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ON PROJECTIVELY FLAT FINSLER SPACE WITH AN

APPROXIMATE INFINITE SERIES (α, β)-METRIC

Il-Yong Lee

Abstract. We introduced a Finsler space Fn with an approximate infi-

nite series (α, β)-metric L(α, β) = β
r∑

k=0

(
α

β

)k

, where α < β and inves-

tigated it with respect to Berwald space ([12]) and Douglas space ([13]).

The present paper is devoted to finding the condition that is projectively

flat on a Finsler space Fn with an approximate infinite series (α, β)-metric
above.

1. Introduction

A Finsler metric function L in a differentiable manifold Mn is called an
(α, β)-metric, if L is a positively homogeneous function of degree one of a
Riemannian metric α = (aijy

iyj)1/2 and a non-vanishing 1-form β = biy
i on

Mn. An infinite sereis (α, β)-metric L(α, β) = β2/(β − α) is expressed as an
infinite series form, where α < β. We introduced an approximate infinite series

(α, β)-metric L(α, β) = β
r∑

k=0

(
α

β

)k
as the r-th finite series (α, β)-metric form

and investigated it in [12] and [13].
A change L −→ L of a Finsler metric on a same underlying manifold Mn is

called projective, if any geodesic in (Mn, L) remains to be a geodesic in (Mn, L)
and vice versa. A Finsler space is called projective flat if it is projective to a
locally Minkowski space. The condition for a Finsler space with (α, β)-metric
to be projectively flat was studied by M. Matsumoto [7]. Aikou, Hashiguchi and
Yamauchi [2] give interesting results on the projective flatness of Matsumoto
space.

The purpose of the present paper is to find condition that is projectively flat
on a Finsler space with an approximate infinite series (α, β)-metric.

Received February 14, 2011; Accepted November 17, 2011.

2000 Mathematics Subject Classification. 53B40.
Key words and phrases. Finsler space, projectively flat, infinite series (α, β)-metric, ap-

proximate infinite serie (α, β)-metric, homogeneous polynomials in (yi) of degree r.

This paper was supported by Kyungsung University Research Grant in 2011.

c©2012 The Youngnam Mathematical Society

25



26 IL-YONG LEE

2. Preliminaries

In a Finsler space (Mn, L), the metric

L(α, β) = β

{
r∑

k=0

(
α

β

)k}
(2.1)

is called an approximate infinite series (α, β)-metric. The infinite series (α, β)-
metric is expressed as

lim
r→∞

β

{
r∑

k=0

(
α

β

)k}
=

β2

β − α

for α < β in (2.1). If r = 0, then L = β is a non-vanishing 1-form. If r = 1,
then L = α + β is a Randers metric. The condition for a Randers space to
be projectively flat was given by Hashiguchi-Ichijō [4], and M. Matsumoto [7].
Therefore in this paper, we suppose that r > 1.

Let γj
i
k be the Christoffel symbols with respect to α and denote by (;)

the covariant differentiation with respect to γj
i
k. From the differential 1-form

β(x, y) = bi(x)yi we define

2rij = bi;j + bj;i, 2sij = bi;j − bj;i = (∂jbi − ∂ibj),
sij = airsrj , bi = airbr, b2 = arsbrbs.

We shall denote the homogeneous polynomials in (yi) of degree r by hp(r) for
brevity and the subscription 0 means contraction by yi, for instance, µ0 = µiy

i.
In the following we denote Lα = ∂αL, Lβ = ∂βL, Lαα = ∂α∂αL.

Now the following Matsumoto’s theorem [7] is well-known.

Theorem 2.1. A Finsler space (Mn, L) with an (α, β)-metric L(α, β) is pro-
jectively flat if and only if for any point of space Mn there exist local coordinate
neighborhoods containing the point such that γj

i
k satisfies:

(γ0
i
0 − γ000yi/α2)/2 + (αLβ/Lα)si0

+ (Lαα/Lα)(C + αr00/2β)(α2bi/β − yi) = 0,
(2.2)

where C is given by

C + (α2Lβ/βLα)s0 + (αLαα/β
2Lα)(α2b2 − β2)(C + αr00/2β) = 0. (2.3)

The equation (2.3) is rewritten in the form

(C + αr00/2β){1 + (αLαα/β
2Lα)(α2b2 − β2)}

−(α/2β){r00 − (2αLβ/Lα)s0} = 0,
(2.4)

that is,

C + αr00/2β =
αβ(r00Lα − 2αLβs0)

2{β2Lα + αLαα(α2b2 − β2)}
.
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Therefore (2.2) leads us to

{Lα(α2γ0
i
0 − γ000yi) + 2α3Lβs

i
0}{β2Lα + αLαα(α2b2 − β2)}

+α3Lαα(r00Lα − 2αLβs0)(α2bi − βyi) = 0.
(2.5)

We shall state the following lemma for later:

Lemma 2.2. ([3]) If α2 ≡ 0 (mod β), that is, aij(x)yiyj contains bi(x)yi as
a factor, then the dimension is equal to two and b2 vanishes. In this case we
have δ = di(x)yi satisfying α2 = βδ and dib

i = 2.

3. Projectively flat space

In the present section, we find the condition that a Finsler space Fn with
the r-th approximate infinite series (α, β)-metric (2.1) be projectively flat. In
the n-dimensional Finsler space Fn with the approximate infinite series (α, β)-
metric (2.1), we have

Lα =

r∑
k=0

k

(
α

β

)k−1
, Lβ = −

r∑
k=0

(k − 1)

(
α

β

)k
,

Lαα =
1

β

r∑
k=0

k(k − 1)

(
α

β

)k−2
.

(3.1)

Here, by means of (2.5) and (3.1) we have

{
r∑

k=0

k

(
α

β

)k−1
(α2γ0

i
0 − γ000yi)− 2α3si0

r∑
k=0

(k − 1)

(
α

β

)k}

×

{
β2

r∑
k=0

k

(
α

β

)k−1
+ (α2b2 − β2)

r∑
k=0

k(k − 1)

(
α

β

)k−1}

+ α2
r∑

k=0

k(k − 1)

(
α

β

)k−1{
r00

r∑
k=0

k

(
α

β

)k−1
+2αs0

r∑
k=0

(k − 1)

(
α

β

)k}
× (α2bi − βyi) = 0.

(3.2)

We shall divide our consideration in two cases of which r is even or odd.
(1) Case of r = 2h, where h is a positive integer.
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When r = 2h, we have

r∑
k=0

k

(
α

β

)k−1
=

β

β2h

2h∑
k=0

kαk−1β2h−k,

r∑
k=0

(k − 1)

(
α

β

)k
=

1

β2h

2h∑
k=0

(k − 1)αkβ2h−k, (3.3)

r∑
k=0

k(k − 1)

(
α

β

)k−1
=

1

β2h−1

2h∑
k=0

k(k − 1)αk−1β2h−k.

Separating the rational and irrational parts in yi with respect to (3.3), we
obtain

2h∑
k=0

kαk−1β2h−k =

h−1∑
k=0

(2k + 1)α2kβ2h−2k−1 + α

h∑
k=1

2kα2k−2β2h−2k

= M + αK,

2h∑
k=0

(k − 1)αkβ2h−k =

h∑
k=0

(2k − 1)α2kβ2h−2k

+ α3
h−1∑
k=1

2kα2k−2β2h−2k−1

= L+ α3N,

2h∑
k=0

k(k − 1)αk−1β2h−k = α2
h−1∑
k=1

(2k + 1)2kα2k−2β2h−2k−1

+ α

h∑
k=1

2k(2k − 1)α2k−2β2h−2k

= α2Q+ αP,

(3.4)

where

K =

h∑
k=1

2kα2k−2β2h−2k, L =

h∑
k=0

(2k − 1)α2kβ2h−2k,

M =

h−1∑
k=0

(2k + 1)α2kβ2h−2k−1, N =

h−1∑
k=1

2kα2k−2β2h−2k−1,

P =

h∑
k=1

2k(2k − 1)α2k−2β2h−2k, Q =

h−1∑
k=1

(2k + 1)2kα2k−2β2h−2k−1.
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Substituting (3.3) and (3.4) into (3.2), we have

(α2γ0
i
0 − γ000yi)β

[
β2(M2 + 2αKM + α2K2) + α(α2b2 − β2){MP

+ α(KP +MQ) + α2KQ}
]
− 2α3si0{β2(LM + αKL+ α3MN + α4KN)

+ α(α2b2 − β2)(LP + αLQ+ α3NP + α4NQ}+ (α2bi − βyi)α2
[
βαr00{MP

+ α(KP +MQ) + α2KQ}+ 2α2s0(LP + αLQ+ α3NP + α4NQ)
]

= 0.

The above is rewritten in the form

A+ αB = 0,

where

A = (α2γ0
i
0 − γ000yi){β3(M2 + α2K2) + βα2(α2b2 − β2)(MQ+KP )}

− 2α4si0{β2(KL+ α2MN) + (α2b2 − β2)(LP + α4NQ)}
+ α2(α2bi − βyi){βα2r00(MQ+KP ) + 2α2s0(LP + α4NQ)},

B = (α2γ0
i
0 − γ000yi){2β3KM + β(α2b2 − β2)(MP + α2KQ)}

− 2α2si0{β2(LM + α4KN) + α2(α2b2 − β2)(LQ+ α2NP )}
+ α2(α2bi − βyi){βr00(MP + α2KQ) + 2α2s0(LQ+ α2NP )}.

Since A, B are rational parts and α is an irrational part in yi, we have A = 0
and B = 0, that is,

(α2γ0
i
0 − γ000yi){β3(M2 + α2K2) + βα2(α2b2 − β2)(MQ+KP )}

− 2α4si0{β2(KL+ α2MN) + (α2b2 − β2)(LP + α4NQ)}
+ α2(α2bi − βyi){βα2r00(MQ+KP ) + 2α2s0(LP + α4NQ)} = 0,

(3.5)

(α2γ0
i
0 − γ000yi){2β3KM + β(α2b2 − β2)(MP + α2KQ)}

− 2α2si0{β2(LM + α4KN) + α2(α2b2 − β2)(LQ+ α2NP )}
+ α2(α2bi − βyi){βr00(MP + α2KQ) + 2α2s0(LQ+ α2NP )} = 0.

(3.6)

Eliminating (α2γ0
i
0 − γ000yi) from (3.5) and (3.6), we have

2si0
[
α2{2β2KM + (α2b2 − β2)(MP + α2KQ)}

× {β2(KL+ α2MN) + (α2b2 − β2)(LP + α4NQ)}
− {β2(M2 + α2K2) + α2(α2b2 − β2)(MQ+KP )}
× {β2(LM + α4KN) + α2(α2b2 − β2)(LQ+ α2NP )}

]
− (α2bi − βyi)

[
{2β2KM + (α2b2 − β2)(MP + α2KQ)}

× {βα2r00(MQ+KP ) + 2α2s0(LP + α4NQ)}
− {β2(M2 + α2K2) + α2(α2b2 − β2)(MQ+KP )}
× {βr00(MP + α2KQ) + 2α2s0(LQ+ α2NP )}

]
= 0.

(3.7)
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Transvecting (3.7) by bi, we get

2s0
[
α2{2β2KM + (α2b2 − β2)(MP + α2KQ)}(KL+ α2MN)

− {β2(M2 + α2K2) + α2(α2b2 − β2)(MQ+KP )}(LM + α4KN)
]

(3.8)

− βr00(α2b2 − β2){2α2KM(MQ+KP )− (M2 + α2K2)(MP + α2KQ)}
= 0.

Thus the term of (3.8) which seemingly does not contain α2 is 2(βs0−r00)β8h−2.
Therefore there exists hp(8h− 2) : V8h−2 such that

2(βs0 − r00)β8h−2 = α2V8h−2. (3.9)

We suppose that α2 6≡ 0 (mod. β) due to Lemma 2.2. From (3.9) there exists
a function k = k(x) satisfying V8h−2 = kβ8h−2, which leads to

2(βs0 − r00) = kα2. (3.10)

Substituting (3.10) into (3.8), we have

k(x)
[
α2{2β2KM + (α2b2 − β2)(MP + α2KQ)}(KL+ α2MN)

− {β2(M2 + α2K2) + α2(α2b2 − β2)(MQ+KP )}(LM + α4KN)
]

+ r00

{
2
[
{2β2KM + (α2b2 − β2)(MP + α2KQ)}(KL+ α2MN)

− β2(K2LM + α2KM2N + α4K3N)− (α2b2 − β2)(MQ+KP )

(LM + α4KN)
]
− 2β2(α2b2 − β2)KM(MQ+KP ) + β2b2

[
M3P

+ α2{KM(MQ+KP ) + α2K3Q}
]
− β4{KM(MQ+KP )

+ α2K3Q} − β2M3(2L1 + β2P1)

}
= 0,

(3.11)

where

L1 =

h∑
k=1

(2k − 1)α2k−2β2h−2k,

P1 =

h∑
k=2

2k(2k − 1)α2k−4β2h−2k.

Here the term of (3.11) which seemingly does not contain α2 is β8h−3{kβ2 +
2(b2 − 7)r00}. Thus there exists hp(8h− 3) : V8h−3 such that

β8h−3{kβ2 + 2(b2 − 7)r00} = α2V8h−3. (3.12)

From (3.12) there exists a function h = h(x) satisfying V8h−3 = h(x)β8h−3,
and hence

k(x)β2 + 2(b2 − 7)r00 = h(x)α2. (3.13)
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Since α2 6≡ 0 (mod. β), we obtain k(x) = 0, which leads to

r00 =
h(x)

2(b2 − 7)
α2, (3.14)

where we assume b2 6= 7.
Substituting k(x) = 0 and (3.14) into (3.10), we have

βs0 =
h(x)

2(b2 − 7)
α2,

which leads to s0 = 0 by virtue of h(x) = 0, and hence r00 = 0 from (3.14),
that is, sj = 0 and rij = 0.

Substituting s0 = 0 and r00 = 0 into (3.7), we have

si0
[
α2{2β2KM + (α2b2 − β2)(MP + α2KQ)}

× {β2(KL+ α2MN) + (α2b2 − β2)(LP + α4NQ)}
− {β2(M2 + α2K2) + α2(α2b2 − β2)(MQ+KP )}
× {β2(LM + α4KN) + α2(α2b2 − β2)(LQ+ α2NP )}

]
= 0.

(3.15)

Hence the term of (3.15) which seemingly does not contain α2 is β8h+1si0.
Then there exists hp(8h) : V8h such that

β8h+1si0 = α2V8h. (3.16)

From α2 6≡ 0 (mod. β), there exists from (3.16) a function ρ = ρ(x) satisfying
V8h = ρ(x)β8h, and hence

βsi0 = ρ(x)α2,

which leads to si0 = 0 by virtue of ρ(x) = 0, that is, sij = 0.
Consequently we have rij = 0 and sij = 0, that is, bi:j = 0 is obtained.
Next, substituting s0 = 0, r00 = 0 and si0 = 0 into (3.5) we have

(α2γ0
i
0 − γ000yi){β2(M2 + α2K2) + α2(a2b2 − β2)(MQ+KP )} = 0. (3.17)

Thus the term of (3.17) which seemingly does not contain α2 is −γ000yiβ4h.
Therefore there exists hp(1) : µ0 = µi(x)yi such that

γ000 = µ0α
2. (3.18)

Substituting (3.18) into (3.17), we have

(γ0
i
0 − µ0y

i)D = 0,

where

D = β2(M2 + α2K2) + α2(α2b2 − β2)(MQ+KP ). (3.19)

From (3.19) if D = 0, then the term of D = 0 which seemingly does not
contain α2 is β4h. In this case, there exists hp(4h − 2) : V4h−2 such that
β4h = α2V4h−2. Hence we have V4h−2 = 0, which leads to a contradiction, that
is, D 6= 0. Therefore we obtain γ0

i
0 = µ0y

i, that is,

2γj
i
k = µjδ

i
k + µkδ

i
j , (3.20)
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which shows that the associated Riemannian space is projectively flat.
Conversely it is easy to see that (3.2) is a consequence of bi;j = 0 and (3.20).
(2) Case of r = 2h+ 1, where h is a positive integer.

When r = 2h+ 1, we have

r∑
k=0

k

(
α

β

)k−1
=

1

β2h

2h+1∑
k=0

kαk−1β2h−k+1,

r∑
k=0

(k − 1)

(
α

β

)k
=

1

β2h+1

2h+1∑
k=0

(k − 1)αkβ2h−k+1, (3.21)

r∑
k=0

k(k − 1)

(
α

β

)k−1
=

1

β2h

2h+1∑
k=0

k(k − 1)αk−1β2h−k+1.

Separating the rational and irrational parts in yi with respect to (3.21), we
have

2h+1∑
k=0

kαk−1β2h−k+1 =

h∑
k=0

(2k + 1)α2kβ2h−2k

+ α

h∑
k=1

2kα2k−2β2h−2k+1

= O + αβK,

2h+1∑
k=0

(k − 1)αkβ2h−k+1 =

h∑
k=0

(2k − 1)α2kβ2h−2k+1

+ α3
h∑
k=1

2kα2k−2β2h−2k (3.22)

= βL+ α3K,

2h+1∑
k=0

k(k − 1)αk−1β2h−k+1 = α2
h∑
k=1

(2k + 1)2kα2k−2β2h−2k

+ α
( h∑
k=1

2k(2k − 1)α2k−2β2h−2k+1
)

= α2R+ αβP,

where

O =

h∑
k=0

(2k + 1)α2kβ2h−2k,

R =

h∑
k=1

(2k + 1)2kα2k−2β2h−2k.
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Substituting (3.21) and (3.22) into (3.2), we have{
β(α2γ0

i
0 − γ000yi)(O + αβK)− 2α3si0(BL+ α3K)}

× {β2(O + αβK) + α(α2b2 − β2)(αR+ βP )}
+ α3(αR+ βP ){βr00(O + αβK) + 2αs0(βL+ α3K)}
× (α2bi − βyi) = 0.

(3.23)

Separating the rational and irrational parts in yi, we obtain

A′ + αB′ = 0,

that is, A′ = 0 and B′ = 0 because α is an irrational part in yi,
where

A′ = β(α2γ0
i
0 − γ000yi){β2(O2 + α2β2K2) + α2(α2b2 − β2)(OR+ β2KP )}

− 2α4si0{β2(β2LK + α2KO) + (α2b2 − β2)(β2LP + α4KR)} (3.24)

+ α4{βr00(OR+ β2KP ) + 2s0(α4KR+ β2LP )}(α2bi − βyi) = 0,

B′ = β(α2γ0
i
0 − γ000yi){2β2KO + (α2b2 − β2)(OP + α2KR)}

− 2α2si0{β2(LO + α4K2) + α2(α2b2 − β2)(LR+ α2KP )} (3.25)

+ α2{βr00(α2KR+OP ) + 2α2s0(LR+ α2KP )}(α2bi − βyi) = 0.

From (3.24) we have −γ000yiβ4h+3 = α2W4h+5, where W4h+5 is a hp(4h+ 5).
Therefore there exists hp(1) : v0 satisfying

γ000 = v0α
2. (3.26)

Next, eliminating (α2γ0
i
0 − γ000yi) from (3.24) and (3.25), we have

2si0
[
α2{β2(β2LK + α2KO) + (α2b2 − β2)(β2LP + α4KR)}

× {2β2KO + (α2b2 − β2)(OP + α2KR)}
− {β2(LO + α4K2) + α2(α2b2 − β2)(LR+ α2KP )}
× {β2(O2 + α2β2K2) + α2(α2b2 − β2)(OR+ β2KP )}

]
− (α2bi − βyi)

[
α2{βr00(OR+ β2KP ) + 2s0(α4KR+ β2LP )} (3.27)

× {2β2KO + (α2b2 − β2)(OP + α2KR)}
− {βr00(α2KR+OP ) + 2α2s0(LR+ α2KP )}
× {β2(O2 + α2β2K2) + α2(α2b2 − β2)(OR+ β2KP )}

]
= 0.

Transvecting (3.27) by bi, we have

2s0
[
α2(β2LK + α2KO){2β2KO + (α2b2 − β2)(OP + α2KR)}

− (LO + α4K2){β2(O2 + α2β2K2) + α2(α2b2 − β2)(OR+ β2KP )}
]

(3.28)

− β(α2b2 − β2)r00{2α2KO(OR+ β2KP )− (α2KR+OP )(O2

+ α2β2K2)} = 0.
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The terms of (3.28) which does not contain α2 are found in 2β8h+1(βs0− r00).
Thus there exists hp(8h+ 1) : W8h+1 such that

2β8h+1(βs0 − r00) = α2W8h+1. (3.29)

We suppose that α2 6≡ 0 (mod. β) owing to Lemma 2.2. Therefore there exists
from (3.29) a function f = f(x) satisfying W8h+1 = fβ8h+1, which leads to

2(βs0 − r00) = f(x)α2. (3.30)

Substituting (3.30) into (3.28), we obtain

f(x)α2
[
α2(β2LK + α2KO){2β2KO + (α2b2 − β2)(OP + α2KR)}

− (LO + α4K2){β2(O2 + α2β2K2) + α2(α2b2 − β2)(OR+ β2KP )}
]

+ r00
[
2α2(β2LK + α2KO){2β2KO + (α2b2 − β2)(OP + α2KR)}

− 2α2β2(α2K2O2 + β2K2LO + α4β2K4)− 2α2(α2b2 − β2)(LO (3.31)

+ α4K2)(OR+ β2KP )− 2α2β2(α2b2 − β2)KO(OR+ β2KP )

+ α2β2b2O3P + α4β2b2(KO2R+ α2β2K3R+ β2K2OP )

− α2β4(KO2R+ α2β2K3R+ β2K2OP )− β2O3(2L+ β2P )
]

= 0.

The term of (3.31) which does not contain α2 is −β2O3(2L + β2P ), but the
above term can find α2, that is,

−β2O3(2L+ β2P ) = −α2β2O3(2L1 + β2P1), (3.32)

where

L1 =

h∑
k=1

(2k − 1)α2k−2β2h−2k,

P1 =

h∑
k=2

2k(2k − 1)α2k−4β2h−2k.

Substituting (3.32) into (3.31), we get

f(x)
[
α2(β2LK + α2KO){2β2KO + (α2b2 − β2)(OP + α2KR)}

− (LO + α4K2){β2(O2 + α2β2K2) + α2(α2b2 − β2)(OR+ β2KP )}
]

+ r00
[
2(β2LK + α2KO){2β2KO + (α2b2 − β2)(OP + α2KR)}

− 2β2(α2K2O2 + β2K2LO + α4β2K4)− 2(α2b2 − β2)(LO (3.33)

+ α4K2)(OR+ β2KP )− 2β2(α2b2 − β2)KO(OR+ β2KP )

+ β2b2O3P + α2β2b2(KO2R+ α2β2K3R+ β2K2OP )

− β4(KO2R+ α2β2K3R+ β2K2OP )− β2O3(2L1 + β2P1)
]

= 0.
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Thus the term of (3.33) which seemingly does not contain α2 is included in the
form: β8h{f(x)β2 + 2(b2 − 7)r00}. Therefore there exists hp(8h) : W8h such
that

β8h{f(x)β2 + 2(b2 − 7)r00} = α2W8h. (3.34)

In this case, there exists from (3.34) a function g = g(x) satisfying W8h =
g(x)β8h, which takes the follow of form

f(x)β2 + 2(b2 − 7)r00 = g(x)α2.

From α2 6≡ 0 (mod. β), it follows that f(x) must vanish and hence we have

r00 =
g(x)

2(b2 − 7)
α2, (3.35)

where we assume b2 6= 7. Substituting f(x) = 0 and (3.35) into (3.30), we have

βs0 =
g(x)

2(b2 − 7)
α2,

which leads to s0 = 0 and r00 = 0, that is, sj = 0 and rij = 0. Substituting
s0 = 0 and r00 = 0 into (3.27), we obtain

si0
[
α2{β2(β2LK + α2KO) + (α2b2 − β2)(β2LP + α4KR)}

{2β2KO + (α2b2 − β2)(OP + α2KR)} − {β2(LO + α4K2)

+ α2(α2b2 − β2)(LR+ α2KP )}{β2(O2 + α2β2K2) (3.36)

+ α2(α2b2 − β2)(OR+ β2KP )}
]

= 0.

Thus the term of (3.36) which seemingly does not contain α2 is β8h+4si0. Then
there exists hp(8h+ 3) : W8h+3 such that

si0β
8h+4 = α2W8h+3. (3.37)

From α2 6≡ 0 (mod. β), there exists from (3.37) a function h = h(x) satisfying
W8h+3 = hβ8h+3, and hence

βsi0 = h(x)α2,

which leads to si0 = 0, that is, sij = 0 by virtue of h(x) = 0.
Consequently we obtain rij = 0 and sij = 0, that is, bi;j = 0 is obtained.

Substituting s0 = 0, r00 = 0, si0 = 0 and (3.26) into (3.23), we have

γ0
i
0 = µ0y

i,

which leads to

2γj
i
k = µjδ

i
k + µkδ

i
j , (3.38)

which shows that the associated Riemannian space is projectively flat.
Conversely, it is easy to see that (3.2) is a consequence of bi;j = 0 and (3.38).
Consequently we obtain the same results from both case of r = 2h and case

of r = 2h+ 1.
Hence we have the following
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Theorem 3.1. A Finsler space Fn (n > 2) with an approximate infinite (α, β)-
metric (2.1) provided b2 6= 7 is projectively flat if and only if bi;j = 0 is satisfied,
and the associated Riemannian space (Mn, α) is projectively flat if and only if
2γj

i
k = µjδ

i
k + µkδ

i
j is obtained. Then Fn is a Berwald space.
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