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ON PROJECTIVELY FLAT FINSLER
SPACES WITH (o,[)-METRIC

HONG-SUH PARK AND IL-YONG LEE

ABSTRACT. The (a, 8)-metric is a Finsler metric which is constructed
from a Riemannian metric a and a differential 1-form 3; it has been
sometimes treated in theoretical physics. The condition for a Finsler
space with an (o, 3)-metric L(a, 8) to be projectively flat was given
by Matsumoto [11]. The present paper is devoted to studying the
condition for a Finsler space with L = al="(®)g7(® or L = a + %/a
to be projectively flat on the basis of Matsumoto’s results.

1. Introduction

Let F* = (M™, L) be an n-dimensional Finsler space, that is, an
n-dimensional differential manifold M™ equipped with a fundamental
function L(z,y). The concept of an (a, 8)-metric L(a, 3) was introduced
in 1972 by M. Matsumoto [13]. A Finsler metric L(z,y) is called an
(o, B)-metric L{c, B) if L is a positively homogeneous function of o and
B of degree one, where o? = a;;j(x)y’y’ is a Riemannian metric and
B = b;(z)y" is a one form on M™. We have specially interesting examples
of an (o, B)-metric L(a, 3). In particular, a Finsler fundamental function
L(z,y) will be called the generalized Kropina metric if L(z, y)is defined
by L(z,y) = o™B*~™, where m # 0, 1. And the Kropina metric was first
introduced by L. Berwald in connection with a two-dimensional Finsler
space with rectilinear extremal and was investigated by V. K. Kropina.

A Finsler space is called projectively flat, or with rectilinear geodesic, if
the space is covered by coordinate neighborhoods in which the geodesics
can be represented by (n—1) linear equations of the coordinates. Such a
coordinate system is called rectilinear. The condition for a Finsler space
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to be projectively flat was studied by L. Berwald [2] in tensorial form
and completed by M. Matsumoto [9]. Hashiguchi and Ichijyd’s paper [4]
gives interesting results on projective flatness of the Randers spaces.

We have two essential projective invariant tensors, one of them is the
Weyl tensor W and the other is the Douglas tensor D. A Finsler space
where both of these tensors vanish is characterized as a projectively flat
Finsler space which can be projectively mapped to a locally Minkowski
space. The examples of a Finsler space with (e, 8)-metric L(a, 3) are a
Randers space, a Kropina space and a special generalized Kropina space
with L = 3?/a. The conditions for the above spaces to be projectively
flat were shown by M. Matsumoto [11].

The purpose of the present paper is devoted to studying the condition
that a Finsler space with L = o!~"(®)87(®) or L = a+(%/a is projectively
flat.

Throughout the present paper we use the terminology and notations
in Matsumoto’s monograph [10].

2. Preliminaries

We consider a Finsler space with an (a,3)-metric L(a,3). First,
we are concerned with the associated Riemannian space with metric

a(z,y) = 1/aij(x)y*y?. Let v;'x(z) be the Christoffel symbols con-
structed from o and denoted by (;) the covariant differentiation with
respect to 7;*x. From the differential 1-form B(z,y) = bi(z)y* we define

2ri; = biyj +bjii, 285 = biyj — bjy = (85bi — Biby),
sij = ai"srj, b =a'"b,, b*=a""bb,.

Next, we consider the Berwald connection BI' = (G, G;'-,O) of the
Finsler space with the (a, 3)-metric L(e, 3). As is well-known, we have

Gjik = 6.kG§~, 2Gi = Gio(= Gi.,»yr), Gi_—,‘ = 8JG’
In the following we denote by the subscript 0 the transvection by y*

and by subscripts a and 3 of L the partial differentiations by a and g,
respectively.
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If we put 2B* = 2G* — 7o'o, then the equation (2.5) of a paper [12]
gives

B* =(E/a)y* + (aLp/La)sg
—~(aLaa/Le)(C + C'7'00/2:3)(1‘/i/a - abi/ﬂ),
where quantities £ and C are given by

(2.2) C+(0?Lg/BLy)so+ (@Laa/B2La)(a®6® — B*)(C +are/28) = 0,

(21)

(2.3) (2L/a)E = (2,3L5/C¥)C -+ Lg‘roo.

Now it is well-known [4] that a Finsler space is projectively flat if
and only if the space is covered by rectilinear coordinate neighborhoods,
that is, in which the G® is proportional to y*. Thus we shall quote the
following theorem as follows:

THEOREM 2.1. [11]. A Finsler space with (o, 3)-metric L(a, 8) is
projectively flat if and only if the space is covered by coordinate neigh-
borhoods in which the following equation is satisfied:

(Yo'0 — Yo00y*/@?)/2 + (Lp/La)sh
+ (Laa/La)(C + are/20) (/B3 — y*) = 0.

Here we shall state the following lemma for the later use [5]:

(2.4)

LEMMA 2.2. If a2 = 0 (mod.8), that is, a;;(x)y‘y’ contains b;(z)y’
as a factor, then the dirpension is equal to two and b2 vanishes. In this
case we have 6 = d;(z)y’ satisfying a® = 36 and d;b* = 2.

We shall state one more remark: Throughout the paper, we shall say
" homogeneous polynomial(s) in (y*) of degree r" as hp(r) for brevity.
Thus 0% are hp(2) and if the space is projective, then py* are hp(2).

3. Projectively flat Finsler space with L = alt—r@gr),

G. Yu. Bogoslovsky [3] introduced the locally anisotropic space-time
with the metric

(3.1) ds = {(vidz?)?/a;;dz’dz’ } 5 (asjdaida’)®
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where a;;(z) is a Riemannian metric and r = r(z). The geometry of
the Finsler space with metric (3.1) depends on two additional fields; a
scalar field r(z), which determines the magnitude of local anisotropy,
and v; which indicates the locally preferred directions in space-time.
Since (a;jdzidz’ )7 is a Riemannian metric and v;dz’ is a differential
one-form, the metric given by (3.1) is considered as an (a,3)-metric
L = o~ "(®)37(®) with the function of positive r(z) from the viewpoint
of Finsler geometry.

In this section we are to consider the Finsler space equipped with
this structure from a geometrical view-point and shall study the Finsler
space F™ = (M"™, L(z,y)) with the fundamental function L(z,y) given
by

(3.2) ‘ L =o'~ "®gr=),
where r(z) # —1, 0, 1 is supposed. Then

te=-re) (8), Lmri (2)

Br®)
ar(z)+1’

(3.3)
Loo = 'l"(.’L‘)(T(.’E) - 1)
Substituting (3.3) in (2.2), we obtain
2(1 — r(x)){(1 + r(z))B% — r(z)b*a?}(C + are/20)
=(1 — r(z))afroo — 2r(z)a>sp.

Suppose that (1 + r(z))8% — r(z)b?a® = 0. Then transvection by b'b’
leads to the contradiction b2 = 0. As b% # 0 is supposed, Lemma shows
a? # 0 (mod. A). In this section, we are to treat only the case of a® # 0
(mod. B). Since (1 + 7(z))B? — r(z)b?a? does not vanish, we have

a{(1 — r(z))Broo — 2r(z)a?so}
1 —r@){(1 +7(2))B* —r(z)b2a?}’
Substituting (3.3) and (3.4) in (2.4), we get
{(1+r(2)8* - r(2)b*®H(1 - r(2))B(e* 100 — Yo00")
(3.5) + 2r(z)alsi} — r(z)a?{(1 — r(z))Broo — 2r(z)a’se}
(% — By') = 0.

(3.4) C+arg/20 = 3
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First, the term in (3.5) which seemingly does not contain g is 2r(z)%a®
(s0b* — b?s§) only. Hence we must have function \(z) satisfying

(3.6) sob® — b2sh = BN,
The above equation (3.6) is written in the form
(3.7) Bsik = bisk — bidiy A = apA®.

Transvecting (3.7) by b* and referring to skew-symmetric s;;, we have
8; = A;. Thus the equation (3.7) is written as

(3.8) bzsij = bisj bl bjsi.

Secondly, we observe in (3.5) that the term (r(z)2 — 1)33yp00y* must
have a factor a?. Then the method which has been applied to (3.6) leads
us to the existence of vy = v;(x)y* satisfying

(3.9) Y000 = a2vo.

Substituting from (3.8) and (3.9), the equation (3.5) reduces to

o?[r(z)(r(z) — 1)6* (70’0 — voy®) + r(@){2(r(z) + 1)Bs0/b?

+ (r(x) — )roo}b* + 2r(z){r(z)o? - (r(z) + 1)8%/b?}s*

— 2r(z)2soyiJ

= (r(z) — 1)B{(r(z) + 1)B(700 — voy’) + r(z)rooy’}.

The terms of (3.10) which seemingly do not contain a factor o are
(r(z) = 1)B{(r(2) + 1)B(0'0 — voy’) + r(z)rooy’}.

Consequently we must have £ = &} (x)y’ satisfying

(3.10)

(3.11) (r(z) + 1)B(v0’0 — voy*) + r(z)rooy’ = a2&.

Transvecting (3.11) by 3* and making use of (3.9), the equation (3.11)
leads us to

(3.12) r(z)roo = £yi = oo-
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Substituting from (3.11), the equation (3.10) reduces to

r(@)(r(z) — 1)b* (0’0 — voy*) + r(z){2(r(x) + 1)Bso/b?
(3.13) + (r(z) — Droo}b* + 2r(z){r(z)a? — (r(z) + 1)8%/b?}s*
— 2r(2)%soy” = (r(z) — 1)B&;.
Multiplying (3.13) by (r(z) + 1), where r(z) # —1 is supposed, we have
r(z)(r(z) - 1)(r(z) + 1)b*B(10°0 — voy*)
+ r(z)(r(z) + 1)8{2(r(z) + 1)Bso/b* + (r(x) — 1)roo}b*
+ 2r(z)(r(z) + 1)B{r(z)a® — (r(zx) + 1)8%/b*} s
= 2(r(z) + )r(z)*Bsoy’ = (r(z) — 1)(r(z) + 1)8%¢.
Substituting from (3.11) and (3.12), we are led to
{r(z)(1 - r(z))b*a®in0 — (1 — r())(r(z) + 1)6°BEio
— 2r(x)2(r(z) + 1)b%a?Bs; + 2r(z)(r(z) + 1)28%s;}
~ {r(z)(1 — r(2))b*6ooyi — (r(z) + 1)(1 — r(=))b* Boods
—2r(z)2(r(z) + 1)b?Bsoy; + 2r(x)(r(zx) + 1)262s0b;} = 0.

(3.14)

Thus the above equation is rewritten as follows:
{r(x)b%a® — (r(z) + 1)B2H(r(z) — 1)b%&i0 + 2r(x)
(3.15) (r(z) + 1)Bs:} = {(r(x) — 1)b2&0o + 2r(z)(r(z) + 1)Bso}
{r(@)b*yi — (r(2) + 1)Bb:},

where we put §;; = air;.
If we define the tensors

M;; = r(z)b%as; — (r(z) + 1)bsd;,
Nij = (r(z) - 1)b2€ij + 2r(z)(r(z) + 1)s:b;,
then (3.15) is written in the form

2Mp;Nik + 2Mjx Nip, + 2Mip N

3.16
(3.16) = (Njk + Nij)Min, + (Nin + Npe)M;; + (Nhj + Njp) M.
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It is to prove that the tensor M;; obtains the reciprocal M i as follows:
MY = {a¥ — (r(z) + 1)b'b /b?} /r(x)b?.
Thus, transvecting (3.16) by M, we get
(n+ 1)Nsx = Ny + 2NMyy,, nN = MM Ny,
which gives N;x = Ni; = N M;; immediately. Thérefore, we obtain
(317 (r(z) — 1)b%€ix =N{r(z)b%aix — (r(x) + 1)b;br}
= 2r(z)(r(z) + 1)s;bx,

and (3.12) is rewritten in the form
r(z)(r(z) — 1)b?rgp =N(r(z)b%a? - (r(z) + 1)5%)
= 2r(z)(r(z) + 1)sef.

Substituting from (3.17) and (3.18), the equation (3.13) is rewritten as
follows:

(3.19) (r(z)-1)b%(v0'0—voy') = (2r(z)so+NB)y' ~Na2b' —2r(z)a’s

Conversely, it is easily verified that (3.5) is a consequence of (3.8),
(3.18) and (3.19). These equations (3.18) and (3. 19) may be written,
respectively, in the forms .

T(:B)(T’((L’) -~ 1)b27"ij =N{r(x)b2aij - (7‘((17) + 1)bibj}
— r(z)(r(z) + 1)(sibj + s5b4),

(3.18)

(3.20)

(3.21) (r(z) = 1)b%y;% = b2(5;0k +0%0;) — (N + 2r(z)s")ajk,

where we put 20; = (r(z) — 1)v; + (2r(z)s; + Nb;)/b%.
Thus we have the following

THEOREM 3.1. An n-dimensional Finsler space F" with L = o'~ "(®)
B7®), where r(z) # —1, 0, 1, is projectively flat, if and only if we have
(3.8) and (3.20), and the space is covered by coordinate neighborhoods in
which the Christoffel symbols of the associated Riemannian space with
the metric a are written in the form (3.21).
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4. Projectively flat Finsler space with L = a + §%/a.

The present section is devoted to a Finsler space F'™ with the metric

(41) L(e,B) = a + §%/c.

This metric is now proposed and is thought of as desirable in the view-
point of geometry and of applications. Since a is a Riemannian metric,
this metric L is nearly allied to a Riemannian metric. L(e, () may
be regarded as constructed from o and one more Riemannian metric
va2+ [2.

From (4.1) we obtain
232

a2_'32
v b= fe=

(4.2) Ly =

Substituting (4.3) in (2.2), we have

o{(e® — B%)roo — 40*Bso}
26{(1 + 2b2)a? — 362}

Here the denominator 23{(1 + 2b?)a? — 332} does not vanish. In fact,
if 28{(1 + 2b%)a? — 382} = 0, then (1 + 2b%)a;; = 3b;b;, so we have a
contradiction.
Substituting (4.2) and (4.3) in (2.4), we get

(a® = B2){(1 + 2b%)a® - 38%}(a®v0'0 — Tooy’)
(4.4) + 4a*B{(1 + 2b%)a? — 332}sh + 20%{(a® — B*)roo
— 402Bsp}(a?b* — By*) = 0.
Only the term —38% ooy’ of (4.4) seemingly does not contain o and

hence we must have hp(6) v§ satisfying —3B%roooy® = a?v§. For the sake
of brevity we suppose a? # 0 (mod. (8). Then the above is written as

(4.3) C + arg/28 =

(4.5) rooo = Voo,
where vg is hp(1). Substituting from (4.5), the equation (4.4) reduces to
(a® - BA{(1+26")a® — 36°}(vo'o — voy’) + 40’ B{(1 + 26%)o”

(4.6) _ 3,82}36 n 2{(0{2 _ ,32)7'00 _ 4a2ﬁso}(a2bi - ﬂyi) =0.
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The terms of (4.6) which seemingly do not contain _a2 are 53{38(vo%0 —
voY*)+2rooy’}. Consequently we must have hp(1) uj such that the above
is equal to o?33ud. Thus we come by

(4.7) 36(70°0 — voy’) + 2rooy’ = a?ul.

Contraction of (4.7) by a;y" leads to

(4.8) 2rg0 = uﬁy,
Substituting (4.8) in (4.7), we obtain

(4.9) 0% = voy’,
which yields

(4.10) 27k = vk} + v;6}.

Consequently the equation (4.10) shows that the associated Riemann-
ian space is projectively flat.
Next, substituting (4.9) in (4.6), we have
40®B{(1 + 2b%)a? ~ 36%} s} + 2{(a® — B%)reo
— 40®Bso}(a?b — By') = 0.
Transvection of (4.11) by b; leads to
(4.12) 202Bsg + (b%a? — B%)rge = 0.
Since b%a® — 32 of (4.12) does not contain o? as a factor, we must have
a function k(z) such that
(4.13) ro0 = k(z)a?. .
Substituting form (4.13), the equation (4.12) reduces to 2859+ k(z) (b2a?
—3?) = 0, which gives (b;s; +b;s;) +k(z)(b%a;; —b;b;) = 0. Transvection
by y*y7 leads to k(z) = 0, because b%a? — 32 does not vanish. Thus we
get
(4.14) 700 =0; 755 =0 and s9=0; s; =0.
Substituting from (4.14), the equation (4.11) reduces to s} = 0, that is,
Sij = 0.
Summarizing up, we obtain b;,; = 0 from ri;j =0 and s;; = 0.
Conversely, if b;;; = 0, then we come by rgo = 0, 36 =0 and s = 0.
So (4.6) follows from (4.9).
Thus we have the following

(4.11)
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THEOREM 4.1. A Finsler space with an (a, 8)-metric L(a, 3) given
by (4.1) is projectively flat, if and only if we have b;;; = 0 and the
associated Riemannian space (M™,a) is projectively flat.
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