(K P+M Q)+\alpha^{2} K Q\right\}+2 \alpha^{2} s_{0}\left(L P+\alpha L Q+\alpha^{3} N P+\alpha^{4} N Q\right)\right]=0 .
\end{aligned}
$$

The above is rewritten in the form

$$
A+\alpha B=0,
$$

where

$$
\begin{aligned}
A= & \left(\alpha^{2} \gamma_{0}{ }^{i}{ }_{0}-\gamma_{000} y^{i}\right)\left\{\beta^{3}\left(M^{2}+\alpha^{2} K^{2}\right)+\beta \alpha^{2}\left(\alpha^{2} b^{2}-\beta^{2}\right)(M Q+K P)\right\} \\
& -2 \alpha^{4} s^{i}{ }_{0}\left\{\beta^{2}\left(K L+\alpha^{2} M N\right)+\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(L P+\alpha^{4} N Q\right)\right\} \\
& +\alpha^{2}\left(\alpha^{2} b^{i}-\beta y^{i}\right)\left\{\beta \alpha^{2} r_{00}(M Q+K P)+2 \alpha^{2} s_{0}\left(L P+\alpha^{4} N Q\right)\right\}, \\
B= & \left(\alpha^{2} \gamma_{0}{ }^{i}{ }_{0}-\gamma_{000} y^{i}\right)\left\{2 \beta^{3} K M+\beta\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(M P+\alpha^{2} K Q\right)\right\} \\
& -2 \alpha^{2} s^{i}{ }_{0}\left\{\beta^{2}\left(L M+\alpha^{4} K N\right)+\alpha^{2}\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(L Q+\alpha^{2} N P\right)\right\} \\
& +\alpha^{2}\left(\alpha^{2} b^{i}-\beta y^{i}\right)\left\{\beta r_{00}\left(M P+\alpha^{2} K Q\right)+2 \alpha^{2} s_{0}\left(L Q+\alpha^{2} N P\right)\right\} .
\end{aligned}
$$

Since A, B are rational parts and α is an irrational part in y^{i}, we have $A=0$ and $B=0$, that is,

$$
\begin{align*}
& \left(\alpha^{2} \gamma_{0}{ }_{0}{ }_{0}-\gamma_{000} y^{i}\right)\left\{\beta^{3}\left(M^{2}+\alpha^{2} K^{2}\right)+\beta \alpha^{2}\left(\alpha^{2} b^{2}-\beta^{2}\right)(M Q+K P)\right\} \\
& -2 \alpha^{4} s^{i}{ }_{0}\left\{\beta^{2}\left(K L+\alpha^{2} M N\right)+\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(L P+\alpha^{4} N Q\right)\right\} \tag{3.5}\\
& +\alpha^{2}\left(\alpha^{2} b^{i}-\beta y^{i}\right)\left\{\beta \alpha^{2} r_{00}(M Q+K P)+2 \alpha^{2} s_{0}\left(L P+\alpha^{4} N Q\right)\right\}=0, \\
& \left(\alpha^{2} \gamma_{0}{ }_{0}{ }_{0}-\gamma_{000} y^{i}\right)\left\{2 \beta^{3} K M+\beta\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(M P+\alpha^{2} K Q\right)\right\} \\
& -2 \alpha^{2} s^{i}{ }_{0}\left\{\beta^{2}\left(L M+\alpha^{4} K N\right)+\alpha^{2}\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(L Q+\alpha^{2} N P\right)\right\} \tag{3.6}\\
& +\alpha^{2}\left(\alpha^{2} b^{i}-\beta y^{i}\right)\left\{\beta r_{00}\left(M P+\alpha^{2} K Q\right)+2 \alpha^{2} s_{0}\left(L Q+\alpha^{2} N P\right)\right\}=0 .
\end{align*}
$$

Eliminating $\left(\alpha^{2} \gamma_{0}{ }^{i}{ }_{0}-\gamma_{000} y^{i}\right)$ from (3.5) and (3.6), we have

$$
\begin{align*}
& 2 s^{i}{ }_{0}\left[\alpha^{2}\left\{2 \beta^{2} K M+\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(M P+\alpha^{2} K Q\right)\right\}\right. \\
& \times\left\{\beta^{2}\left(K L+\alpha^{2} M N\right)+\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(L P+\alpha^{4} N Q\right)\right\} \\
& -\left\{\beta^{2}\left(M^{2}+\alpha^{2} K^{2}\right)+\alpha^{2}\left(\alpha^{2} b^{2}-\beta^{2}\right)(M Q+K P)\right\} \\
& \left.\times\left\{\beta^{2}\left(L M+\alpha^{4} K N\right)+\alpha^{2}\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(L Q+\alpha^{2} N P\right)\right\}\right] \\
& -\left(\alpha^{2} b^{i}-\beta y^{i}\right)\left[\left\{2 \beta^{2} K M+\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(M P+\alpha^{2} K Q\right)\right\}\right. \tag{3.7}\\
& \times\left\{\beta \alpha^{2} r_{00}(M Q+K P)+2 \alpha^{2} s_{0}\left(L P+\alpha^{4} N Q\right)\right\} \\
& -\left\{\beta^{2}\left(M^{2}+\alpha^{2} K^{2}\right)+\alpha^{2}\left(\alpha^{2} b^{2}-\beta^{2}\right)(M Q+K P)\right\} \\
& \left.\times\left\{\beta r_{00}\left(M P+\alpha^{2} K Q\right)+2 \alpha^{2} s_{0}\left(L Q+\alpha^{2} N P\right)\right\}\right]=0 .
\end{align*}
$$

Transvecting (3.7) by b_{i}, we get

$$
\begin{aligned}
& 2 s_{0}\left[\alpha^{2}\left\{2 \beta^{2} K M+\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(M P+\alpha^{2} K Q\right)\right\}\left(K L+\alpha^{2} M N\right)\right. \\
& \left.-\left\{\beta^{2}\left(M^{2}+\alpha^{2} K^{2}\right)+\alpha^{2}\left(\alpha^{2} b^{2}-\beta^{2}\right)(M Q+K P)\right\}\left(L M+\alpha^{4} K N\right)\right] \\
& -\beta r_{00}\left(\alpha^{2} b^{2}-\beta^{2}\right)\left\{2 \alpha^{2} K M(M Q+K P)-\left(M^{2}+\alpha^{2} K^{2}\right)\left(M P+\alpha^{2} K Q\right)\right\} \\
& =0
\end{aligned}
$$

Thus the term of (3.8) which seemingly does not contain α^{2} is $2\left(\beta s_{0}-r_{00}\right) \beta^{8 h-2}$. Therefore there exists $h p(8 h-2): V_{8 h-2}$ such that

$$
\begin{equation*}
2\left(\beta s_{0}-r_{00}\right) \beta^{8 h-2}=\alpha^{2} V_{8 h-2} . \tag{3.9}
\end{equation*}
$$

We suppose that $\alpha^{2} \not \equiv 0$ (mod. β) due to Lemma 2.2. From (3.9) there exists a function $k=k(x)$ satisfying $V_{8 h-2}=k \beta^{8 h-2}$, which leads to

$$
\begin{equation*}
2\left(\beta s_{0}-r_{00}\right)=k \alpha^{2} \tag{3.10}
\end{equation*}
$$

Substituting (3.10) into (3.8), we have

$$
\begin{align*}
& k(x)\left[\alpha^{2}\left\{2 \beta^{2} K M+\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(M P+\alpha^{2} K Q\right)\right\}\left(K L+\alpha^{2} M N\right)\right. \\
& \left.-\left\{\beta^{2}\left(M^{2}+\alpha^{2} K^{2}\right)+\alpha^{2}\left(\alpha^{2} b^{2}-\beta^{2}\right)(M Q+K P)\right\}\left(L M+\alpha^{4} K N\right)\right] \\
& +r_{00}\left\{2 \left[\left\{2 \beta^{2} K M+\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(M P+\alpha^{2} K Q\right)\right\}\left(K L+\alpha^{2} M N\right)\right.\right. \\
& -\beta^{2}\left(K^{2} L M+\alpha^{2} K M^{2} N+\alpha^{4} K^{3} N\right)-\left(\alpha^{2} b^{2}-\beta^{2}\right)(M Q+K P) \tag{3.11}\\
& \left.\left(L M+\alpha^{4} K N\right)\right]-2 \beta^{2}\left(\alpha^{2} b^{2}-\beta^{2}\right) K M(M Q+K P)+\beta^{2} b^{2}\left[M^{3} P\right. \\
& \left.+\alpha^{2}\left\{K M(M Q+K P)+\alpha^{2} K^{3} Q\right\}\right]-\beta^{4}\{K M(M Q+K P) \\
& \left.\left.+\alpha^{2} K^{3} Q\right\}-\beta^{2} M^{3}\left(2 L_{1}+\beta^{2} P_{1}\right)\right\}=0,
\end{align*}
$$

where

$$
\begin{aligned}
L_{1} & =\sum_{k=1}^{h}(2 k-1) \alpha^{2 k-2} \beta^{2 h-2 k} \\
P_{1} & =\sum_{k=2}^{h} 2 k(2 k-1) \alpha^{2 k-4} \beta^{2 h-2 k}
\end{aligned}
$$

Here the term of (3.11) which seemingly does not contain α^{2} is $\beta^{8 h-3}\left\{k \beta^{2}+\right.$ $\left.2\left(b^{2}-7\right) r_{00}\right\}$. Thus there exists $h p(8 h-3): V_{8 h-3}$ such that

$$
\begin{equation*}
\beta^{8 h-3}\left\{k \beta^{2}+2\left(b^{2}-7\right) r_{00}\right\}=\alpha^{2} V_{8 h-3} . \tag{3.12}
\end{equation*}
$$

From (3.12) there exists a function $h=h(x)$ satisfying $V_{8 h-3}=h(x) \beta^{8 h-3}$, and hence

$$
\begin{equation*}
k(x) \beta^{2}+2\left(b^{2}-7\right) r_{00}=h(x) \alpha^{2} . \tag{3.13}
\end{equation*}
$$

Since $\alpha^{2} \not \equiv 0(\bmod . \beta)$, we obtain $k(x)=0$, which leads to

$$
\begin{equation*}
r_{00}=\frac{h(x)}{2\left(b^{2}-7\right)} \alpha^{2} \tag{3.14}
\end{equation*}
$$

where we assume $b^{2} \neq 7$.
Substituting $k(x)=0$ and (3.14) into (3.10), we have

$$
\beta s_{0}=\frac{h(x)}{2\left(b^{2}-7\right)} \alpha^{2}
$$

which leads to $s_{0}=0$ by virtue of $h(x)=0$, and hence $r_{00}=0$ from (3.14), that is, $s_{j}=0$ and $r_{i j}=0$.

Substituting $s_{0}=0$ and $r_{00}=0$ into (3.7), we have

$$
\begin{align*}
& s^{i}{ }_{0}\left[\alpha^{2}\left\{2 \beta^{2} K M+\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(M P+\alpha^{2} K Q\right)\right\}\right. \\
& \times\left\{\beta^{2}\left(K L+\alpha^{2} M N\right)+\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(L P+\alpha^{4} N Q\right)\right\} \\
& -\left\{\beta^{2}\left(M^{2}+\alpha^{2} K^{2}\right)+\alpha^{2}\left(\alpha^{2} b^{2}-\beta^{2}\right)(M Q+K P)\right\} \tag{3.15}\\
& \left.\times\left\{\beta^{2}\left(L M+\alpha^{4} K N\right)+\alpha^{2}\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(L Q+\alpha^{2} N P\right)\right\}\right]=0 .
\end{align*}
$$

Hence the term of (3.15) which seemingly does not contain α^{2} is $\beta^{8 h+1} s^{i}{ }_{0}$. Then there exists $h p(8 h): V_{8 h}$ such that

$$
\begin{equation*}
\beta^{8 h+1} s^{i}{ }_{0}=\alpha^{2} V_{8 h} . \tag{3.16}
\end{equation*}
$$

From $\alpha^{2} \not \equiv 0(\bmod . \beta)$, there exists from (3.16) a function $\rho=\rho(x)$ satisfying $V_{8 h}=\rho(x) \beta^{8 h}$, and hence

$$
\beta s^{i}{ }_{0}=\rho(x) \alpha^{2},
$$

which leads to $s^{i}{ }_{0}=0$ by virtue of $\rho(x)=0$, that is, $s_{i j}=0$.
Consequently we have $r_{i j}=0$ and $s_{i j}=0$, that is, $b_{i: j}=0$ is obtained.
Next, substituting $s_{0}=0, r_{00}=0$ and $s^{i}{ }_{0}=0$ into (3.5) we have

$$
\begin{equation*}
\left(\alpha^{2} \gamma_{0}{ }_{0}^{i}-\gamma_{000} y^{i}\right)\left\{\beta^{2}\left(M^{2}+\alpha^{2} K^{2}\right)+\alpha^{2}\left(a^{2} b^{2}-\beta^{2}\right)(M Q+K P)\right\}=0 . \tag{3.17}
\end{equation*}
$$

Thus the term of (3.17) which seemingly does not contain α^{2} is $-\gamma_{000} y^{i} \beta^{4 h}$. Therefore there exists $h p(1): \mu_{0}=\mu_{i}(x) y^{i}$ such that

$$
\begin{equation*}
\gamma_{000}=\mu_{0} \alpha^{2} \tag{3.18}
\end{equation*}
$$

Substituting (3.18) into (3.17), we have

$$
\left(\gamma_{0}{ }^{i}{ }_{0}-\mu_{0} y^{i}\right) D=0
$$

where

$$
\begin{equation*}
D=\beta^{2}\left(M^{2}+\alpha^{2} K^{2}\right)+\alpha^{2}\left(\alpha^{2} b^{2}-\beta^{2}\right)(M Q+K P) \tag{3.19}
\end{equation*}
$$

From (3.19) if $D=0$, then the term of $D=0$ which seemingly does not contain α^{2} is $\beta^{4 h}$. In this case, there exists $h p(4 h-2): V_{4 h-2}$ such that $\beta^{4 h}=\alpha^{2} V_{4 h-2}$. Hence we have $V_{4 h-2}=0$, which leads to a contradiction, that is, $D \neq 0$. Therefore we obtain $\gamma_{0}{ }^{i}{ }_{0}=\mu_{0} y^{i}$, that is,

$$
\begin{equation*}
2 \gamma_{j}{ }^{i}{ }_{k}=\mu_{j} \delta_{k}^{i}+\mu_{k} \delta_{j}^{i}, \tag{3.20}
\end{equation*}
$$

which shows that the associated Riemannian space is projectively flat.
Conversely it is easy to see that (3.2) is a consequence of $b_{i ; j}=0$ and (3.20).
(2) Case of $r=2 h+1$, where h is a positive integer.

When $r=2 h+1$, we have

$$
\begin{align*}
& \sum_{k=0}^{r} k\left(\frac{\alpha}{\beta}\right)^{k-1}=\frac{1}{\beta^{2 h}} \sum_{k=0}^{2 h+1} k \alpha^{k-1} \beta^{2 h-k+1} \\
& \sum_{k=0}^{r}(k-1)\left(\frac{\alpha}{\beta}\right)^{k}=\frac{1}{\beta^{2 h+1}} \sum_{k=0}^{2 h+1}(k-1) \alpha^{k} \beta^{2 h-k+1} \tag{3.21}\\
& \sum_{k=0}^{r} k(k-1)\left(\frac{\alpha}{\beta}\right)^{k-1}=\frac{1}{\beta^{2 h}} \sum_{k=0}^{2 h+1} k(k-1) \alpha^{k-1} \beta^{2 h-k+1}
\end{align*}
$$

Separating the rational and irrational parts in y^{i} with respect to (3.21), we have

$$
\begin{align*}
& \sum_{k=0}^{2 h+1} k \alpha^{k-1} \beta^{2 h-k+1}=\sum_{k=0}^{h}(2 k+1) \alpha^{2 k} \beta^{2 h-2 k} \\
& +\alpha \sum_{k=1}^{h} 2 k \alpha^{2 k-2} \beta^{2 h-2 k+1} \\
& =O+\alpha \beta K, \\
& \sum_{k=0}^{2 h+1}(k-1) \alpha^{k} \beta^{2 h-k+1}=\sum_{k=0}^{h}(2 k-1) \alpha^{2 k} \beta^{2 h-2 k+1} \\
& +\alpha^{3} \sum_{k=1}^{h} 2 k \alpha^{2 k-2} \beta^{2 h-2 k} \tag{3.22}\\
& =\beta L+\alpha^{3} K, \\
& \sum_{k=0}^{2 h+1} k(k-1) \alpha^{k-1} \beta^{2 h-k+1}=\alpha^{2} \sum_{k=1}^{h}(2 k+1) 2 k \alpha^{2 k-2} \beta^{2 h-2 k} \\
& +\alpha\left(\sum_{k=1}^{h} 2 k(2 k-1) \alpha^{2 k-2} \beta^{2 h-2 k+1}\right) \\
& =\alpha^{2} R+\alpha \beta P,
\end{align*}
$$

where

$$
\begin{gathered}
O=\sum_{k=0}^{h}(2 k+1) \alpha^{2 k} \beta^{2 h-2 k} \\
R=\sum_{k=1}^{h}(2 k+1) 2 k \alpha^{2 k-2} \beta^{2 h-2 k}
\end{gathered}
$$

Substituting (3.21) and (3.22) into (3.2), we have

$$
\begin{align*}
& \left\{\beta\left(\alpha^{2} \gamma_{0}{ }^{i}{ }_{0}-\gamma_{000} y^{i}\right)(O+\alpha \beta K)-2 \alpha^{3} s^{i}{ }_{0}\left(B L+\alpha^{3} K\right)\right\} \\
& \times\left\{\beta^{2}(O+\alpha \beta K)+\alpha\left(\alpha^{2} b^{2}-\beta^{2}\right)(\alpha R+\beta P)\right\} \\
& +\alpha^{3}(\alpha R+\beta P)\left\{\beta r_{00}(O+\alpha \beta K)+2 \alpha s_{0}\left(\beta L+\alpha^{3} K\right)\right\} \tag{3.23}\\
& \times\left(\alpha^{2} b^{i}-\beta y^{i}\right)=0 .
\end{align*}
$$

Separating the rational and irrational parts in y^{i}, we obtain

$$
A^{\prime}+\alpha B^{\prime}=0
$$

that is, $A^{\prime}=0$ and $B^{\prime}=0$ because α is an irrational part in y^{i},
where

$$
\begin{align*}
A^{\prime}= & \beta\left(\alpha^{2} \gamma_{0}{ }^{i}{ }_{0}-\gamma_{000} y^{i}\right)\left\{\beta^{2}\left(O^{2}+\alpha^{2} \beta^{2} K^{2}\right)+\alpha^{2}\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(O R+\beta^{2} K P\right)\right\} \\
& -2 \alpha^{4} s^{i}{ }_{0}\left\{\beta^{2}\left(\beta^{2} L K+\alpha^{2} K O\right)+\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(\beta^{2} L P+\alpha^{4} K R\right)\right\} \tag{3.24}\\
& +\alpha^{4}\left\{\beta r_{00}\left(O R+\beta^{2} K P\right)+2 s_{0}\left(\alpha^{4} K R+\beta^{2} L P\right)\right\}\left(\alpha^{2} b^{i}-\beta y^{i}\right)=0, \\
B^{\prime}= & \beta\left(\alpha^{2} \gamma_{0}{ }^{i}{ }_{0}-\gamma_{000} y^{i}\right)\left\{2 \beta^{2} K O+\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(O P+\alpha^{2} K R\right)\right\} \\
& -2 \alpha^{2} s^{i}{ }_{0}\left\{\beta^{2}\left(L O+\alpha^{4} K^{2}\right)+\alpha^{2}\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(L R+\alpha^{2} K P\right)\right\} \tag{3.25}\\
& +\alpha^{2}\left\{\beta r_{00}\left(\alpha^{2} K R+O P\right)+2 \alpha^{2} s_{0}\left(L R+\alpha^{2} K P\right)\right\}\left(\alpha^{2} b^{i}-\beta y^{i}\right)=0 .
\end{align*}
$$

From (3.24) we have $-\gamma_{000} y^{i} \beta^{4 h+3}=\alpha^{2} W_{4 h+5}$, where $W_{4 h+5}$ is a $h p(4 h+5)$. Therefore there exists $h p(1): v_{0}$ satisfying

$$
\begin{equation*}
\gamma_{000}=v_{0} \alpha^{2} \tag{3.26}
\end{equation*}
$$

Next, eliminating $\left(\alpha^{2} \gamma_{0}{ }^{i}{ }_{0}-\gamma_{000} y^{i}\right)$ from (3.24) and (3.25), we have

$$
\begin{align*}
& 2 s^{i}{ }_{0}\left[\alpha^{2}\left\{\beta^{2}\left(\beta^{2} L K+\alpha^{2} K O\right)+\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(\beta^{2} L P+\alpha^{4} K R\right)\right\}\right. \\
& \times\left\{2 \beta^{2} K O+\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(O P+\alpha^{2} K R\right)\right\} \\
& -\left\{\beta^{2}\left(L O+\alpha^{4} K^{2}\right)+\alpha^{2}\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(L R+\alpha^{2} K P\right)\right\} \\
& \left.\times\left\{\beta^{2}\left(O^{2}+\alpha^{2} \beta^{2} K^{2}\right)+\alpha^{2}\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(O R+\beta^{2} K P\right)\right\}\right] \\
& -\left(\alpha^{2} b^{i}-\beta y^{i}\right)\left[\alpha^{2}\left\{\beta r_{00}\left(O R+\beta^{2} K P\right)+2 s_{0}\left(\alpha^{4} K R+\beta^{2} L P\right)\right\}\right. \tag{3.27}\\
& \times\left\{2 \beta^{2} K O+\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(O P+\alpha^{2} K R\right)\right\} \\
& -\left\{\beta r_{00}\left(\alpha^{2} K R+O P\right)+2 \alpha^{2} s_{0}\left(L R+\alpha^{2} K P\right)\right\} \\
& \left.\times\left\{\beta^{2}\left(O^{2}+\alpha^{2} \beta^{2} K^{2}\right)+\alpha^{2}\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(O R+\beta^{2} K P\right)\right\}\right]=0 .
\end{align*}
$$

Transvecting (3.27) by b_{i}, we have

$$
\begin{align*}
& 2 s_{0}\left[\alpha^{2}\left(\beta^{2} L K+\alpha^{2} K O\right)\left\{2 \beta^{2} K O+\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(O P+\alpha^{2} K R\right)\right\}\right. \\
& \left.-\left(L O+\alpha^{4} K^{2}\right)\left\{\beta^{2}\left(O^{2}+\alpha^{2} \beta^{2} K^{2}\right)+\alpha^{2}\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(O R+\beta^{2} K P\right)\right\}\right] \tag{3.28}\\
& -\beta\left(\alpha^{2} b^{2}-\beta^{2}\right) r_{00}\left\{2 \alpha^{2} K O\left(O R+\beta^{2} K P\right)-\left(\alpha^{2} K R+O P\right)\left(O^{2}\right.\right. \\
& \left.\left.+\alpha^{2} \beta^{2} K^{2}\right)\right\}=0 .
\end{align*}
$$

The terms of (3.28) which does not contain α^{2} are found in $2 \beta^{8 h+1}\left(\beta s_{0}-r_{00}\right)$. Thus there exists $h p(8 h+1): W_{8 h+1}$ such that

$$
\begin{equation*}
2 \beta^{8 h+1}\left(\beta s_{0}-r_{00}\right)=\alpha^{2} W_{8 h+1} \tag{3.29}
\end{equation*}
$$

We suppose that $\alpha^{2} \not \equiv 0(\bmod . \beta)$ owing to Lemma 2.2. Therefore there exists from (3.29) a function $f=f(x)$ satisfying $W_{8 h+1}=f \beta^{8 h+1}$, which leads to

$$
\begin{equation*}
2\left(\beta s_{0}-r_{00}\right)=f(x) \alpha^{2} \tag{3.30}
\end{equation*}
$$

Substituting (3.30) into (3.28), we obtain

$$
\begin{align*}
& f(x) \alpha^{2}\left[\alpha^{2}\left(\beta^{2} L K+\alpha^{2} K O\right)\left\{2 \beta^{2} K O+\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(O P+\alpha^{2} K R\right)\right\}\right. \\
& \left.-\left(L O+\alpha^{4} K^{2}\right)\left\{\beta^{2}\left(O^{2}+\alpha^{2} \beta^{2} K^{2}\right)+\alpha^{2}\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(O R+\beta^{2} K P\right)\right\}\right] \\
& +r_{00}\left[2 \alpha^{2}\left(\beta^{2} L K+\alpha^{2} K O\right)\left\{2 \beta^{2} K O+\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(O P+\alpha^{2} K R\right)\right\}\right. \\
& -2 \alpha^{2} \beta^{2}\left(\alpha^{2} K^{2} O^{2}+\beta^{2} K^{2} L O+\alpha^{4} \beta^{2} K^{4}\right)-2 \alpha^{2}\left(\alpha^{2} b^{2}-\beta^{2}\right)(L O \tag{3.31}\\
& \left.+\alpha^{4} K^{2}\right)\left(O R+\beta^{2} K P\right)-2 \alpha^{2} \beta^{2}\left(\alpha^{2} b^{2}-\beta^{2}\right) K O\left(O R+\beta^{2} K P\right) \\
& +\alpha^{2} \beta^{2} b^{2} O^{3} P+\alpha^{4} \beta^{2} b^{2}\left(K O^{2} R+\alpha^{2} \beta^{2} K^{3} R+\beta^{2} K^{2} O P\right) \\
& \left.-\alpha^{2} \beta^{4}\left(K O^{2} R+\alpha^{2} \beta^{2} K^{3} R+\beta^{2} K^{2} O P\right)-\beta^{2} O^{3}\left(2 L+\beta^{2} P\right)\right] \\
& =0 .
\end{align*}
$$

The term of (3.31) which does not contain α^{2} is $-\beta^{2} O^{3}\left(2 L+\beta^{2} P\right)$, but the above term can find α^{2}, that is,

$$
\begin{equation*}
-\beta^{2} O^{3}\left(2 L+\beta^{2} P\right)=-\alpha^{2} \beta^{2} O^{3}\left(2 L_{1}+\beta^{2} P_{1}\right) \tag{3.32}
\end{equation*}
$$

where

$$
\begin{aligned}
& L_{1}=\sum_{k=1}^{h}(2 k-1) \alpha^{2 k-2} \beta^{2 h-2 k} \\
& P_{1}=\sum_{k=2}^{h} 2 k(2 k-1) \alpha^{2 k-4} \beta^{2 h-2 k}
\end{aligned}
$$

Substituting (3.32) into (3.31), we get

$$
\begin{align*}
& f(x)\left[\alpha^{2}\left(\beta^{2} L K+\alpha^{2} K O\right)\left\{2 \beta^{2} K O+\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(O P+\alpha^{2} K R\right)\right\}\right. \\
& \left.-\left(L O+\alpha^{4} K^{2}\right)\left\{\beta^{2}\left(O^{2}+\alpha^{2} \beta^{2} K^{2}\right)+\alpha^{2}\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(O R+\beta^{2} K P\right)\right\}\right] \\
& +r_{00}\left[2\left(\beta^{2} L K+\alpha^{2} K O\right)\left\{2 \beta^{2} K O+\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(O P+\alpha^{2} K R\right)\right\}\right. \\
& -2 \beta^{2}\left(\alpha^{2} K^{2} O^{2}+\beta^{2} K^{2} L O+\alpha^{4} \beta^{2} K^{4}\right)-2\left(\alpha^{2} b^{2}-\beta^{2}\right)(L O \tag{3.33}\\
& \left.+\alpha^{4} K^{2}\right)\left(O R+\beta^{2} K P\right)-2 \beta^{2}\left(\alpha^{2} b^{2}-\beta^{2}\right) K O\left(O R+\beta^{2} K P\right) \\
& +\beta^{2} b^{2} O^{3} P+\alpha^{2} \beta^{2} b^{2}\left(K O^{2} R+\alpha^{2} \beta^{2} K^{3} R+\beta^{2} K^{2} O P\right) \\
& \left.-\beta^{4}\left(K O^{2} R+\alpha^{2} \beta^{2} K^{3} R+\beta^{2} K^{2} O P\right)-\beta^{2} O^{3}\left(2 L_{1}+\beta^{2} P_{1}\right)\right] \\
& =0 .
\end{align*}
$$

Thus the term of (3.33) which seemingly does not contain α^{2} is included in the form: $\beta^{8 h}\left\{f(x) \beta^{2}+2\left(b^{2}-7\right) r_{00}\right\}$. Therefore there exists $h p(8 h): W_{8 h}$ such that

$$
\begin{equation*}
\beta^{8 h}\left\{f(x) \beta^{2}+2\left(b^{2}-7\right) r_{00}\right\}=\alpha^{2} W_{8 h} \tag{3.34}
\end{equation*}
$$

In this case, there exists from (3.34) a function $g=g(x)$ satisfying $W_{8 h}=$ $g(x) \beta^{8 h}$, which takes the follow of form

$$
f(x) \beta^{2}+2\left(b^{2}-7\right) r_{00}=g(x) \alpha^{2} .
$$

From $\alpha^{2} \not \equiv 0(\bmod . \beta)$, it follows that $f(x)$ must vanish and hence we have

$$
\begin{equation*}
r_{00}=\frac{g(x)}{2\left(b^{2}-7\right)} \alpha^{2}, \tag{3.35}
\end{equation*}
$$

where we assume $b^{2} \neq 7$. Substituting $f(x)=0$ and (3.35) into (3.30), we have

$$
\beta s_{0}=\frac{g(x)}{2\left(b^{2}-7\right)} \alpha^{2}
$$

which leads to $s_{0}=0$ and $r_{00}=0$, that is, $s_{j}=0$ and $r_{i j}=0$. Substituting $s_{0}=0$ and $r_{00}=0$ into (3.27), we obtain

$$
\begin{align*}
& s^{i}{ }_{0}\left[\alpha^{2}\left\{\beta^{2}\left(\beta^{2} L K+\alpha^{2} K O\right)+\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(\beta^{2} L P+\alpha^{4} K R\right)\right\}\right. \\
& \left\{2 \beta^{2} K O+\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(O P+\alpha^{2} K R\right)\right\}-\left\{\beta^{2}\left(L O+\alpha^{4} K^{2}\right)\right. \\
& \left.+\alpha^{2}\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(L R+\alpha^{2} K P\right)\right\}\left\{\beta^{2}\left(O^{2}+\alpha^{2} \beta^{2} K^{2}\right)\right. \tag{3.36}\\
& \left.\left.+\alpha^{2}\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(O R+\beta^{2} K P\right)\right\}\right]=0 .
\end{align*}
$$

Thus the term of (3.36) which seemingly does not contain α^{2} is $\beta^{8 h+4} s^{i}{ }_{0}$. Then there exists $h p(8 h+3): W_{8 h+3}$ such that

$$
\begin{equation*}
s^{i}{ }_{0} \beta^{8 h+4}=\alpha^{2} W_{8 h+3} . \tag{3.37}
\end{equation*}
$$

From $\alpha^{2} \not \equiv 0(\bmod . \beta)$, there exists from (3.37) a function $h=h(x)$ satisfying $W_{8 h+3}=h \beta^{8 h+3}$, and hence

$$
\beta s^{i}{ }_{0}=h(x) \alpha^{2},
$$

which leads to $s^{i}{ }_{0}=0$, that is, $s_{i j}=0$ by virtue of $h(x)=0$.
Consequently we obtain $r_{i j}=0$ and $s_{i j}=0$, that is, $b_{i ; j}=0$ is obtained. Substituting $s_{0}=0, r_{00}=0, s^{i}{ }_{0}=0$ and (3.26) into (3.23), we have

$$
\gamma_{0}{ }_{0}^{i}=\mu_{0} y^{i},
$$

which leads to

$$
\begin{equation*}
2 \gamma_{j}{ }^{i}{ }_{k}=\mu_{j} \delta_{k}^{i}+\mu_{k} \delta_{j}^{i}, \tag{3.38}
\end{equation*}
$$

which shows that the associated Riemannian space is projectively flat.
Conversely, it is easy to see that (3.2) is a consequence of $b_{i ; j}=0$ and (3.38).
Consequently we obtain the same results from both case of $r=2 h$ and case of $r=2 h+1$.

Hence we have the following

Theorem 3.1. A Finsler space $F^{n}(n>2)$ with an approximate infinite (α, β) metric (2.1) provided $b^{2} \neq 7$ is projectively flat if and only if $b_{i ; j}=0$ is satisfied, and the associated Riemannian space $\left(M^{n}, \alpha\right)$ is projectively flat if and only if $2 \gamma_{j}{ }^{i}{ }_{k}=\mu_{j} \delta_{k}^{i}+\mu_{k} \delta_{j}^{i}$ is obtained. Then F^{n} is a Berwald space.

References

[1] P. L. Antonelli, R. Ingarden and M. Matsumoto, The theory of sprays and Finsler spaces with applications in physics and biology, Kluwer QAcad. Publ., Netherlands, 1993.
[2] T. Aikou, M. Hashiguchi and K. Yamauchi, On Matsumoto's Finsler space with time measure, Rep. Fac. Sci. Kagoshima Univ. (Math. Phys. Chem.) 23 (1990), 1-12.
[3] S. Bácsó and M. Matsumoto, Projective changes between Finsler spaces with (α, β)metric, Tensor N. S. 55 (1994), 252-257.
[4] M. Hashiguchi and Y. Ichijyō, Randers spaces with rectilinear geodesics, Rep. Fac. Sci. Kagoshima Univ. (Math. Phys. Chem.) 13 (1980), 33-40.
[5] M. Matsumoto, Projective changes of Finsler metrics and projectively flat Finsler spaces, Tensor N. S. 34 (1980), 303-315.
[6] , A slope of a mountain is a Finsler surface with respect to time measure, J. Math. Kyoto Univ. 29 (1989), 17-25.
[7] , Projectively flat Finsler spaces with (α, β)-metric, Rep. on Math. Phys. 30 (1991), 15-20.
[8] , Finsler spaces with (α, β)-metric of Douglas type, Tensor, N. S. 60 (1998), 123-134.
[9] , Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, Saikawa, Ōtsu, Japan, 1986.
[10] H. S. Park, I. Y. Lee, H. Y. Park and B. D. Kim, On projectively flat Finsler spaces with (α, β)-metric, Commun. Korean Math. Soc. 14 (1999), no. 2, 373-383.
[11] H. S. Park, I. Y. Lee and C. K. park, Finsler space with the genreal approximate Matsumoto metric, Indian J. pure and appl. Math. 34 (2002), no. 1, 59-77.
[12] I. Y. Lee, On Berwald space with an approximate infinite series (α, β)-metric, FJMS 29 (2008), Issue 3, 701-710.
[13] I. Y. Lee, On Douglas space with an approximate infinite series (α, β)-metric, J. of the Chungcheong Math. Soc. 22 (2009), no. 4, 699-716.

IL-Yong Lee
Department of Mathematics, Kyungsung University, Busan 608-736, Korea
E-mail address: iylee@ks.ac.kr

