• 제목/요약/키워드: Finite operator

검색결과 212건 처리시간 0.022초

LERAY-SCHAUDER DEGREE THEORY APPLIED TO THE PERTURBED PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제17권2호
    • /
    • pp.219-231
    • /
    • 2009
  • We show the existence of at least four solutions for the perturbed parabolic equation with Dirichlet boundary condition and periodic condition when the nonlinear part cross two eigenvalues of the eigenvalue problem of the Laplace operator with boundary condition. We obtain this result by using the Leray-Schauder degree theory, the finite dimensional reduction method and the geometry of the mapping. The main point is that we restrict ourselves to the real Hilbert space instead of the complex space.

  • PDF

Strong Convergence Theorems for Common Points of a Finite Family of Accretive Operators

  • Jeong, Jae Ug;Kim, Soo Hwan
    • Kyungpook Mathematical Journal
    • /
    • 제59권3호
    • /
    • pp.445-464
    • /
    • 2019
  • In this paper, we propose a new iterative algorithm generated by a finite family of accretive operators in a q-uniformly smooth Banach space. We prove the strong convergence of the proposed iterative algorithm. The results presented in this paper are interesting extensions and improvements of known results of Qin et al. [Fixed Point Theory Appl. 2014(2014): 166], Kim and Xu [Nonlinear Anal. 61(2005), 51-60] and Benavides et al. [Math. Nachr. 248(2003), 62-71].

RELATIONSHIPS AMONG CHARACTERISTIC FINITE ELEMENT METHODS FOR ADVECTION-DIFFUSION PROBLEMS

  • CHEN, ZHANGXIN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제6권1호
    • /
    • pp.1-15
    • /
    • 2002
  • Advection-dominated transport problems possess difficulties in the design of numerical methods for solving them. Because of the hyperbolic nature of advective transport, many characteristic numerical methods have been developed such as the classical characteristic method, the Eulerian-Lagrangian method, the transport diffusion method, the modified method of characteristics, the operator splitting method, the Eulerian-Lagrangian localized adjoint method, the characteristic mixed method, and the Eulerian-Lagrangian mixed discontinuous method. In this paper relationships among these characteristic methods are examined. In particular, we show that these sometimes diverse methods can be given a unified formulation. This paper focuses on characteristic finite element methods. Similar examination can be presented for characteristic finite difference methods.

  • PDF

SHARP Lp→Lr ESTIMATES OF RESTRICTED AVERAGING OPERATORS OVER CURVES ON PLANES IN FINITE FIELDS

  • Koh, Doowon
    • 충청수학회지
    • /
    • 제28권2호
    • /
    • pp.251-259
    • /
    • 2015
  • Let $\mathbb{F}^d_q$ be a d-dimensional vector space over a finite field $\mathbb{F}^d_q$ with q elements. We endow the space $\mathbb{F}^d_q$ with a normalized counting measure dx. Let ${\sigma}$ be a normalized surface measure on an algebraic variety V contained in the space ($\mathbb{F}^d_q$, dx). We define the restricted averaging operator AV by $A_Vf(X)=f*{\sigma}(x)$ for $x{\in}V$, where $f:(\mathbb{F}^d_q,dx){\rightarrow}\mathbb{C}$: In this paper, we initially investigate $L^p{\rightarrow}L^r$ estimates of the restricted averaging operator AV. As a main result, we obtain the optimal results on this problem in the case when the varieties V are any nondegenerate algebraic curves in two dimensional vector spaces over finite fields. The Fourier restriction estimates for curves on $\mathbb{F}^2_q$ play a crucial role in proving our results.

PERFORMANCE OF RICHARDSON EXTRAPOLATION ON SOME NUMERICAL METHODS FOR A SINGULARLY PERTURBED TURNING POINT PROBLEM WHOSE SOLUTION HAS BOUNDARY LAYERS

  • Munyakazi, Justin B.;Patidar, Kailash C.
    • 대한수학회지
    • /
    • 제51권4호
    • /
    • pp.679-702
    • /
    • 2014
  • Investigation of the numerical solution of singularly perturbed turning point problems dates back to late 1970s. However, due to the presence of layers, not many high order schemes could be developed to solve such problems. On the other hand, one could think of applying the convergence acceleration technique to improve the performance of existing numerical methods. However, that itself posed some challenges. To this end, we design and analyze a novel fitted operator finite difference method (FOFDM) to solve this type of problems. Then we develop a fitted mesh finite difference method (FMFDM). Our detailed convergence analysis shows that this FMFDM is robust with respect to the singular perturbation parameter. Then we investigate the effect of Richardson extrapolation on both of these methods. We observe that, the accuracy is improved in both cases whereas the rate of convergence depends on the particular scheme being used.

COMPARISON OF NUMERICAL METHODS (BI-CGSTAB, OS, MG) FOR THE 2D BLACK-SCHOLES EQUATION

  • Jeong, Darae;Kim, Sungki;Choi, Yongho;Hwang, Hyeongseok;Kim, Junseok
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제21권2호
    • /
    • pp.129-139
    • /
    • 2014
  • In this paper, we present a detailed comparison of the performance of the numerical solvers such as the biconjugate gradient stabilized, operator splitting, and multigrid methods for solving the two-dimensional Black-Scholes equation. The equation is discretized by the finite difference method. The computational results demonstrate that the operator splitting method is fastest among these solvers with the same level of accuracy.