DOUGLAS SPACES OF THE SECOND KIND OF FINSLER SPACE WITH A MATSUMOTO METRIC

IL-Yong Lee*

Abstract

In the present paper, first we define a Douglas space of the second kind of a Finsler space with an (α, β)-metric. Next we find the conditions that the Finsler space with an (α, β)-metric be a Douglas space of the second kind and the Finsler space with a Matsumoto metric be a Douglas space of the second kind.

1. Introduction

The notion of Douglas space was introduced by S. Bácsó and M. Matsumoto [4] as a generalization of Berwald space from viewpoint of geodesic equations. Also, we consider the notion of Landsberg space as a generalization of Berwald space. Recently, the notion of weakly-Berwald space as another generalization of Berwald space was introduced by S. Bácsó and B. Szilágyi [5]. It is remarkable that a Finsler space is a Douglas space if and only if the Douglas tensor $D_{i}{ }^{h}{ }_{j k}$ vanishes identically [6].

The theories of Finsler spaces with an (α, β)-metric have contributed to the development of Finsler geometry [11], and Berwald spaces with an (α, β) metric have been treated by some authors ([1], [10], [13]).

The purpose of the present paper is to give another different definition of a Douglas space of the Finsler space with an (α, β)-metric, on the basis of the difinition of a Douglas space introduced by M. Matsumoto [12]. Then the Douglas space obtained by a different definition is called a Douglas space of the second kind.

[^0]Let us define a Douglas space of the second kind. A Finsler space F^{n} is said to be a Douglas space if $D^{i j}=G^{i}(x, y) y^{j}-G^{j}(x, y) y^{i}$ are homogeneous polynomials in $\left(y^{i}\right)$ of degree three. Then a Finsler space F^{n} is said to be a Douglas space of the second kind if and only if $D^{i m}{ }_{m}=(n+1) G^{i}-G^{m}{ }_{m} y^{i}$ are homogeneous polynomials in $\left(y^{i}\right)$ of degree two. On the other hand, in [12] a Finsler space with an (α, β)-metric is a Douglas space if and only if $B^{i j}=B^{i} y^{j}-B^{j} y^{i}$ are homegeneous polynomials in $\left(y^{i}\right)$ of degree three. Then a Finsler space of an (α, β)-metric is said to be a Douglas space of the second kind if and only if $B^{i m}{ }_{m}=(n+1) B^{i}-B^{m}{ }_{m} y^{i}$ are homogeneous polynomials in $\left(y^{i}\right)$ of degree two, where $B^{m}{ }_{m}$ is given by [8](Theoem 2.1).

The present paper is devoted to defining a Douglas space of the second kind of Finsler space with an (α, β)-metric and studying the condition that a Finsler space of an (α, β)-metric be a Douglas space of the second kind (Theorem 3.1). Next we find the condition that Finsler spaces with a Matsumoto metric $\alpha^{2} /(\alpha-\beta)$ be a Douglas space of the second kind (Theorem 4.1).

2. Preliminaries

Let $F^{n}=\left(M^{n}, L(\alpha, \beta)\right)$ be said to have an (α, β)-metric, if $L(\alpha, \beta)$ is a postively homogeneous function of (α, β) of degree one, where $\alpha^{2}=$ $a_{i j}(x) y^{i} y^{j}$ and $\beta=b_{i}(x) y^{i}$. The space $R^{n}=\left(M^{n}, \alpha\right)$ is called the Riemannian space associated with F^{n} ([2], [11]). In R^{n} we have the Christoffel symbols $\gamma_{j}{ }^{i}{ }_{k}(x)$ and the covariant differentiation $(;)$ with respect to $\gamma_{j}{ }^{i}{ }_{k}$. We shall use the symbols as follows:

$$
\begin{gathered}
b^{i}=a^{i r} b_{r}, \quad b^{2}=a^{r s} b_{r} b_{s} \\
2 r_{i j}=b_{i ; j}+b_{j ; i}, \quad 2 s_{i j}=b_{i ; j}-b_{j ; i} \\
r_{j}^{i}=a^{i r} r_{r j}, \quad s_{j}^{i}=a^{i r} s_{r j}, \quad r_{i}=b_{r} r_{i}^{r}, \quad s_{i}=b_{r} s_{i}^{r}
\end{gathered}
$$

The Berwald connection $B \Gamma=\left\{G_{j}{ }^{i}{ }_{k}, G^{i}{ }_{j}\right\}$ of F^{n} plays one of the leading roles in the present paper. Denote by $B_{j}{ }^{i}{ }_{k}$ the difference tensor [10] of $G_{j}{ }^{i}{ }_{k}$ from $\gamma_{j}{ }^{i}{ }_{k}$:

$$
G_{j}{ }^{i}{ }_{k}(x, y)=\gamma_{j}{ }^{i}{ }_{k}(x)+B_{j}{ }^{i}{ }_{k}(x, y) .
$$

With the subscript 0 , transvection by y^{i}, we have

$$
G^{i}{ }_{j}=\gamma_{0}{ }^{i}{ }_{j}+B^{i}{ }_{j} \quad \text { and } \quad 2 G^{i}=\gamma_{0}{ }^{i}{ }_{0}+2 B^{i},
$$

and then $B^{i}{ }_{j}=\dot{\partial}_{j} B^{i}$ and $B_{j}{ }^{i}{ }_{k}=\dot{\partial}_{k} B^{i}{ }_{j}$.
The geodesics of a Finsler space F^{n} are given by the system of differential equations

$$
\ddot{x}^{i} \dot{x}^{j}-\ddot{x}^{j} \dot{x}^{i}+2\left(G^{i} x^{j}-G^{j} x^{i}\right)=0, \quad y^{i}=\dot{x}^{i}
$$

in a parameter t. The functions $G^{i}(x, y)$ are given by

$$
2 G^{i}(x, y)=g^{i j}\left(y^{r} \dot{\partial}_{j} \partial_{r} F-\partial_{j} F\right)=\left\{j_{j}{ }^{i} k\right\} y^{j} y^{k},
$$

where $F=L^{2} / 2$ and $\left\{{ }_{j}{ }^{i}{ }_{k}\right\}$ are Christoffel symbols constructed from $g_{i j}(x, y)$ with respect to x^{i}.

It is shown [4] that F^{n} is a Douglas space if and only if the Douglas tensor [6]

$$
D_{i}{ }^{h}{ }_{j k}=G_{i}{ }^{h}{ }_{j k}-\frac{1}{n+1}\left(G_{i j k} y^{h}+G_{i j} \delta_{k}^{h}+G_{j k} \delta_{i}^{h}+G_{k i} \delta_{j}^{h}\right)
$$

vanishes identically, where $G_{i}{ }^{h}{ }_{j k}=\dot{\partial}_{k} G_{i}{ }^{h}{ }_{j}$ is the $h v$-curvature tensor of the Berwald connection $B \Gamma$ [11].
F^{n} is said to be a Douglas space [4] if

$$
\begin{equation*}
D^{i j}=G^{i}(x, y) y^{j}-G^{j}(x, y) y^{i} \tag{2.1}
\end{equation*}
$$

are homogeneous polynomials in $\left(y^{i}\right)$ of degree three. Differentiating (2.1) with respect to y^{h}, y^{k}, y^{p} and y^{q}, we have $D_{h k p q}^{i j}=0$, which are equivalent of $D_{h k p m}^{i m}=(n+1) D_{h}{ }^{i}{ }_{k p}=0$. Thus if a Finsler space F^{n} satisfies the condition $D_{h k p q}^{i j}=0$, which are equivalent to $D_{h k p m}^{i m}=(n+1) D_{h}{ }^{i}{ }_{k p}=0$, we call it a Douglas space. Further differentiating (2.1) by y^{m} and contacting m and j in the obtained equation, we have $D^{i m}{ }_{m}=(n+1) G^{i}-G^{m}{ }_{m} y^{i}$. Thus F^{n} is said to be a Douglas space of the second kind if and only if

$$
\begin{equation*}
D^{i m}{ }_{m}=(n+1) G^{i}-G^{m}{ }_{m} y^{i} \tag{2.2}
\end{equation*}
$$

are homogeneous polynomials in $\left(y^{i}\right)$ of degree two. Furthermore differentiating (2.2) with respect to y^{h}, y^{j} and y^{k}, we get $D_{h j k m}^{i m}=(n+1) D_{h j k}^{i}=0$. Therefore we have

Definition 2.1. If a Finsler space F^{n} satisfies the condition that $D^{i m}{ }_{m}=$ $(n+1) G^{i}-G^{m}{ }_{m} y^{i}$ be homogeneous polynomials in $\left(y^{i}\right)$ of degree two, we call it a Douglas space of the second kind.

On the other hand, a Finsler space of an (α, β)-metric is said to be a Douglas space of the second kind if and only if

$$
B^{i m}{ }_{m}=(n+1) B^{i}-B_{m}^{m} y^{i}
$$

are homogeneous polynomials in $\left(y^{i}\right)$ of degree two, where $B^{m}{ }_{m}$ is given by [8]. Furthermore differentiating the above with respect to y^{h}, y^{j} and y^{k}. we get $B_{h j k m}^{i m}=B_{h j k}^{i}=0$. Therefore if a Finsler space F^{n} with an (α, β)-metric satisfies the condition $B_{h j k m}^{i m}=B_{h j k}^{i}=0$, we call it a Douglas space of the second kind.

Since $L=L(\alpha, \beta)$ is a positively homogeneous function of α and β of degree one, we have

$$
\begin{gather*}
L_{\alpha} \alpha+L_{\beta} \beta=L, \quad L_{\alpha \alpha} \alpha+L_{\alpha \beta} \beta=0, \\
L_{\beta \alpha} \alpha+L_{\beta \beta} \beta=0, \quad L_{\alpha \alpha \alpha} \alpha+L_{\alpha \alpha \beta} \beta=-L_{\alpha \alpha}, \\
L_{\alpha}=\partial L / \partial \alpha, \quad L_{\beta}=\partial L / \partial \beta, \quad L_{\alpha \alpha}=\partial^{2} L / \partial \alpha \partial \alpha, \tag{2.3}\\
L_{\alpha \beta}=L_{\beta \alpha}=\partial^{2} L / \partial \alpha \partial \beta, \quad L_{\alpha \alpha \alpha}=\partial^{3} L / \partial \alpha \partial \alpha \partial \alpha .
\end{gather*}
$$

Here we state the following lemma and remark for the later frequent use:
Lemma $2.2[3]$. If $\alpha^{2} \equiv 0(\bmod \beta)$, that is, $a_{i j}(x) y^{i} y^{j}$ contains $b_{i}(x) y^{i}$ as a factor, then the dimension is equal to two and b^{2} vanishes. In this case we have $\delta=d_{i}(x) y^{i}$ satisfying $\alpha^{2}=\beta \delta$ and $d_{i} b^{i}=2$.

REMARK 2.3. Throughout the present paper, we say "homogeneous polynomial(s) in $\left(y^{i}\right)$ of degree $r "$ as $h p(r)$ for brevity. Thus $\gamma_{0}{ }^{i}{ }_{0}$ is $h p(2)$ and, if the Finsler space with an (α, β)-metric is a Douglas space of the second kind, then $B^{i m}{ }_{m}$ is $h p(2)$.

3. Douglas space of the second kind with (α, β)-metric

In the present section, we deal with the condition that a Finsler space with an (α, β)-metric be a Douglas space of the second kind.

Let us consider the function $G^{i}(x, y)$ of F^{n} with an (α, β)-metric. According to ([10], [11]), they are written in the form

$$
\begin{align*}
& 2 G^{i}=\gamma_{0}{ }_{0}{ }_{0}+2 B^{i}, \\
& B^{i}=(E / \alpha) y^{i}+\left(\alpha L_{\beta} / L_{\alpha}\right) s^{i}{ }_{0}-\left(\alpha L_{\alpha \alpha} / L_{\alpha}\right) C^{*}\left\{\left(y^{i} / \alpha\right)-(\alpha / \beta) b^{i}\right\}, \tag{3.1}
\end{align*}
$$

where we put

$$
\begin{aligned}
& E=\left(\beta L_{\beta} / L\right) C^{*} \\
& C^{*}=\left\{\alpha \beta\left(r_{00} L_{\alpha}-2 \alpha s_{0} L_{\beta}\right)\right\} /\left\{2\left(\beta^{2} L_{\alpha}+\alpha \gamma^{2} L_{\alpha \alpha}\right)\right\} \\
& \gamma^{2}=b^{2} \alpha^{2}-\beta^{2}
\end{aligned}
$$

Since $\gamma_{0}{ }^{i}{ }_{0}=\gamma_{j}{ }^{i}{ }_{k}(x) y^{i} y^{j}$ is $h p(2)$, by means of (2.1) and (3.1) we have as follows [12]: A Finsler space F^{n} with an (α, β)-metric is a Douglas space if and only if $B^{i j}=B^{i} y^{j}-B^{j} y^{i}$ are $h p(3)$. (2.1) gives

$$
\begin{equation*}
B^{i j}=\frac{\alpha L_{\beta}}{L_{\alpha}}\left(s^{i}{ }_{0} y^{j}-s^{j}{ }_{0} y^{i}\right)+\frac{\alpha^{2} L_{\alpha \alpha}}{\beta L_{\alpha}} C^{*}\left(b^{i} y^{j}-b^{j} y^{i}\right) . \tag{3.2}
\end{equation*}
$$

Then differentiating (3.2) by y^{m} and contracting m and j in the obtained equation, we have

$$
\begin{align*}
& B^{i m}{ }_{m} \\
& =\dot{\partial}_{m}\left(\frac{\alpha L_{\beta}}{L_{\alpha}}\right)\left(s^{i}{ }_{0} y^{m}-s^{m}{ }_{0} y^{i}\right)+\frac{\alpha L_{\beta}}{L_{\alpha}} \dot{\partial}_{m}\left(s^{i}{ }_{0} y^{m}-s^{m}{ }_{0} y^{i}\right) \\
& +\dot{\partial}_{m}\left(\frac{\alpha^{2} L_{\alpha \alpha}}{\beta L_{\alpha}}\right) C^{*}\left(b^{i} y^{m}-b^{m} y^{i}\right)+\frac{\alpha^{2} L_{\alpha \alpha}}{\beta L_{\alpha}}\left(\dot{\partial}_{m} C^{*}\right)\left(b^{i} y^{m}-b^{m} y^{i}\right) \tag{3.3}\\
& +\frac{\alpha^{2} L_{\alpha \alpha}}{\beta L_{\alpha}} C^{*} \dot{\partial}_{m}\left(b^{i} y^{m}-b^{m} y^{i}\right) .
\end{align*}
$$

Making use of (2.2) and the homogeneity of $\left(y^{i}\right)$, we obtain

$$
\begin{gather*}
\dot{\partial}_{m}\left(\frac{\alpha L_{\beta}}{L_{\alpha}}\right)\left(s^{i}{ }_{0} y^{m}-s^{m}{ }_{0} y^{i}\right)=\left(\frac{\alpha L_{\beta}}{L_{\alpha}}\right) s^{i}{ }_{0}-\frac{\alpha^{2} L L_{\alpha \alpha} s_{0}}{\left(\beta L_{\alpha}\right)^{2}} y^{i}, \tag{3.4}\\
\frac{\alpha L_{\beta}}{L_{\alpha}} \dot{\partial}_{m}\left(s^{i}{ }_{0} y^{m}-s^{m}{ }_{0} y^{i}\right)=\frac{n \alpha L_{\beta}}{L_{\alpha}} s^{i}{ }_{0},
\end{gather*}
$$

$$
\begin{align*}
\dot{\partial}_{m}\left(\frac{\alpha^{2} L_{\alpha \alpha}}{\beta L_{\alpha}}\right) & \left(b^{i} y^{m}-b^{m} y^{i}\right) C^{*} \tag{3.6}\\
& =\frac{\gamma^{2}\left\{\alpha L_{\alpha} L_{\alpha \alpha \alpha}+\left(2 L_{\alpha}-\alpha L_{\alpha \alpha}\right) L_{\alpha \alpha}\right\} C^{*}}{\left(\beta L_{\alpha}\right)^{2}} y^{i}
\end{align*}
$$

$$
\begin{equation*}
\left(\dot{\partial}_{m} C^{*}\right) y^{m}=2 C^{*}, \tag{3.7}
\end{equation*}
$$

$$
\begin{aligned}
\left(\dot{\partial}_{m} C^{*}\right) b^{m}= & \frac{1}{2 \alpha \beta \Omega^{2}}\left[\Omega \left\{\beta\left(\gamma^{2}+2 \beta^{2}\right) M+2 \alpha^{2} \beta^{2} L_{\alpha} r_{0}\right.\right. \\
& \left.-\alpha \beta \gamma^{2} L_{\alpha \alpha} r_{00}-2 \alpha\left(\beta^{3} L_{\beta}+\alpha^{2} \gamma^{2} L_{\alpha \alpha}\right) s_{0}\right\} \\
& \left.-\alpha^{2} \beta M\left\{2 b^{2} \beta^{2} L_{\alpha}-\gamma^{4} L_{\alpha \alpha \alpha}-b^{2} \alpha \gamma^{2} L_{\alpha \alpha}\right\}\right],
\end{aligned}
$$

$$
\begin{equation*}
\frac{\alpha^{2} L_{\alpha \alpha}}{\beta L_{\alpha}} C^{*} \dot{\partial}_{m}\left(b^{i} y^{m}-b^{m} y^{i}\right)=\frac{(n-1) \alpha^{2} L_{\alpha \alpha} C^{*}}{\beta L_{\alpha}} b^{i}, \tag{3.9}
\end{equation*}
$$

where

$$
\begin{align*}
& M=\left(r_{00} L_{\alpha}-2 \alpha s_{0} L_{\beta}\right), \\
& \Omega=\left(\beta^{2} L_{\alpha}+\alpha \gamma^{2} L_{\alpha \alpha}\right), \quad \text { provided that } \Omega \neq 0, \tag{3.10}\\
& Y_{i}=a_{i r} y^{r}, \quad s_{00}=0, \quad b^{r} s_{r}=0, \quad a^{i j} s_{i j}=0 .
\end{align*}
$$

Substituting (3.4), (3.5), (3.6), (3.7), (3.8) and (3.9) into (3.3), we have

$$
\begin{align*}
B_{m}^{i m}= & \frac{(n+1) \alpha L_{\beta}}{L_{\alpha}} s^{i}{ }_{0}+\frac{\alpha\left\{(n+1) \alpha^{2} \Omega L_{\alpha \alpha} b^{i}+\beta \gamma^{2} A y^{i}\right\}}{2 \Omega^{2}} r_{00} \\
& -\frac{\alpha^{2}\left\{(n+1) \alpha^{2} \Omega L_{\beta} L_{\alpha \alpha} b^{i}+B y^{i}\right\}}{L_{\alpha} \Omega^{2}} s_{0}-\frac{\alpha^{3} L_{\alpha \alpha} y^{i}}{\Omega} r_{0}, \tag{3.11}
\end{align*}
$$

where

$$
\begin{align*}
A= & \alpha L_{\alpha} L_{\alpha \alpha \alpha}+3 L_{\alpha} L_{\alpha \alpha}-3 \alpha\left(L_{\alpha \alpha}\right)^{2}, \\
B= & \alpha \beta \gamma^{2} L_{\alpha} L_{\beta} L_{\alpha \alpha \alpha}+\beta\left\{\left(3 \gamma^{2}-\beta^{2}\right) L_{\alpha}-4 \alpha \gamma^{2} L_{\alpha \alpha}\right\} L_{\beta} L_{\alpha \alpha} \tag{3.12}\\
& +\Omega L L_{\alpha \alpha} .
\end{align*}
$$

Summarizing up the above, we establish
Theorem 3.1. The necessary and sufficient condition for a Finsler space F^{n} with an (α, β)-metric to be a Douglas space of the second kind is that $B^{i m}{ }_{m}$ are homogeneous polynomials in $\left(y^{m}\right)$ of degree two, where $B^{i m}{ }_{m}$ is given by (3.11) and (3.12), provided that $\Omega \neq 0$.

4. Matsumoto space

In the present paper, we consider the condition that Matsumoto space F^{n} be a Douglas space of the second kind. The notion of this space was originally introduced by M. Matsumoto [9]. The metric of F^{n} is $L=\alpha^{2} /(\alpha-$ β). Then we get

$$
\begin{gather*}
L_{\alpha}=\alpha(\alpha-2 \beta) /(\alpha-\beta)^{2}, \quad L_{\beta}=\alpha^{2} /(\alpha-\beta)^{2}, \\
L_{\alpha \alpha}=2 \beta^{2} /(\alpha-\beta)^{3}, \quad L_{\alpha \alpha \alpha}=-6 \beta^{2} /(\alpha-\beta)^{4}, \tag{4.1}\\
\quad \Omega=\alpha \beta^{2}\left\{\left(1+2 b^{2}\right) \alpha^{2}-3 \alpha \beta\right\} /(\alpha-\beta)^{3} .
\end{gather*}
$$

Substituting (4.1) into (3.12), we have

$$
\begin{align*}
& A=-6 \alpha^{2} \beta^{3} /(\alpha-\beta)^{6} \\
& B=2 \alpha^{4} \beta^{4}\left\{\left(1-b^{2}\right) \alpha^{2}-\left(5+4 b^{2}\right) \alpha \beta+9 \beta^{2}\right\} /(\alpha-\beta)^{8} \tag{4.2}
\end{align*}
$$

Further substituting (4.1) and (4.2) into (3.11), we get

$$
\begin{align*}
\alpha(\alpha-2 \beta)\{ & \left\{\left(1+2 b^{2}\right) \alpha-3 \beta\right\}^{2} B^{i m}{ }_{m} \\
& -(n+1) \alpha^{3}\left\{\left(1+2 b^{2}\right) \alpha-3 \beta\right\}^{2} s^{i}{ }_{0} \\
& -(\alpha-2 \beta)\left[(n+1) \alpha^{2}\left\{\left(1+2 b^{2}\right) \alpha-3 \beta\right\} b^{i}-3 \gamma^{2} y^{i}\right] r_{00} \\
& +2 \alpha^{2}\left[(n+1) \alpha^{2}\left\{\left(1+2 b^{2}\right) \alpha-3 \beta\right\} b^{i}\right. \tag{4.3}\\
& \left.+\left\{\left(1-b^{2}\right) \alpha^{2}-\left(5+4 b^{2}\right) \alpha \beta+9 \beta^{2}\right\} y^{i}\right] s_{0} \\
& +2 \alpha^{2}(\alpha-2 \beta)\left\{\left(1+2 b^{2}\right) \alpha-3 \beta\right\} y^{i} r_{0}=0 .
\end{align*}
$$

Suppose that F^{n} be a Douglas space of the second kind, that is, $B^{i m}{ }_{m}$ be $h p(2)$. Since α is irrational in $\left(y^{i}\right),(4.3)$ is divided two equations as follows:

$$
\begin{align*}
& \alpha^{2}\left\{\left(1+2 b^{2}\right)^{2} \alpha^{2}\right.\left.+3\left(7+8 b^{2}\right) \beta^{2}\right\} B^{i m}{ }_{m}+6(n+1)\left(1+2 b^{2}\right) \alpha^{4} \beta s^{i}{ }_{0} \\
&-\left[(n+1) \alpha^{2}\left\{\left(1+2 b^{2}\right) \alpha^{2}+6 \beta^{2}\right\} b^{i}+6 \beta \gamma^{2} y^{i}\right] r_{00} \tag{4.4}\\
&-2 \alpha^{2}\left[3(n+1) \alpha^{2} \beta b^{i}-\left\{\left(1-b^{2}\right) \alpha^{2}+9 \beta^{2}\right\} y^{i}\right] s_{0} \\
&+2 \alpha^{2}\left\{\left(1+2 b^{2}\right) \alpha^{2}+6 \beta^{2}\right\} y^{i} r_{0}=0, \\
& \beta\left\{4\left(1+2 b^{2}\right)\left(2+b^{2}\right) \alpha^{2}+18 \beta^{2}\right\} B^{i m}{ }_{m} \\
&+(n+1) \alpha^{2}\left\{\left(1+2 b^{2}\right)^{2} \alpha^{2}+9 \beta^{2}\right\} s^{i}{ }_{0} \\
&-\left\{(n+1)\left(5+4 b^{2}\right) \alpha^{2} \beta b^{i}+3 \gamma^{2} y^{i}\right\} r_{00} \tag{4.5}\\
&-\alpha^{2}\left\{2(n+1)\left(1+2 b^{2}\right) \alpha^{2} b^{i}-2\left(5+4 b^{2}\right) \beta y^{i}\right\} s_{0} \\
&+2\left(5+4 b^{2}\right) \alpha^{2} \beta y^{i} r_{0}=0 .
\end{align*}
$$

Since only the term $6 \beta^{3} y^{i} r_{00}$ of (4.4) seemingly does not contain α^{2}, we must have $h p(4) V_{4}^{i}$ such that $\beta^{3} y^{i} r_{00}=\alpha^{2} V_{4}^{i}$. First we deal with the general case $\alpha^{2} \not \equiv 0(\bmod \beta)$, that is, $n>2$. Then there exists a function $f(x)$ such that

$$
\begin{equation*}
r_{00}=\alpha^{2} f(x) ; \quad r_{i j}=a_{i j} f(x) \tag{4.6}
\end{equation*}
$$

Transvection by $b^{i} y^{j}$ leads to

$$
\begin{equation*}
r_{0}=\beta f(x) ; \quad r_{j}=b_{j} f(x) \tag{4.7}
\end{equation*}
$$

Since the terms $3 \beta^{2}\left(6 \beta B^{i m}{ }_{m}+y^{i} r_{00}\right)$ of (4.5) seemingly do not contain α^{2}, there must exist $h p(3) U^{i}{ }_{3}$ such that

$$
\begin{equation*}
3 \beta^{2}\left(6 \beta B^{i m}{ }_{m}+y^{i} r_{00}\right)=\alpha^{2} U_{3}^{i} \tag{4.8}
\end{equation*}
$$

The above shows there exists $h p(1) U^{i}=U^{i}{ }_{k}(x) y^{k}$ satisfying $U^{i}{ }_{3}=\beta^{2} U^{i}$, and hence (4.8) is redeced to

$$
3\left(6 \beta B^{i m}{ }_{m}+y^{i} r_{00}\right)=\alpha^{2} U^{i}
$$

Substituting (4.6) into (4.8'), we have $18 \beta B^{i m}{ }_{m}=\alpha^{2}\left(U^{i}-3 f(x) y^{i}\right)$. Thus from $\alpha^{2} \not \equiv 0(\bmod \beta)$ there exists a function $g^{i}(x)$ such that $U^{i}-3 f(x) y^{i}=$ $18 g^{i}(x) \beta$, where $g^{i}=g^{i}(x)$, which gives

$$
B_{m}^{i m}=\alpha^{2} g^{i}(x)
$$

Substituting (4.6) and (4.8 ${ }^{\prime \prime}$) into (4.4), we have

$$
\begin{align*}
\alpha^{2}\left\{\left(1+2 b^{2}\right) \alpha^{2}\right. & \left.+3\left(7+8 b^{2}\right) \beta^{2}\right\} g^{i}(x)+6(n+1)\left(1+2 b^{2}\right) \alpha^{2} \beta s^{i}{ }_{0} \\
& -f(x)\left[(n+1) \alpha^{2}\left\{\left(1+2 b^{2}\right) \alpha^{2}+6 \beta^{2}\right\} b^{i}+6 \beta \gamma^{2} y^{i}\right] \\
& -2\left[3(n+1) \alpha^{2} \beta b^{i}-\left\{\left(1-b^{2}\right) \alpha^{2}+9 \beta^{2}\right\} y^{i}\right] s_{0} \tag{4.9}\\
& +2 f(x) \beta\left\{\left(1+2 b^{2}\right) \alpha^{2}+6 \beta^{2}\right\} y^{i}=0 .
\end{align*}
$$

The terms $18 \beta^{2}\left(f(x) \beta+s_{0}\right) y^{i}$ of (4.9) seemingly do not contain α^{2}. Thus we can put $18 \beta^{2}\left(f(x) \beta+s_{0}\right) y^{i}=\alpha^{2} V^{i}{ }_{2}$, where $V^{i}{ }_{2}$ is $h p(2)$. If $V^{i}{ }_{2}=$ $h^{i}(x) \beta^{2}$, then we have $18\left(f(x) \beta+s_{0}\right) y^{i}=h^{i}(x) \alpha^{2}$. Transvection by b_{i}
yields $18\left(f(x) \beta+s_{0}\right)=h_{b} \alpha^{2}$, where $b_{i} h^{i}=h_{b}$. Thus we obtain $h_{b}=0$, that is, $f(x) \beta+s_{0}=0$, which leads to

$$
\begin{equation*}
s_{0}=-f(x) \beta . \tag{4.10}
\end{equation*}
$$

Substituting (4.6), (4.7), (4.8 ${ }^{\prime \prime}$) and (4.10) into (4.5), we have

$$
\begin{align*}
\beta\left\{4\left(1+2 b^{2}\right)\right. & \left.\left(2+b^{2}\right) \alpha^{2}+18 \beta^{2}\right\} g^{i} \\
& +(n+1)\left\{\left(1+2 b^{2}\right)^{2} \alpha^{2}+9 \beta^{2}\right\} s^{i}{ }_{0} \\
& -f(x)\left\{(n+1)\left(5+4 b^{2}\right) \alpha^{2} \beta b^{i}+3 \gamma^{2} y^{i}\right\} \tag{4.11}\\
& +f(x)\left\{2(n+1)\left(1+2 b^{2}\right) \alpha^{2} b^{i}\right. \\
& \left.-2\left(5+4 b^{2}\right) \beta y^{i}\right\} \beta+2 f(x)\left(5+4 b^{2}\right) \beta^{2} y^{i}=0 .
\end{align*}
$$

Only the term $3\left(6 \beta g^{i}+3(n+1) s^{i}{ }_{0}+f(x) y^{i}\right) \beta^{2}$ of (4.11) seemingly does not contain α^{2}, and hence we must have $h p(1) V^{i}$ such that $3\left(6 \beta g^{i}+3(n+\right.$ 1) $\left.s^{i}{ }_{0}+f(x) y^{i}\right) \beta^{2}=\alpha^{2} V^{i}$. From $\alpha^{2} \not \equiv 0(\bmod \beta)$ it follows that V^{i} must vanish, and hence

$$
\begin{equation*}
3(n+1) s^{i}{ }_{0}=-\left(6 \beta g^{i}+f(x) y^{i}\right) . \tag{4.12}
\end{equation*}
$$

Differentiating (4.12) with respect to y^{j} and transvecting the obtained equation by $a_{i m}$, we have $3(n+1) s_{m j}=-\left(6 g_{m} b_{j}+f(x) a_{m j}\right)$, where $a_{i m} g^{i}=g_{m}$. Hence $3(n+1)\left(s_{m j}-s_{j m}\right)=-6\left(g_{m} b_{j}-g_{j} b_{m}\right)$, which imply

$$
\begin{equation*}
s_{i j}=\frac{1}{n+1}\left(b_{i} g_{j}-b_{j} g_{i}\right) . \tag{4.13}
\end{equation*}
$$

Transvection by $b^{i} y^{j}$ yields $(n+1) s_{0}=b^{2} W-g_{b} \beta$, where we put $W=g_{j} y^{j}$ and $g_{b}=b^{i} g_{i}$. From (4.10) we obtain $b^{2} W=\left\{g_{b}-(n+1) f(x)\right\} \beta ; b^{2} g_{j}=$ $\left\{g_{b}-(n+1) f(x)\right\} b_{j}$. Tansvection by b^{j} leads to $f(x)=0$. Substituting the above into (4.6), we have

$$
\begin{equation*}
r_{00}=0 ; \quad r_{i j}=0 . \tag{4.14}
\end{equation*}
$$

Transvecting (4.13) by $b^{i} b^{j}$, we have $(n+1) s_{0}=b^{2} W-g_{b} \beta$. Thus from $s_{0}=0$, we obtain $b^{2} W=g_{b} \beta$.

Conversely substituting $f(x)=0,(4.7),(4.10),(4.13)$ and (4.14) into (4.3), we have $(\alpha-2 \beta) B^{i m}{ }_{m}=b^{2} \alpha^{2}\left(b^{i} W-g^{i} \beta\right)$. Transvection by Y_{i} leads to $B^{0 m}{ }_{m}=0$, that is, $B^{i m}{ }_{m}$ is a Douglas space of the second kind.

Next we are concerned with $\alpha^{2} \equiv 0(\bmod \beta)$, that is, Lemma 2.2 shows that $n=2, \alpha^{2}=\beta \delta, \delta=d_{i}(x) y^{i}, b^{2}=0$ and $b^{i} d_{i}=2$. (4.4) and (4.5) are reduced in the forms respectively

$$
\begin{align*}
& \delta(21 \beta+\delta) B_{m}^{i m}+18 \beta \delta^{2} s^{i}{ }_{0}-3\left\{\delta(6 \beta+\delta) b^{i}-2 \beta y^{i}\right\} r_{00} \\
& -2 \delta\left\{9 \beta \delta b^{i}-(9 \beta+\delta) y^{i}\right\} s_{0}+2 \delta(6 \beta+\delta) y^{i} r_{0}=0, \tag{4.15}
\end{align*}
$$

$$
\begin{align*}
& 2(9 \beta+4 \delta) B^{i m}{ }_{m}+3 \delta(9 \beta+\delta) s^{i}{ }_{0}-3\left(5 \delta b^{i}-y^{i}\right) r_{00} \\
& -2 \delta\left(3 \delta b^{i}-5 y^{i}\right) s_{0}+10 \delta y^{i} r_{0}=0 . \tag{4.16}
\end{align*}
$$

Since only the term $6 \beta y^{i} r_{00}$ of (4.15) seemingly does not contain δ, there must exist $h p(1) V=V_{i}(x) y^{i}$ such that

$$
\begin{equation*}
r_{00}=\delta V ; \quad 2 r_{i j}=d_{i} V_{j}+d_{j} V_{i} . \tag{4.17}
\end{equation*}
$$

Transvection by $b^{i} y^{j}$ gives

$$
\begin{equation*}
2 r_{0}=2 V+V_{b} \delta, \quad V_{b}=b^{i} V_{i} . \tag{4.18}
\end{equation*}
$$

Paying attention to the terms of (4.16) which seeming do not contain δ, we can put

$$
18 \beta B^{i m}{ }_{m}+3 y^{i} r_{00}=\delta V^{i}{ }_{2},
$$

where $V^{i}{ }_{2}$ is $h p(2)$. Substitution by (4.17) leads to

$$
\begin{equation*}
B^{i m}{ }_{m}=\delta U^{i}, \tag{4.19}
\end{equation*}
$$

where U^{i} is $h p(1)$ and $V^{i}{ }_{2}-3 y^{i} V=18 \beta U^{i}$. Substituting (4.17), (4.18) and (4.19) into (4.15), we obtain

$$
\begin{align*}
& \delta(21 \beta+\delta) U^{i}+18 \beta \delta s^{i}{ }_{0}-3\left\{\delta(6 \beta+\delta) b^{i}-2 \beta y^{i}\right\} V \\
& -2\left\{9 \beta \delta b^{i}-(9 \beta+\delta) y^{i}\right\} s_{0}+(6 \beta+\delta)\left(2 V+V_{b} \delta\right) y^{i}=0 . \tag{4.20}
\end{align*}
$$

Since the terms $18 \beta y^{i}\left(V+s_{0}\right)$ of (4.20) seemingly do not contain δ, there must exist a function $h(x)$ such that

$$
\begin{equation*}
s_{0}=h(x) \delta-V \tag{4.21}
\end{equation*}
$$

Further substituting (4.17), (4.18), (4.19) and (4.21) into (4.16), we have

$$
\begin{align*}
& 2(9 \beta+4 \delta) U^{i}+3(9 \beta+\delta) s^{i}{ }_{0}-3\left\{5 \delta b^{i}-y^{i}\right\} V \\
& -2\left(3 \delta b^{i}-5 y^{i}\right)(h(x) \delta-V)+5\left(2 V+V_{b} \delta\right) y^{i}=0 . \tag{4.22}
\end{align*}
$$

Since the dimension is equal to two and (β, δ) are independant pairs, we can put $V=p(x) \beta+q(x) \delta$ and $U^{i}=h^{i}(x) \beta+k^{i}(x) \delta$ where $p(x), q(x), h^{i}(x)$ and $k^{i}(x)$ are scalar functions. Substitution by $V=p(x) \beta+q(x) \delta$ and the terms $3 \beta\left\{6 U^{i}+9 s^{i}{ }_{0}+p(x) y^{i}\right\}$ of the obtained equation seemingly do not contain δ. Thus there exists function $g^{i}(x)$ satisfying $9 s^{i}{ }_{0}+6 U^{i}+p(x) y^{i}=\delta g^{i}(x)$. Paying attention to $U^{i}=h^{i} \beta+k^{i} \delta$, we obtain

$$
\begin{align*}
& 9 s^{i}{ }_{0}=g^{i}(x) \delta-p(x) y^{i}-6 h^{i}(x) \beta ; \\
& 9 s^{i}{ }_{j}=g^{i}(x) d_{j}-p(x) \delta_{j}^{i}-6 h^{i}(x) b_{j} . \tag{4.23}
\end{align*}
$$

Paying attention to $2 a_{i j}=b_{i} d_{j}+b_{j} d_{i}$ and transvecting (4.23) by $a_{i m}$, we have

$$
\begin{equation*}
9 s_{i j}=\left\{g_{i}-\frac{1}{2} p(x) b_{i}\right\} d_{j}-\left\{\frac{1}{2} p(x) d_{i}+6 h_{i}\right\} b_{j}, \tag{4.24}
\end{equation*}
$$

where $a_{i m} g^{i}=g_{m}$ and $a_{i m} h^{i}=h_{m}$.
Transvecting (4.24) by $b^{i} y^{j}$, we have

$$
9 s_{0}=g_{b} \delta-\left(p(x)+6 h_{b}\right) \beta,
$$

where we put $b^{i} g_{i}=g_{b}$ and $b^{i} h_{i}=h_{b}$. Substituting (4.21) into the above, we obtain

$$
\begin{equation*}
9 V=\left(9 h(x)-g_{b}\right) \delta+\left(p(x)+6 h_{b}\right) \beta . \tag{4.25}
\end{equation*}
$$

Summarizing up the above, we obtain
Theorem 4.1. A Matsumoto space with the metric $L=\alpha^{2} /(\alpha-\beta)$ is a Douglas space of the second kind, if and only if
(1) $\alpha^{2} \not \equiv 0(\bmod \beta):(4.13)$ and (4.14) are satisfied, where $b^{2} W=g_{b} \beta$,
(2) $\alpha^{2} \equiv 0(\bmod \beta): n=2$ and (4.17) and (4.24) are satisfied, where $\alpha^{2}=\beta \delta, \delta=d_{i}(x) y^{i}$, and $p(x), h^{i}(x), g^{i}(x)$ are scalar functions and V is given by (4.25).

References

[1] T. Aikou, M. Hashiguchi and K. Yamauchi, On Matsumoto's Finsler space with time measure, Rep. Fac. Sci. Kagoshima Univ., (Math., Phys. \& Chem.), 23 (1990), 1-12.
[2] P. L. Antonelli, R. S. Ingraden and M. Matsumoto, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer Acad. Publ., Dordrecht, 1993.
[3] S. Bácsó and M. Matsumoto, Projective changes between Finsler spaces with (α, β) metric, Tensor, N. S. 55 (1994), 252-257.
[4] S. Bácsó and M. Matsumoto, On Finsler spaces of Douglas type. A generalization of the notion of Berwald space, Publ. Math. Debrecen, 51 (1997), 385-406.
[5] S. Bácsó and B. Szilágyi, On a weakly-Berwald space of Kropina type, Mathematica Pannonica, 13 (2002), 91-95.
[6] L. Berwald, On Cartan and Finsler geometries, III, Two-dimensional Finsler spaces with rectilinear extremal, Ann. of Math. 42 (1941), 84-112.
[7] M. Hashiguchi, S. Hōjō and M. Matsumoto, Landsberg spaces of dimension two with (α, β)-metric, Tensor, N. S. 57 (1996), 145-153.
[8] I. Y. Lee, On weakly-Berwald spaces of (α, β)-metric, to appear in J. Korean Math. Soc.
[9] M. Matsumoto, A slope of a mountain is a Finsler surface with respect to a time measure, J. Math. Kyoto Univ. 29 (1989), 17-25.
[10] M. Matsumoto, The Berwald connection of a Finsler space with an (α, β)-metric, Tensor, N. S. 50 (1991), 18-21.
[11] M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. On Math. Phys. 31 (1992), 43-83.
[12] M. Matsumoto, Finsler spaces with (α, β)-metric of Douglas type, Tensor, N. S. 60 (1998), 123-134.
[13] H. S. Park, I. Y. Lee and C. K. Park, Finsler space with the general approximate Matsumoto metric, Indian J. pure appl. Math. 34 (2003), no. 1, 59-77.
*
Department of Mathematics
Kyungsung University
Busan 608-736, Republic of Korea
E-mail: iylee@ks.ac.kr

[^0]: This paper is supported by Kyungsung University Research Grant in 2008.
 Received March 27, 2008; Accepted May 21, 2008.
 2000 Mathematics Subject Classifications: Primary 53B40.
 Key words and phrases: Berwald space, Douglas space, Dougals space of the second kind, Finsler space, Landsberg space, Matsumoto metric.

