East Asian Mathematical Journal
]
Vol. 28 (2012), No. 1, pp. 25-36 | :(NMNMg

ON PROJECTIVELY FLAT FINSLER SPACE WITH AN
APPROXIMATE INFINITE SERIES (¢, 3)-METRIC

IL-YoNG LEE

ABSTRACT. We introduced a Finsler space F™ with an approximate infi-
T a
nite series (a, 8)-metric L(a,8) = 8 > (E) , where a < 8 and inves-
k=0

tigated it with respect to Berwald space ([12]) and Douglas space ([13]).
The present paper is devoted to finding the condition that is projectively
flat on a Finsler space F™* with an approximate infinite series (¢, 8)-metric
above.

1. Introduction

A Finsler metric function L in a differentiable manifold M™ is called an
(a, B)-metric, if L is a positively homogeneous function of degree one of a
Riemannian metric o = (a;;4%y7)*/? and a non-vanishing 1-form 8 = b;y’ on
M™. An infinite sereis (o, 3)-metric L(a, 8) = 3%/(8 — ) is expressed as an
infinite series form, where @ < 3. We introduced an approximate infinite series

- k
(a, B)-metric L(a, ) =8 > (g) as the r-th finite series (a, §)-metric form
k=0

and investigated it in [12] and [13].

A change L — L of a Finsler metric on a same underlying manifold M™ is
called projective, if any geodesic in (M™, L) remains to be a geodesic in (M™, L)
and vice versa. A Finsler space is called projective flat if it is projective to a
locally Minkowski space. The condition for a Finsler space with («, 8)-metric
to be projectively flat was studied by M. Matsumoto [7]. Aikou, Hashiguchi and
Yamauchi [2] give interesting results on the projective flatness of Matsumoto
space.

The purpose of the present paper is to find condition that is projectively flat
on a Finsler space with an approximate infinite series («, )-metric.
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2. Preliminaries

In a Finsler space (M™, L), the metric

L(a, B) :5{;0 (g)k} (2.1)

is called an approzimate infinite series (o, 8)-metric. The infinite series («, 5)-

metric is expressed as
T k 2
o B
li = =
N {Z (ﬁ) } 5 a

for « < B in (2.1). If » = 0, then L = 8 is a non-vanishing 1-form. If r = 1,
then L = a + f is a Randers metric. The condition for a Randers space to
be projectively flat was given by Hashiguchi-Ichijo [4], and M. Matsumoto [7].
Therefore in this paper, we suppose that r > 1.

Let Vjik be the Christoffel symbols with respect to a and denote by (;)
the covariant differentiation with respect to v;%. From the differential 1-form
B(z,y) = b;(x)y* we define

2rij = bij +bjiy 285 = biyj — by = (9;bi — Diby),

st =a"s;j, b =a"by, b? = a"*b,bs.

We shall denote the homogeneous polynomials in (y*) of degree r by hp(r) for
brevity and the subscription 0 means contraction by g, for instance, ug = ;.
In the following we denote Lo = 04 L, Lg = 03L, Loq = 0404 L.

Now the following Matsumoto’s theorem [7] is well-known.

Theorem 2.1. A Finsler space (M™, L) with an («, 8)-metric L(«, ) is pro-
jectively flat if and only if for any point of space M™ there exist local coordinate
neighborhoods containing the point such that ,sz‘k satisfies:

(70'0 — Y000y’ /@) /2 + (aLg/La)s}
+ (Laa/La)(C + aroo/26)(a®b' /5 — y') = 0,
where C' is given by

C + (@®Lg/BLa)so + (aLaa/B*La)(@®b? — %) (C + argo/28) = 0. (2.3)

(2.2)

The equation (2.3) is rewritten in the form

(C+ arg/28){1 + (aLaa/B>La) (0 — B%)} (2.4)
—(a/2B){ro0 — (2aLg/Ly)so} =0, '

that is,
Oé,@(’f‘ooLa — 20&[;[380)
2{B2Ly + aLpo(a?b? — 52)}

C + arg/28 =
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Therefore (2.2) leads us to

{Loe(a270i0 - 'YOOO?Ji) + QQSL,BSiO}{BZLa + aLaa(02b2 - /62)} (2 5)
+a®Loa(rooLa — 20&L550)(O&2l)i — By) =0. ’

We shall state the following lemma for later:

Lemma 2.2. ([3]) If «*> = 0 (mod B), that is, a;j(z)y'y’ contains b;(x)y" as
a factor, then the dimension is equal to two and b*> vanishes. In this case we
have § = d;(x)y’ satisfying o = B and d;b* = 2.

3. Projectively flat space

In the present section, we find the condition that a Finsler space F™ with
the r-th approximate infinite series («, 5)-metric (2.1) be projectively flat. In
the n-dimensional Finsler space F™ with the approximate infinite series (a, 3)-
metric (2.1), we have

e 1 s e k—2 (31)
Laa:*Zk(kfl) ( >
p k=0
Here, by means of (2.5) and (3.1) we have
r o k—1 . ' ‘ r o 3
Z k () (@®v0'0 — Yo00y®) — 205ty Z(k —1) (>
i\ prs B
2 - o\ 2,2 2 ¢ a\ "t
X 5;01@(5) + (b 5);)k(k1)(ﬁ>

- - (3.2)

+a? gk(k —1) (Z‘)H {roo kz_ok (g)k_l
+2as0 kio(k —1) (g)k} x (a2b' — By') = 0.

We shall divide our consideration in two cases of which r is even or odd.
(1) Case of r = 2h, where h is a positive integer.
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When r = 2h, we have

r k—1 6 2h
Zk(a) :Wzkak—%zh—k)
k=0 p 2 k=0
T a k 1 2h bk
S0 () =g k- e, (33
k=0 h =

T

a)*! 1 & k—12h—k
k=0

k=0

Separating the rational and irrational parts in y° with respect to (3.3), we
obtain

2h h—1 h
Z kak—1g2h—k — Z(2k + 1)a2k52h—2k—1 +a Z 9ka2k—2g2h—2k
k=0 k=0 k=1
=M+ aK,
2h h
Z(k o 1)0&’652]17]@ _ Z(Qk 7 1)0&2kﬂ2h72k
k=0 k=0
h—1
+ad Ok 2k—2 g2h—2k—1
; ’ (3.4)
=L+ a®N,
2h h—1
Z k(k _ l)ak7162h7k = a2 Z(2k + 1)2ka2k7262h72k71
k=0 k=1
h
oy 2k(2k — 1) 222k
k=1
=a?Q + aP,
where
h h
K — 22]{70[2197252}1721@’ I = Z(2k _ 1)a2k52h72k,
k=1 k=0
h—1 h—1
M= Z(Qk + 1)0[21652}1—21@—17 N = 2k 2h—2g2h—2k—1
k=0 k=1
h h—1
P Z 2% (2k — 1)a2k—252h—2k7 Q= (2k + 1)2ka2k—252h—2k—1.
k=1 k=1
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Substituting (3.3) and (3.4) into (3.2), we have

)
(@®0'0 — 000y B[B*(M? + 20K M + > K?) + a(a®0® — 52){MP
+a(KP + MQ) + o*KQ}| — 203" {8*(LM + aKL + o MN + o*KN)
+ a(a®b? — %) (LP 4+ aLQ + &*NP + o’ NQ} + (a?b' — By')a? [Barg{MP
+a(KP+MQ) + ®KQ} +20°so(LP + aLQ + o* NP + o*NQ)] = 0.
The above is rewritten in the form
A+aB =0,
where
A= (10’0 — 000y {8 (M? + o*K?) + Ba? (o’ — 52)(MQ + K P)}
—2a*s" 0 {B*(KL + a*?MN) + (a?*b* — B2)(LP + a*NQ)}
+ o?(a?b* — By {Ba’reo(MQ + KP) + 2a”%so(LP + o*NQ)},
B = (a®y0'0 — 7000y ){268° KM + 5(a®b? — %) (M P + o’ KQ)}
—2a%5°0{B*(LM + a*KN) + o*(a?b® — B*)(LQ + o>’ NP)}
+ a2 (b — By {Broo(MP + o> KQ) + 2a°so(LQ + o> NP)}.

Since A, B are rational parts and « is an irrational part in y’, we have A = 0
and B = 0, that is,

(@®0%0 = 000y {B>(M? + *K?) + Ba®(?b? — 52)(MQ + K P)}
—2a*s"0{B*(KL + o> MN) + (a?b* — B*)(LP + oa*NQ)} (3.5)
+ a?(a?b' — By ) {Ba’ree(MQ + KP) + 2a%s0(LP + a*NQ)} = 0,

(&®y0'0 — Y000y" ){2B° KM + B(a®b* — B*)(MP + o> KQ)}
— 20?50 {B*(LM + o*K N) + o*(a?* — B*)(LQ + o> NP)} (3.6)
+ o (a?b' — By ){Broo(MP + o*KQ) + 20°s0(LQ + o> NP)} = 0.
Eliminating (o270’ — Y000%*) from (3.5) and (3.6), we have
2s°0[0*{2B° KM + (o®b* — B*)(MP + o*KQ)}
x {B*(KL + a*MN) + (a*b* — B2)(LP + a*NQ)}
—{B(M? + 2 K?) + o*(a®b® — f7)(MQ + KP)}
x {B%(LM + o*KN) 4+ o*(a?V® — %)(LQ + o*NP)}]
— (@®" = By") [{268° KM + (a®b? — B*)(MP + o*KQ)}
x {Ba?roo(MQ + KP) + 2a”so(LP + a*NQ)}
—{B2(M? + a*K?) + o?(a®b® — %) (MQ + KP)}
x {Broo(MP + o*KQ) + 2a”s0(LQ + o>’ NP)}] = 0.

(3.7)
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Transvecting (3.7) by b;, we get
2s0[?{2B° KM + (®b® — B%)(MP + o*KQ)}(KL + o> MN)
—{B*(M? + ’K?) + *(a®b* — B°)(MQ + KP)}(LM + o*KN)|  (3.8)
— Broo(a®? — 82){202 KM (MQ + KP) — (M? 4+ o*K*)(MP + o’KQ)}
=0.

Thus the term of (3.8) which seemingly does not contain a? is 2(8sg—rgg) 35" 2.
Therefore there exists hp(8h — 2) : Vgp—_2 such that

2(Bso —r00) B = a*Vin . (3.9)

We suppose that a? #Z 0 (mod. 3) due to Lemma 2.2. From (3.9) there exists
a function k = k() satisfying Vg, _o = k3% =2, which leads to

2(Bso — r00) = ka®. (3.10)
Substituting (3.10) into (3.8), we have
k(z)[0®{28° KM + (a®b* — B°)(MP + o KQ)}(KL + o*MN)
—{BA(M? + &’ K?) + o*(a®V* — B°)(MQ + KP)}(LM + o*KN)]
+ rOO{Q [{2B8°KM + (a®b® — B*)(MP + o> KQ)}(KL + o> MN)
— BHK2LM + o> KM?N + o*K3N) — (20 — B3 (MQ + KP)  (3.11)
(LM + o*KN)| — 28*(”b* — B*)KM(MQ + KP) + B*0*[M°P
+®{KM(MQ + KP) + *K*Q}] — B*{KM(MQ + KP)
+?K3Q} — B2M3 (2L, + ﬁQPl)} =0,

where
h

L= Z(Qk _ 1)a2k72ﬁ2h72k’

k=1
h
Py= 2k(2k — 1)a?F4g2h 2k,
k=2
Here the term of (3.11) which seemingly does not contain o? is f8"=3{kp3? +
2(b% — T)rgo}. Thus there exists hp(8h — 3) : Vgj,_3 such that
B3 3LEB% 4 2(0 — T)roo} = @ Van_s. (3.12)

From (3.12) there exists a function h = h(x) satisfying Vg3 = h(x)B8" 3,
and hence

k(x)B? + 2(b* — T)roo = h(z)a?. (3.13)



ON PROJECTIVELY FLAT FINSLER SPACE 31

Since a? # 0 (mod. f3), we obtain k(z) = 0, which leads to

roo = 2(:2("?)7)042, (3.14)

where we assume b? # 7.
Substituting k(z) = 0 and (3.14) into (3.10), we have

Bso = 52 _ Y

which leads to sp = 0 by virtue of h(xz) = 0, and hence 199 = 0 from (3.14),
that iS, S5 = 0 and Tij = 0.
Substituting sg = 0 and roo = 0 into (3.7), we have

s'o[@?{2B°K M + (®b® — B*)(MP + o’ KQ)}

x {B*(KL+a*MN) + (a?*b* — %) (LP +a*NQ)}
—{BA(M? + o*K?) + a?(a®b? — %) (MQ + KP)}

x {B*(LM + o*KN) + o*(a®b® — 8*)(LQ 4+ o*NP)}] = 0.

(3.15)

Hence the term of (3.15) which seemingly does not contain o? is B8"*1st.
Then there exists hp(8h) : Vgp, such that

B3l = a2 Vgy,. (3.16)
From o? # 0 (mod. f3), there exists from (3.16) a function p = p(x) satisfying
Van = p(x)p8", and hence
Bs'o = p(x)a?,
which leads to s’y = 0 by virtue of p(z) = 0, that is, 545 = 0.
Consequently we have r;; = 0 and s;; = 0, that is, b;;; = 0 is obtained.
Next, substituting s = 0, 790 = 0 and s’y = 0 into (3.5) we have
(Yo' 0 — Yooy ) {B*(M? + ®K?) + o2 (a®V* — B2)(MQ + KP)} = 0. (3.17)

2

Thus the term of (3.17) which seemingly does not contain a? is —ypooy’5*".

Therefore there exists hp(1) : po = p;(z)y* such that
Yooo = o (3.18)
Substituting (3.18) into (3.17), we have
(70'0 — oy )D =0,

where

D = B*(M? + o®K?) + o*(a?* — B3 (MQ + KP). (3.19)
From (3.19) if D = 0, then the term of D = 0 which seemingly does not
contain o? is #%". In this case, there exists hp(4h — 2) : Vi,_o such that
B = a2V, _o. Hence we have Vyj,_o = 0, which leads to a contradiction, that
is, D # 0. Therefore we obtain o’y = poy’, that is,

2 = gl + b, (3.20)
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which shows that the associated Riemannian space is projectively flat.
Conversely it is easy to see that (3.2) is a consequence of b;;; = 0 and (3.20).
(2) Case of r = 2h + 1, where h is a positive integer.

When r = 2h + 1, we have

T o k—1 1 2h+1

_ k—1p2h—k+1
Sk(5) =g ke
k=0 k=0

- ) = o g2h—k+1
Z(k -1 (ﬂ) 52h+1 Z s (3.21)

k=0

T o\t Elas of—1g2h—k+1
Sk (5) = g 2 kb ek
= B ﬁ

Separating the rational and irrational parts in y* with respect to (3.21), we
have

2h+1 h
Z kak—132h—k+1 _ Z(2k + 1)a2k g2h—2k
k=0 k=0
h
+ o Z 2ka2k7262h72k+1
k=1
=0 + afK,
2h+1 h
Z (k — l)akﬁ2h—k+l _ Z(zk _ 1)a2kﬁ2h—2k+l
k=0 k=0
h
+0% ) 2kah g2k (3.22)
k=1
= BL + a’K,
2h+1

<2k + 1)2ka2k—252h—2k

M=

Z k(k _ 1)ak_162h_k+1 — OZ2

1

2% (2k — 1)a2k—252h—2k+1)

M= 7

+a(
k
=o’R+ afP,

Il
_

where

h
O = Z 2k+ 1 2k52h72k’
k=0

R=) (2k +1)2ka?k—2p2h=2k

M:

>
Il

1
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Substituting (3.21) and (3.22) into (3.2), we have
{B(azfyoio — 'yoooyi)(O +apK) — 2a3si0(BL + 043K)}
x {B*(0 + aBK) + a(a®b? — B*)(aR + BP)}
+a®(aR + BP){Broo(O + aBK) + 2as0(BL + a*K)}
x (a?b' — By') = 0.
Separating the rational and irrational parts in y°, we obtain
A +aB =0,

that is, A’ = 0 and B’ = 0 because « is an irrational part in g°,
where

A= B(a®90'0 = 000y ) {B*(O® + o* B2 K?) + o*(a?b? — 52)(OR + B> K P)}
—2a*s' 0 {B2(B°LK + a*KO) + (®b® — B*)(B*LP + o*KR)} (3.24)
+a*{Broo(OR + B*K P) + 2s¢(a* KR + B*LP)}(a?b' — By') = 0,

B' = B(a®y0"0 — Y000y ){268° KO + (a?b? — %) (OP + o’ K R)}

— 20250 {B*(LO + a*K?) + o*(a®b® — B*)(LR + o*K P)} (3.25)
+ o?{Broo(a®? KR + OP) + 20°so(LR + o K P)}(a?b' — By') = 0.

From (3.24) we have —yoooy' 84" T3 = a®Wyj, 15, where Wy, 15 is a hp(4h + 5).
Therefore there exists hp(1) : vy satisfying

(3.23)

Y000 = Vo> (3.26)
Next, eliminating (a?vp’0 — Yoo0y*) from (3.24) and (3.25), we have
25'o[@?{B*(B’LK + o*KO) + (b* — f2)(B’LP + o*KR)}
x {26°KO0 + (a®V* — 3?)(OP 4+ o*KR)}
—{B*(LO + a*K?) + o*(a*V* — B*)(LR + o* K P)}
x {B%(0” + o*B*K?) + o*(a®b* — B°)(OR + B*K P)}]
— (" — By") [a®{Broo(OR + B*K P) + 2s0(a* KR + B>LP)} (3.27)
x {282°K0 + (a®b® — 5%)(OP + o*KR)}
—{Broo(e* KR + OP) + 2a*so(LR + o* K P)}
x {B2(0* + a?B2K?) + a*(a?b? — B?)(OR + B*K P)}] = 0.
Transvecting (3.27) by b;, we have
2s0[0*(B’LK + o’ KO){2B°KO + (”b* — 8*)(OP + o°KR)}
— (LO + a*K?){B*(0* + o*B2K?) + o*(a®h? — %) (OR + B°KP)}] (3.28)
— B(a?b? — B*)r9p{20* KO(OR + 2K P) — (KR + OP)(0O?
+a?B2K%)} =0.
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The terms of (3.28) which does not contain o are found in 233"+ (Bsy — o).
Thus there exists hp(8h + 1) : Wgp41 such that

2B8h+1(ﬂ50 — 7'00) = OZZWS}H_l. (329)

We suppose that a? # 0 (mod. 3) owing to Lemma 2.2. Therefore there exists
from (3.29) a function f = f(z) satisfying Wgp1 = f8%"+1, which leads to

2(Bso — roo) = f(ff)OZQ- (3.30)
Substituting (3.30) into (3.28), we obtain
f(@)a?[0®(B°LK + o«*KO){28°KO + (o*b® — 3*)(OP + o*KR)}
— (LO + o' K*){B*(0* + o*B°K?) + o*(ab* — B)(OR + B*K P)}]
+ 790 [207(B°LK 4+ o KO){28°KO + (a®b* — °)(OP + o’ K R)}
—20?B*(a?K?0? + B2K2LO + o*B2K*) — 2a%(a?b? — B*)(LO  (3.31)
+a*K?)(OR + 2K P) — 2025%*(a?*b® — B*)KO(OR + B*K P)
+ a252b203P + a452b2(K02R =+ a252K3R 4 B2K2OP)
— o?BHKO*R + o*B°K*R + B2 K°OP) — B*0%(2L + *P)]
=0.

The term of (3.31) which does not contain a? is —3203(2L + 8?P), but the
above term can find o2, that is,

—B20%(2L + 3?P) = —a?B20% (2L, + B2 Py), (3.32)

where
h

Ll — Z(Qk _ 1)a2k—2ﬁ2h—2k"

k=1
h
Pr= " 2k(2k — 1)a”F 472k,
k=2

Substituting (3.32) into (3.31), we get
f(@)[e?(B°LK + o KO){28°K0 + (a®b* — 8°)(OP + o*KR)}
— (LO + o*K*){B*(0* + o*B°K?) + o*(a®b* — ) (OR + 2K P)}]
+ 700 [2(°LK + o* KO){28°KO + (¢®b* — 8*)(OP + o’ KR)}
—28%(a?K?0% 4+ B*K2LO + o*32K*) — 2(a®b? — 5%)(LO (3.33)
+a*K?)(OR + 2K P) — 28%*(a®b® — B*)KO(OR + B*K P)
+ 82020 P + o203 (KO*R + o* K3 R + f°K20OP)
— BYKO’R+ o*B°K*R + B*K°OP) — B°0%(2L, + 8°Py)]
=0.
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Thus the term of (3.33) which seemingly does not contain o? is included in the
form: B8{f(x)B% + 2(b% — T)roo}. Therefore there exists hp(8h) : Wgy such
that

B f()B% +2(b% — T)roo} = &> Wi, (3.34)
In this case, there exists from (3.34) a function g = g(x) satisfying Wg, =
g(z)B%", which takes the follow of form

f(2)B% +2(b* — T)rgo = g(x)a?.

From a? # 0 (mod. f), it follows that f(x) must vanish and hence we have

g(x) 2

= = 3.35

00 = 50—y (3.35)

where we assume b2 # 7. Substituting f(x) = 0 and (3.35) into (3.30), we have
g(x) 2

Bso = ma )

which leads to s9 = 0 and rgg = 0, that is, s; = 0 and r;; = 0. Substituting
so = 0 and rgo = 0 into (3.27), we obtain

s'o[a?{B*(B’LK + o*KO) + (®b* — 8*)(B°LP + o*KR)}

{2B82°K0 + (a?*b* — *)(OP + o*KR)} — {B*(LO + o*K?)
+a2(a®b? — %) (LR + o*KP)H{B*(0? + o*B*K?) (3.36)
+ o (a®V’ — B*)(OR + B*KP)}] = 0.

Thus the term of (3.36) which seemingly does not contain o is 38"*+4s%;. Then
there exists hp(8h + 3) : Wgp43 such that

s 0B = a2 Wy 3. (3.37)
From a? # 0 (mod. ), there exists from (3.37) a function h = h(z) satisfying
Wanis = hB3%+3 and hence
Bs'o = h(z)a?,
which leads to s'g = 0, that is, s;; = 0 by virtue of h(z) = 0.
Consequently we obtain r;; = 0 and s;; = 0, that is, b;;; = 0 is obtained.
Substituting sop = 0, 790 = 0, s%p = 0 and (3.26) into (3.23), we have
Y0'o = poy’,
which leads to
27"k = py6y, + pkd;, (3.38)
which shows that the associated Riemannian space is projectively flat.
Conversely, it is easy to see that (3.2) is a consequence of b;.; = 0 and (3.38).
Consequently we obtain the same results from both case of = 2h and case

of r =2h + 1.
Hence we have the following
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Theorem 3.1. A Finsler space F™ (n > 2) with an approzimate infinite (e, B)-
metric (2.1) provided b # T is projectively flat if and only if by;; = 0 is satisfied,
and the associated Riemannian space (M™, ) is projectively flat if and only if
27’ = uids + ,uk5§ 1s obtained. Then F™ is a Berwald space.

(1]
(2]
(3]
(4]
(5]
[6]
[7]
(8]

[9]
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