A FINSLER SPACE WITH A SPECIAL METRIC FUNCTION

HONG-SUH PARK AND IL-YOUNG LEE

ABSTRACT. In this paper, we shall find the conditions that the Finsler space with a special (α, β) -metric be a Riemannian space and a Berwald space.

1. Introduction

A Finsler metric(fundamental function) L in an n-dimensinal differentiable manifold M^n is called an (α, β) -metric if L is positively homogeneous function of degree one of a Riemannian metric $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ and a differential 1-form $\beta = b_i(x)y^i$. The notion of (α, β) -metric was introduced by M. Matsumoto [3] and has been studied by many authors. The well-known examples of the (α, β) -metric are the Randers metric $L = \alpha + \beta$, the Kropina metric $L = \alpha^2/\beta$ and the slope (or Matsumoto) metric $L = \alpha^2/(\alpha - \beta)$ which have greatly contributed to the developement of Finsler geometry.

The one of the authors has introduced a special (α, β) -metric $L(\alpha, \beta)$ in [6] satisfying

$$(1.1) L^2 = c_1 \alpha^2 + 2c_2 \alpha \beta + c_3 \beta^2,$$

where c_1 , c_2 and c_3 are constants.

When the C-tensor of the Finsler space is expressed in the term of the angular metric tensor of the Riemannian metric α , the special (α, β) -metric L satisfying (1.1) is introduced. In case of $c_1 = c_2 = c_3 = 1$ in

Received November 13, 1995. Revised January 22, 1996.

¹⁹⁹¹ AMS Subject Classification: 53B40.

Key words and phrases: Finsler metric, special (α, β) -metric, Randers metric, Kropina metric, Berwald space.

(1.1), the metric L becomes to a Randers metric. Thus the special metric L satisfying (1.1) may be considered as a generalization of the Randers metric.

The purpose of the present paper is to find the condition that the Finsler space with the metric L satisfying (1.1) be a Riemannian space and a Berwald space by simple and peculiar manipulation.

2. The condition to be a Riemannian space

Let $F^n = (M^n, L(\alpha, \beta))$ be a Finsler space with a fundamental function L satisfying (1.1). Then we have

(2.1)
$$\dot{\partial}_{i}\alpha = \frac{a_{il}y^{l}}{\alpha}, \qquad \dot{\partial}_{j}\dot{\partial}_{i}\alpha = \frac{\alpha^{2}a_{ij} - a_{il}a_{jm}y^{l}y^{m}}{\alpha^{3}},$$
$$\dot{\partial}_{i}\alpha^{2} = 2a_{ik}y^{k}, \qquad \dot{\partial}_{j}\dot{\partial}_{i}\alpha^{2} = 2a_{ij},$$
$$\dot{\partial}_{i}\beta = b_{i}, \quad \dot{\partial}_{j}\dot{\partial}_{i}\beta = 0, \quad \dot{\partial}_{i}\beta^{2} = 2b_{i}b_{m}y^{m}, \quad \dot{\partial}_{j}\dot{\partial}_{i}\beta^{2} = 2b_{i}b_{j},$$

where $\dot{\partial}_i = \partial/\partial y^i$. On the other hand, since

$$\dot{\partial}_j\dot{\partial}_iL^2=c_1\dot{\partial}_j\dot{\partial}_i\alpha^2+2c_2(\dot{\partial}_j\dot{\partial}_i\alpha\beta+\dot{\partial}_i\alpha\dot{\partial}_j\beta+\dot{\partial}_j\alpha\dot{\partial}_i\beta+\alpha\dot{\partial}_j\dot{\partial}_i\beta)+c_3\dot{\partial}_j\dot{\partial}_i\beta^2$$

Using (2.1), we have

(2.2)
$$g_{ij} = \frac{1}{2}\dot{\partial}_{j}\dot{\partial}_{i}L^{2}$$

$$= c_{1}a_{ij} + c_{2}\left(\frac{\alpha^{2}a_{ij} - a_{il}a_{jm}y^{l}y^{m}}{\alpha^{3}}\beta + \frac{a_{il}y^{l}}{\alpha}b_{j} + \frac{a_{jl}y^{l}}{\alpha}b_{i}\right) + c_{3}b_{i}b_{j}.$$

Now, we assume that F^n is a Riemannian space, that is, g_{ij} is a function of position alone. From (2.2), we have

$$\begin{split} g_{ij}(x) - c_1 a_{ij}(x) - c_3 b_i(x) b_j(x) \\ + c_2 \frac{\alpha^2 \beta a_{ij} - \beta a_{il} a_{jm} y^l y^m + \alpha^2 a_{il} b_j y^l + \alpha^2 a_{jl} b_i y^l}{\alpha^3} = 0, \end{split}$$

that is,

$$\alpha^{3} \{g_{ij}(x) - c_{1}a_{ij}(x) - c_{3}b_{i}(x)b_{j}(x)\}$$

+ $c_{2}\{a_{ij}a_{hk}b_{l} - a_{ih}a_{jk}b_{l} + a_{hk}a_{il}b_{j} + a_{hk}a_{jl}b_{i}\}y^{h}y^{k}y^{l} = 0.$

From this, noticing α^3 is irrational with respect to y^i , we have

$$(2.3) g_{ij} - c_1 a_{ij} - c_3 b_i b_j = 0,$$

$$(2.4) c_2 A_{ijhkl} y^h y^k y^l = 0,$$

where $A_{ijhkl} = (a_{ij}b_l + a_{il}b_j + a_{il}b_i)a_{hk} - a_{ih}a_{jk}b_l$. By arbitrariness of y^i , (2.4) is equivalent to

(2.5)
$$c_2 = 0$$
 or $A_{ij(hkl)} = 0$,

where $A_{ij(hkl)}$ denotes the all permutations of indices h, k, l and summation and multiplied by 1/3!. The second equation of (2.5) is equivalent to

$$(2.6) \begin{array}{c} a_{ij}a_{hk}b_{l} + a_{il}a_{hk}a_{j} + a_{jl}a_{hk}b_{i} - a_{ih}a_{jk}b_{l} \\ + a_{ij}a_{kl}b_{h} + a_{ih}a_{kl}b_{j} + a_{jh}a_{kl}b_{i} - a_{ik}a_{jl}b_{h} \\ + a_{ij}a_{lh}b_{k} + a_{ik}a_{lh}b_{j} + a_{jk}a_{lh}b_{i} - a_{il}a_{jh}b_{k} \\ + a_{ij}a_{hk}a_{l} + a_{il}a_{hk}b_{j} + a_{jl}a_{hk}b_{i} - a_{ih}a_{jk}b_{l} \\ + a_{ij}a_{kl}b_{h} + a_{ih}a_{kl}b_{j} + a_{jh}a_{lk}b_{i} - a_{ik}a_{jl}b_{h} \\ + a_{ij}a_{lh}b_{k} + a_{ik}a_{lh}b_{j} + a_{jk}a_{lh}b_{i} - a_{il}a_{jh}b_{k} = 0. \end{array}$$

Contracting (2.6) by $a^{ij}a^{hk}$, we have

$$[2(n^2 + n) + 4(n+1)]b_l = 0.$$

Thus we have $b_l = 0$. Hence we have

$$(2.7) g_{ij} = c_1 a_{ij} + c_3 b_i b_j$$

and

$$(2.8) c_2 = 0 or b_l = 0.$$

Conversely, we assume that (2.8) is satisfied. Then, from (2.2), we have

$$g_{ij} = c_1 a_{ij} + c_3 b_i b_j$$
 (in case of $c_2 = 0$)

or

$$g_{ij} = c_1 a_{ij}$$
 (in case of $b_i = 0$).

This means that F^n is a Riemanian space. Thus we have

THEOREM 2.1. F^n is a Riemannian space if and only if $c_2 = 0$ or $b_l = 0$. The metric tensor g_{ij} of F^n is given by $g_{ij} = c_1 a_{ij} + c_3 b_i b_j$ (in case of $c_2 = 0$) and $g_{ij} = c_1 a_{ij}$ (in case of $b_i = 0$).

3. The condition to be a Berwald space

We shall discuss a condition for F^n with (1.1) to be a Berwald space. Differentiating (1.1) h-convariantly with respect to the Berwald connection $B\Gamma = (G_{jk}^k, G_j^i, 0)$, we have

(3.1)
$$(c_1\alpha + c_2\beta)a_{hk|i}y^hy^k + 2\alpha(c_2\alpha + c_3\beta)b_{h|i}y^h = 0.$$

This is rewritten as follows:

$$(3.2) c_2(b_j a_{hk|i} + 2a_{jk}b_{h|i})y^h y^j y^k + \alpha(c_1 a_{hk|i} + 2c_3 b_k b_{h|i})y^h y^k = 0.$$

In the case of $c_2 = 0$, we have $L^2 = (c_1 a_{ij} + c_3 b_i b_j) y^i y^j$. By Theorem 2.1, F^n is a Riemannian space with the metric tensor $g_{ij} = c_1 a_{ij} + c_3 b_i b_j$. In the subsequent cosideration, F^n is the non-Riemannian space, therefore we shall consider only the case of $c_2 \neq 0$.

Now, we assume the F^n is a Berwald space. Then $a_{hk|i}$ and $b_{h|i}$ are functions of position alone. Accordingly, in (3.2), $c_2(b_j a_{hk|i} + 2a_{jk} b_{h|i}) y^h$

 $y^j y^k$ is a polynomial of degree 3 with respect to y^i and $\alpha(c_1 a_{hk|i} + 2c_3 b_k b_{h|i}) y^h y^k$ is irrational with respect to y^i . Thus we have

(3.3)
$$b_{(j}a_{hk)|i} + 2a_{(jk}b_{h)|i} = 0,$$

(3.4)
$$c_1 a_{(hk)|i} + 2c_3 b_{(k} b_{h)|i} = 0,$$

where $A_{(hk)} = \frac{1}{2}(A_{hk} + A_{kh})$. We easily show that (3.4) is equivalent to

$$(3.5) (c_1 a_{hk} + c_3 b_h b_k)_{|i} = 0.$$

From (3.5), putting $g_{hk} = c_1 a_{hk} + c_3 b_h b_k$, we have

$$g_{hk|i} = \partial_i g_{hk} - G^r_{hi} g_{rk} - G^r_{hi} g_{hr} = 0.$$

Where $\partial_i = \partial/\partial x_1$. Using the cyclic permutation indices, we get

$$\partial_i g_{hk} + \partial_h g_{ki} - \partial_k g_{ih} = 2G_{hj}^r g_{rk},$$

from which $G_{ji}^r = \gamma_{ji}^r$, where γ_{ji}^r is the Riemannian connection of a Riemannian metric $g_{hk} = c_1 a_{hk} + c_3 b_h b_k$.

Conversely, we assume that (3.3) and (3.4) are satisfied. Then (3.2) is satisfied, and so we have (3.1) with respect to the Riemannian connection of a Riemannian metric $g_{hk} = c_1 a_{hk} + c_3 b_h b_k$. Hence the Riemannian connection is the Berwald connection of our Finsler space. Thus we have

THEOREM 3.1. The Finsler space with metric L(x,y) given by (1.1) is a Berwald space if and only if (3.3) and (3.4) are satisfied. This is equivalent to that (3.3) is satisfied with respect to the Riemannian connection of the Riemannian metric $g_{hk} = c_1 a_{hk} + c_3 b_h b_k$.

Next, the equaltion (3.3) is equivalent to

$$(3.6) \quad (b_j a_{hk|i} + b_h a_{kj|i} + b_k a_{jh|i}) + 2(a_{jk} b_{h|i} + a_{kh} b_{j|i} + a_{hj} b_{k|i}) = 0.$$

From (3.5), we have

(3.7)
$$a_{hk|i} = -\frac{c_3}{c_1} (b_k b_{h|i} + b_{k|i} b_h) \qquad (c_1 \neq 0).$$

Substituting (3.7) in (3.6), we have

$$a_{jk}b_{h|i} + a_{kh}b_{j|i} + a_{hj}b_{k|i} - \frac{c_3}{c_1}(b_jb_hb_{k|i} + b_jb_kb_{h|i} + b_kb_hb_{j|i}) = 0.$$

Transvecting above the equation with a^{jk} , we obtain

$$(3.8) (n+2)b_{h|i} - \frac{c_3}{c_1}(b^2b_{h|i} + 2b_hb^jb_{j|i}) = 0,$$

where $b^2 = b^h b_h$, $b^h = a^{hi} b_i$. Furthermore, transvecting (3.8) with b^h , we have

(3.9)
$$[(n+2) - \frac{3c_3}{c_1}b^2]b^k b_{k|i} = 0.$$

If we assume that $\frac{c_3}{c_1} \neq \frac{n+2}{3b^2}$, $b^k b_{k|i} = 0$. From this and (3.8), we get $b_{h|i} = 0$ if $\frac{c_3}{c_1} \neq \frac{n+2}{b^2}$. Substituting $b_{h|i} = 0$ in (3.7), we have $a_{hk|i} = 0$, from which $G^i_{jk} = \{^i_{jk}\}$, where $\{^i_{jk}\}$ are the Christioffel symbol of a_{hk} . Hence $\nabla_i b_h = 0$, where ∇_i is the convariant derivative with respect to $\{^i_{jk}\}$.

Conversely, if $G_{jk}^i = \{i_{jk}\}, \nabla_h b_i = 0$, then (3.3) and (3.4) are satisfied. Therefore, by the Theorem 3.1, F^n is a Berwald space.

Thus we have

Theorem 3.2. The Finsler space with (1.1) assumed $\frac{c_3}{c_1} \neq \frac{n+2}{3b^2}$, $\frac{c_3}{c_1} \neq \frac{n+2}{b^2}$ ($c_1 \neq 0$), is a Berwald space if and only if $G_{hk}^i = \{i_h\}$, $\nabla_h b_i = 0$.

References

- M. Hasiguchi and Y. Ichijyo, On some special (α, β)-metric, Rep.Fac. Sci. Kagoshima Univ. Math. Phys. Chem. 8 (1975), 39-46.
- 2. S. Kikuchi, On the condition that a space with (α, β) -metric be a locally Minkowskian, Tensor, N. S. 33 (1979), 242-246.
- 3. M. Matsumoto, On C-reducible Finsler spaces, Tensor, N. S. 24 (1972), 29-37.

- 4. ______, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, Otsu, Japan (1986).
- 5. _____, Theory of Finsler spaces with (α, β) -metric, Rep. Math. Phys. 31 (1992), 43-83.
- 6. H. S. Park, On a Finsler space with a special (α, β) -metric, Proceedings of Symp. on Finsler geom, Nagasaki, Japan (1995), 39-42.

Hong-Suh Park Department of Mathematics Yeungnam University Gyongsan 712-749, Korea

Il-Young Lee Department of Mathematics Kyungsung University Pusan 608-736, Korea