KYUNGPOOK Math. J. 59(2019), 445-464
https://doi.org/10.5666/KMJ.2019.59.3.445
pISSN 1225-6951 eISSN 0454-8124
(c) Kyungpook Mathematical Journal

Strong Convergence Theorems for Common Points of a Finite Family of Accretive Operators

Jae Ug Jeong* and Soo Hwan Kim
Department of Mathematics, Dongeui University, Pusan 47340, South Korea
e-mail: jujeong@deu.ac.kr and sh-kim@deu.ac.kr

Abstract. In this paper, we propose a new iterative algorithm generated by a finite family of accretive operators in a q-uniformly smooth Banach space. We prove the strong convergence of the proposed iterative algorithm. The results presented in this paper are interesting extensions and improvements of known results of Qin et al. [Fixed Point Theory Appl. 2014(2014): 166], Kim and Xu [Nonlinear Anal. 61(2005), 51-60] and Benavides et al. [Math. Nachr. 248(2003), 62-71].

1. Introduction

In the real world, many important problems, have reformulations which require finding zero points of some nonlinear operators. This is true of such problems as inverse problems, transportation problems, evolution equations, complementarity problems, mini-max problems, variational inequalities and optimization problems (see $[7,10,11,15,19,27]$ and the references therein). In the past several decades, many authors have studied the existence and convergence of different schemes for finding zero points for maximal monotone operators (see [20, 23, 24] and the references therein).

Let E be a real Banach space with dual space E^{*}, and C be a nonempty closed convex subset of E. Recall that a mapping $T: C \rightarrow C$ is said to be nonexpansive if

$$
\|T x-T y\| \leq\|x-y\|
$$

for all $x, y \in C$. We denote by $\operatorname{Fix}(T)$ the set of fixed points of T, i.e., $\operatorname{Fix}(T)=$ $\{x \in C: T x=x\}$. Let I denote the identity operator on E. An operator $A \subset E \times E$ with domain $D(A)=\{z \in E: A z \neq \phi\}$ and range $R(A)=\cup\{A z: z \in D(A)\}$ is said to be accretive if for $t>0$ and $x, y \in D(A),\|x-y\| \leq\|x-y+t(u-v)\|$ for every $u \in A x, v \in A y$. It follows from Kato [13] that A is accretive if and only if

* Corresponding Author.

Received March 18, 2016; revised June 25, 2019; accepted August 5, 2019.
2010 Mathematics Subject Classification: 47H05, 47H09, 47J25, 65J15.
Key words and phrases: accretive operator, nonexpansive mapping, zero point, resolvent operator.
for $x, y \in D(A)$, there exists $j_{q}(x-y)$ such that $\left\langle u-v, j_{q}(x-y)\right\rangle \geq 0$. An accretive operator is said to be m-accretive if $R(I+r A)=E$ for all $r>0$. In a real Hilbert space H, an operator A is m-accretive if and only if A is maximal monotone.

One of the major problems in the theory of accretive operators is as follows: Find a point $z \in E$ such that

$$
0 \in A z
$$

where A is an operator from E into E^{*}. A point $z \in E$ is called a zero point of A. The set of zero points of the operator A is denoted by $A^{-1}(0)$. If A is m-accretive, then the solution set $A^{-1}(0)$ is closed and convex. For an accretive operator A, we can define a nonexpansive single-valued mapping $J_{r}: R(I+r A) \rightarrow D(A)$ by $J_{r}=(I+r A)^{-1}$ for each $r>0$, which is called the resolvent of A.

A well-known method for solving zeros of maximal monotone operator is a proximal point algorithm. Let A be a maximal monotone operator in a Hilbert space H. The proximal point algorithm generates, for starting $x_{1}=x \in H$, a sequence $\left\{x_{n}\right\}$ in H by

$$
\begin{equation*}
x_{n+1}=J_{\lambda_{n}} x_{n}, \quad \forall n \geq 1 \tag{1.1}
\end{equation*}
$$

where $\left\{\lambda_{n}\right\} \subset(0, \infty)$ and $J_{\lambda_{n}}=\left(I+\lambda_{n} A\right)^{-1}$. Rockafellar [24] proved that the sequence $\left\{x_{n}\right\}$ defined by (1.1) converges weakly to an element of $A^{-1}(0)$.

Recently, many authors have investigated the strong convergence of a proximal point algorithm. Strong convergence theorems for zero points of accretive operators were established in $[12,14,22,29]$ and the references therein.

In 2003, Benavides et al. [4] proposed one iterative scheme for approaching a zero of an m-accretive operator in a uniformly convex Banach space as follows:

$$
\left\{\begin{array}{l}
x_{0} \in C \tag{1.2}\\
x_{n+1}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) J_{\lambda_{n}} x_{n}, \quad \forall n \geq 0
\end{array}\right.
$$

Recently, Kim and Xu [16] presented the following iteration scheme in a uniformly smooth Banach space:

$$
\left\{\begin{array}{l}
x_{0}, u \in E \tag{1.3}\\
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) J_{\lambda_{n}} x_{n}, \quad \forall n \geq 0
\end{array}\right.
$$

And they proved the sequence $\left\{x_{n}\right\}$ converges strongly to a zero of an m-accretive operator.

In 2014, Qin et al. [21] studied the problem of modifying the proximal point algorithm to have strong convergence for the sum of two accretive operators in a real q-uniformly smooth Banach space. To be more precise, they considered the following iterative process:

$$
\left\{\begin{array}{l}
x_{0} \in C \tag{1.4}\\
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\beta_{n} J_{\lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}+e_{n}\right)+\gamma_{n} f_{n}, \quad \forall n \geq 0
\end{array}\right.
$$

They proved that the sequence $\left\{x_{n}\right\}$ generated in the above iterative process converges strongly to $x=\operatorname{Proj}_{(A+B)^{-1}(0)} f(x)$.

Inspired and motivated by the corresponding convergence results of (1.2)-(1.4), we are concerned with the problem of finding a common zero point of a family of accretive operators based on the proximal point algorithm. A strong convergence theorem is established in a real q-uniformly smooth Banach space.The results obtained in this paper improve and extend the results of Qin et al. [21], Kim and Xu [16], Benavides et al. [4] and some other results in this direction.

2. Preliminaries

Let C be a subset of a real Banach space E. Let E^{*} be a dual space of E and $q>1$ be a real number. We recall that the generalized duality mapping $J_{q}: E \rightarrow 2^{E^{*}}$ is defined by

$$
J_{q}(x)=\left\{x^{*} \in E^{*}:\left\langle x, x^{*}\right\rangle=\|x\|^{q},\left\|x^{*}\right\|=\|x\|^{q-1}\right\}, \quad \forall x \in E .
$$

In particular, $J=J_{2}$ is called a normalized duality mapping and $J_{q}(x)=$ $\|x\|^{q-2} J_{2}(x)$ for $x \neq 0$. We know that J_{q} is single-valued if E is smooth, which is denoted by j_{q}. If E is a Hilbert space, then $J=I$, the identity mapping.

Let $S(E)=\{x \in E:\|x\|=1\}$. A Banach space E is called uniformly smooth if $\frac{\rho_{E}(t)}{t} \rightarrow 0$ as $t \rightarrow 0$, where $\rho_{E}:[0, \infty) \rightarrow[0, \infty)$ is the modulus of smoothness of E which is defined by

$$
\rho_{E}(t)=\sup \left\{\frac{1}{2}(\|x+y\|+\|x-y\|)-1: x \in S(E),\|y\| \leq t\right\} .
$$

A Banach space E is said to be q-uniformly smooth if there exists a constant $c>0$ such that $\rho_{E}(t) \leq c t^{q}$. If E is q-uniformly smooth, then $q \leq 2$ and E is uniformly smooth. It is shown in [8] that there is no Banach space which is q-uniformly smooth with $q>2$. Hilbert spaces, L^{p} (or l^{p}) spaces and Sobolev space W_{m}^{p}, where $p \geq 2$, are 2 -uniformly smooth.

Definition 2.1. A mapping $T: C \rightarrow E$ is said to be
(1) η-strongly accretive if for all $x, y \in C$, there exists $\eta>0$ and $j_{q}(x-y) \in$ $J_{q}(x-y)$ such that

$$
\left\langle T x-T y, j_{q}(x-y)\right\rangle \geq \eta\|x-y\|^{q}
$$

(2) μ-inverse strongly accretive if for all $x, y \in C$, there exists $\mu>0$ and $j_{q}(x-$ $y) \in J_{q}(x-y)$ such that

$$
\left\langle T x-T y, j_{q}(x-y)\right\rangle \geq \mu\|T x-T y\|^{q}
$$

(3) L-Lipschitzian if for all $x, y \in C$, there exists $L>0$ such that

$$
\|T x-T y\| \leq L\|x-y\|
$$

(4) κ-contractive if for all $x, y \in C$, there exists a constant $\kappa \in(0,1)$ such that

$$
\|T x-T y\| \leq \kappa\|x-y\|
$$

Let D be a nonempty subset of C. Let $Q: C \rightarrow D$ be a mapping. Then Q is said to be sunny if $Q(t x+(1-t) Q x)=Q x$ whenever $t x+(1-t) Q x \in C$ for $x \in C$ and $t \geq 0$. Q is called a retraction if $Q x=x$ for all $x \in D$. Next we give the following lemmas which play an important role in this article.
Lemma 2.1.([18]) Let $q>1$. Then the following inequality holds:

$$
a b \leq \frac{1}{q} a^{q}+\frac{q-1}{q} b^{\frac{q}{q-1}}
$$

for arbitrary positive real numbers a, b.
Lemma 2.2. Let $q>1$. For any two nonnegative real numbers a and b, we have

$$
(a+b)^{q} \leq 2^{q}\left(a^{q}+b^{q}\right)
$$

Lemma 2.3.([28]) Let E be a real q-uniformly smooth Banach space. Then the following inequality holds:

$$
\|x+y\|^{q} \leq\|x\|^{q}+q\left\langle y, j_{q}(x)\right\rangle+K_{q}\|y\|^{q}, \quad \forall x, y \in E
$$

where K_{q} is some fixed positive constant.
Lemma 2.4.([3]) Let E be a Banach space and A be an m-accretive operator. For $\lambda>0, \mu>0$ and $x \in E$, we have

$$
J_{\lambda} x=J_{\mu}\left(\frac{\mu}{\lambda} x+\left(1-\frac{\mu}{\lambda}\right) J_{\lambda} x\right)
$$

where $J_{\lambda}=(I+\lambda A)^{-1}$ and $J_{\mu}=(I+\mu A)^{-1}$.
Lemma 2.5.([25]) Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences in a Banach space E and $\left\{\beta_{n}\right\}$ be a sequence in $(0,1)$ with $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1$. Suppose that $x_{n+1}=\left(1-\beta_{n}\right) y_{n}+\beta_{n} x_{n}$ for every $n \geq 1$ and

$$
\limsup _{n \rightarrow \infty}\left(\left\|y_{n+1}-y_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

Then $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0$.
Lemma 2.6.([20]) Let C be a nonempty closed convex subset of a real uniformly smooth Banach space E. Let $f: C \rightarrow C$ be a contractive mapping and let $T: C \rightarrow C$ be a nonexpansive mapping. For each $t \in(0,1)$, let x_{t} be the unique solution of the equation $x=t f(x)+(1-t) T x$. Then $\left\{x_{t}\right\}$ converges strongly to a fixed point $\bar{x}=Q_{F i x(T)} f(\bar{x})$.

Lemma 2.7.([2]) Let E be a real Banach space and let C be a nonempty closed and convex subset of E. Let $A: C \rightarrow E$ be a single-valued operator and let $M: E \rightarrow 2^{E}$ be an m-accretive operator. Then $\operatorname{Fix}\left(J_{r}(I-r A)\right)=(A+M)^{-1}(0)$, where $J_{r}=$ $(I+r M)^{-1}$.

Lemma 2.8.([17]) Let $\left\{a_{n}\right\}$ be a sequence of nonnegative real numbers such that $a_{n+1} \leq\left(1-t_{n}\right) a_{n}+b_{n}+c_{n}$, where $\left\{c_{n}\right\}$ is a sequence of nonnegative real numbers, $\left\{t_{n}\right\} \subset(0,1)$ and $\left\{b_{n}\right\}$ is a number sequence. Assume that $\sum_{n=0}^{\infty} t_{n}=\infty$, $\limsup \lim _{n \rightarrow \infty} \frac{b_{n}}{t_{n}} \leq 0$ and $\sum_{n=0}^{\infty} c_{n}<\infty$. Then $\lim _{n \rightarrow \infty} a_{n}=0$.

3. Main Results

Theorem 3.1. Let E be a real q-uniformly smooth Banach space with the constant K_{q} and C be a nonempty closed convex subset of E. Let $N \geq 1$ be some positive integer. For each $i=1,2, \cdots, N$, let $A_{i}: C \rightarrow E$ be an η_{i}-strongly accretive and L_{i}-Lipschitzian mapping. Let $M: D(M)(\subseteq C) \rightarrow 2^{E}$ be an m-accretive operator and $f: C \rightarrow C$ be a κ-contraction. Assume that $\left(\sum_{i=1}^{N} \lambda_{i} A_{i}+M\right)^{-1}(0) \neq \phi$. Let $\left\{x_{n}\right\}$ be a sequence generated in the following iterative process:

$$
\left\{\begin{array}{l}
x_{0} \in C \tag{3.1}\\
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\beta_{n} J_{r_{n}}\left(\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}+e_{n}\right)+\gamma_{n} x_{n}+\delta_{n} g_{n}, \forall n \geq 0
\end{array}\right.
$$

where $J_{r_{n}}=\left(I+r_{n} M\right)^{-1}$, $\left\{e_{n}\right\}$ is a sequence in E, $\left\{g_{n}\right\}$ is a bounded sequence in E and $\left\{r_{n}\right\}$ is a positive real number sequence. Suppose that $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$, $\left\{\delta_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ are sequences in $[0,1]$ satisfying the following restrictions:
(1) $\alpha_{n}+\beta_{n}+\gamma_{n}+\delta_{n}=1$ and $\sum_{i=1}^{N} \lambda_{i}=1$;
(2) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(3) $0<\liminf _{n \rightarrow \infty} \gamma_{n} \leq \limsup \sup _{n \rightarrow \infty} \gamma_{n}<1$;
(4) $\sum_{n=0}^{\infty}\left\|e_{n}\right\|<\infty$ and $\sum_{n=0}^{\infty} \delta_{n}<\infty$;
(5) $r_{n} \geq \mu>0$ for each $n \geq 0, r_{n} \leq\left[\frac{q \eta}{\left(2^{N-1} L\right)^{q} K_{q}}\right]^{\frac{1}{q-1}}$ and $\sum_{n=1}^{\infty}\left|r_{n}-r_{n-1}\right|<\infty$,
where $\eta=\min \left\{\eta_{1}, \eta_{2}, \cdots, \eta_{N}\right\}$ and $L=\max \left\{L_{1}, L_{2}, \cdots, L_{N}\right\}$. Then the sequence $\left\{x_{n}\right\}$ converges strongly to $\bar{x}=Q_{\left(\sum_{i=1}^{N} \lambda_{i} A_{i}+M\right)^{-1}(0)} f(\bar{x})$, which is the unique solution to the following variational inequality:

$$
\left\langle f(\bar{x})-\bar{x}, j_{q}(p-\bar{x})\right\rangle \leq 0, \quad \forall p \in\left(\sum_{i=1}^{N} \lambda_{i} A_{i}+M\right)^{-1}(0)
$$

where $Q_{\left(\sum_{i=1}^{N} \lambda_{i} A_{i}+M\right)^{-1}(0)}$ is the unique sunny nonexpansive retraction of C onto $\left(\sum_{i=1}^{N} \lambda_{i} A_{i}+M\right)^{-1}(0)$.

Proof. First, we show that $\sum_{i=1}^{N} \lambda_{i} A_{i}$ is an $\frac{\eta}{\left(2^{N-1} L\right)^{q}}$-inverse strongly accretive mapping.

For all $x, y \in C$, from Lemma 2.2, we have

$$
\begin{aligned}
\left\|\left(\sum_{i=1}^{N} \lambda_{i} A_{i}\right) x-\left(\sum_{i=1}^{N} \lambda_{i} A_{i}\right) y\right\|^{q} & =\left\|\left(\lambda_{1} A_{1} x-\lambda_{1} A_{1} y\right)+\left[\left(\sum_{i=2}^{N} \lambda_{i} A_{i}\right) x-\left(\sum_{i=2}^{N} \lambda_{i} A_{i}\right) y\right]\right\|^{q} \\
& \leq 2^{q}\left(\left\|\lambda_{1} A_{1} x-\lambda_{1} A_{1} y\right\|^{q}+\left\|\left(\sum_{i=2}^{N} \lambda_{i} A_{i}\right) x-\left(\sum_{i=2}^{N} \lambda_{i} A_{i}\right) y\right\|^{q}\right) \\
& \vdots \\
& \leq 2^{(N-1) q} \sum_{i=1}^{N} \lambda_{i}\left\|A_{i} x-A_{i} y\right\|^{q} .
\end{aligned}
$$

Since $A_{i}: C \rightarrow E$ is η_{i}-strongly accretive and L_{i}-Lipschitzian continuous, it follows from (3.2) that

$$
\begin{aligned}
\left\langle\left(\sum_{i=1}^{N} \lambda_{i} A_{i}\right) x-\left(\sum_{i=1}^{N} \lambda_{i} A_{i}\right) y, j_{q}(x-y)\right\rangle & =\sum_{i=1}^{N} \lambda_{i}\left\langle A_{i} x-A_{i} y, j_{q}(x-y)\right\rangle \\
& \geq \sum_{i=1}^{N} \lambda_{i} \eta_{i}\|x-y\|^{q} \\
\geq & \geq \sum_{i=1}^{N} \lambda_{i} \frac{\eta_{i}}{L_{i}^{q}}\left\|A_{i} x-A_{i} y\right\|^{q} \\
& \geq \sum_{i=1}^{N} \lambda_{i} \frac{\eta}{L^{q}}\left\|A_{i} x-A_{i} y\right\|^{q} \\
\geq & \geq \frac{\eta}{\left(2^{N-1} L\right)^{q}}\left\|\left(\sum_{i=1}^{N} \lambda_{i} A_{i}\right) x-\left(\sum_{i=1}^{N} \lambda_{i} A_{i}\right) y\right\|^{q}, \\
& \forall x, y \in C .
\end{aligned}
$$

This proves that $\sum_{i=1}^{N} \lambda_{i} A_{i}$ is $\frac{\eta}{\left(2^{N-1} L L^{q}\right.}$-inverse strongly accretive.
Next, we show that $I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}$ is a nonexpansive mapping.

In view of Lemma 2.3 and (3.3), we find that

$$
\begin{aligned}
& \left\|\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x-\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) y\right\|^{q} \\
& \leq\|x-y\|^{q}-q r_{n}\left\langle\left(\sum_{i=1}^{N} \lambda_{i} A_{i}\right) x-\left(\sum_{i=1}^{N} \lambda_{i} A_{i}\right) y, j_{q}(x-y)\right\rangle \\
& \quad+K_{q} r_{n}^{q}\left\|\left(\sum_{i=1}^{N} \lambda_{i} A_{i}\right) x-\left(\sum_{i=1}^{N} \lambda_{i} A_{i}\right) y\right\|^{q} \\
& \leq\|x-y\|^{q}-\left(\frac{q \eta}{\left(2^{N-1} L\right)^{q}}-K_{q} r_{n}^{q-1}\right) r_{n}\left\|\left(\sum_{i=1}^{N} \lambda_{i} A_{i}\right) x-\left(\sum_{i=1}^{N} \lambda_{i} A_{i}\right) y\right\|^{q}
\end{aligned}
$$

From condition (5), we find that $I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}$ is a nonexpansive mapping.
Fixing $p \in\left(\sum_{i=1}^{N} \lambda_{i} A_{i}+M\right)^{-1}(0)$, we find from Lemma 2.7 that

$$
\begin{align*}
\left\|x_{1}-p\right\|= & \left\|\alpha_{0} f\left(x_{0}\right)+\beta_{0} J_{r_{0}}\left(\left(I-r_{0} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{0}+e_{0}\right)+\gamma_{0} x_{0}+\delta_{0} g_{0}-p\right\| \\
\leq & \alpha_{0}\left\|f\left(x_{0}\right)-p\right\|+\beta_{0}\left\|J_{r_{0}}\left(\left(I-r_{0} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{0}+e_{0}\right)-p\right\| \\
& +\gamma_{0}\left\|x_{0}-p\right\|+\delta_{0}\left\|g_{0}-p\right\| \\
\leq & \alpha_{0} \kappa\left\|x_{0}-p\right\|+\alpha_{0}\|f(p)-p\|+\beta_{0}\left\|x_{0}-p\right\|+\beta_{0}\left\|e_{0}\right\| \\
& +\gamma_{0}\left\|x_{0}-p\right\|+\delta_{0}\left\|g_{0}-p\right\| \\
\leq & {\left[1-\alpha_{0}(1-\kappa)\right]\left\|x_{0}-p\right\|+\alpha_{0}\|f(p)-p\|+\left\|e_{0}\right\|+\delta_{0}\left\|g_{0}-p\right\| . } \tag{3.4}
\end{align*}
$$

Next, we prove that

$$
\begin{equation*}
\left\|x_{n}-p\right\| \leq M_{1}+\sum_{i=0}^{n-1}\left\|e_{i}\right\|+\sum_{i=0}^{n-1} \delta_{i}\left\|g_{i}-p\right\| \tag{3.5}
\end{equation*}
$$

where $M_{1}=\max \left\{\left\|x_{0}-p\right\|, \frac{\|f(p)-p\|}{1-\kappa}\right\}<\infty$.
In view of (3.4), we find that (3.5) holds for $n=1$. We assume that the result holds for some m. Notice that

$$
\begin{aligned}
& \left\|x_{m+1}-p\right\| \\
& =\left\|\alpha_{m} f\left(x_{m}\right)+\beta_{m} J_{r_{m}}\left(\left(I-r_{m} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{m}+e_{m}\right)+\gamma_{m} x_{m}+\delta_{m} g_{m}-p\right\|
\end{aligned}
$$

$$
\begin{aligned}
\leq & \alpha_{m}\left\|f\left(x_{m}\right)-p\right\|+\beta_{m}\left\|J_{r_{m}}\left(\left(I-r_{m} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{m}+e_{m}\right)-p\right\| \\
& +\gamma_{m}\left\|x_{m}-p\right\|+\delta_{m}\left\|g_{m}-p\right\| \\
\leq & \alpha_{m} \kappa\left\|x_{m}-p\right\|+\alpha_{m}\|f(p)-p\|+\beta_{m}\left\|x_{m}-p\right\|+\beta_{m}\left\|e_{m}\right\| \\
& +\gamma_{m}\left\|x_{m}-p\right\|+\delta_{m}\left\|g_{m}-p\right\| \\
\leq & {\left[1-\alpha_{m}(1-\kappa)\right]\left\|x_{m}-p\right\|+\alpha_{m}(1-\kappa) \frac{\|f(p)-p\|}{1-\kappa} } \\
& +\left\|e_{m}\right\|+\delta_{m}\left\|g_{m}-p\right\| \\
\leq & M_{1}+\sum_{i=0}^{m}\left\|e_{i}\right\|+\sum_{i=0}^{m} \delta_{i}\left\|g_{i}-p\right\| .
\end{aligned}
$$

This shows that (3.5) holds.
In view of the restriction (4), we find that the sequence $\left\{x_{n}\right\}$ is bounded.
Put $y_{n}=\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}+e_{n}$. Note that

$$
\begin{aligned}
& \left\|y_{n+1}-y_{n}\right\| \\
& =\left\|\left(I-r_{n+1} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n+1}+e_{n+1}-\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}-e_{n}\right\| \\
& \leq\left\|\left(I-r_{n+1} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n+1}-\left(I-r_{n+1} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}\right\| \\
& \quad+\left\|\left(I-r_{n+1} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}-\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}\right\|+\left\|e_{n+1}\right\|+\left\|e_{n}\right\| \\
& \leq\left\|x_{n+1}-x_{n}\right\|+\left|r_{n+1}-r_{n}\right|\left\|\left(\sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}\right\|+\left\|e_{n+1}\right\|+\left\|e_{n}\right\| .
\end{aligned}
$$

Put $z_{n}=\frac{x_{n+1}-\gamma_{n} x_{n}}{1-\gamma_{n}}$. Now we compute $\left\|z_{n+1}-z_{n}\right\|$. Note that

$$
\begin{aligned}
z_{n+1}-z_{n}= & \frac{x_{n+2}-\gamma_{n+1} x_{n+1}}{1-\gamma_{n+1}}-\frac{x_{n+1}-\gamma_{n} x_{n}}{1-\gamma_{n}} \\
= & \frac{\alpha_{n+1}}{1-\gamma_{n+1}}\left(f\left(x_{n+1}\right)-J_{r_{n+1}}\left(y_{n+1}\right)\right)+J_{r_{n+1}}\left(y_{n+1}\right) \\
& +\frac{\delta_{n+1}}{1-\gamma_{n+1}}\left(g_{n+1}-J_{r_{n+1}}\left(y_{n+1}\right)\right)-\frac{\alpha_{n}}{1-\gamma_{n}}\left(f\left(x_{n}\right)-J_{r_{n}}\left(y_{n}\right)\right) \\
& -J_{r_{n}}\left(y_{n}\right)-\frac{\delta_{n}}{1-\gamma_{n}}\left(g_{n}-J_{r_{n}}\left(y_{n}\right)\right)
\end{aligned}
$$

This yields

$$
\begin{align*}
\left\|z_{n+1}-z_{n}\right\| \leq & \frac{\alpha_{n+1}}{1-\gamma_{n+1}}\left\|f\left(x_{n+1}\right)-J_{r_{n+1}}\left(y_{n+1}\right)\right\|+\left\|J_{r_{n+1}}\left(y_{n+1}\right)-J_{r_{n}}\left(y_{n}\right)\right\| \\
& +\frac{\alpha_{n}}{1-\gamma_{n}}\left\|f\left(x_{n}\right)-J_{r_{n}}\left(y_{n}\right)\right\|+\frac{\delta_{n+1}}{1-\gamma_{n+1}}\left\|g_{n+1}-J_{r_{n+1}}\left(y_{n+1}\right)\right\| \\
& +\frac{\delta_{n}}{1-\gamma_{n}}\left\|g_{n}-J_{r_{n}}\left(y_{n}\right)\right\| . \tag{3.7}
\end{align*}
$$

Next, we estimate $\left\|J_{r_{n+1}}\left(y_{n+1}\right)-J_{r_{n}}\left(y_{n}\right)\right\|$.
In view of Lemma 2.4 and (3.6), we find that

$$
\begin{align*}
& \left\|J_{r_{n+1}}\left(y_{n+1}\right)-J_{r_{n}}\left(y_{n}\right)\right\| \\
& =\left\|J_{r_{n}}\left[\frac{r_{n}}{r_{n+1}} y_{n+1}+\left(1-\frac{r_{n}}{r_{n+1}}\right) J_{r_{n+1}}\left(y_{n+1}\right)\right]-J_{r_{n}}\left(y_{n}\right)\right\| \\
& \leq\left\|\frac{r_{n}}{r_{n+1}}\left(y_{n+1}-y_{n}\right)+\left(1-\frac{r_{n}}{r_{n+1}}\right)\left(J_{r_{n+1}}\left(y_{n+1}\right)-y_{n}\right)\right\| \\
& \leq\left\|y_{n+1}-y_{n}\right\|+\frac{\left|r_{n+1}-r_{n}\right|}{r_{n+1}}\left\|J_{r_{n+1}} y_{n+1}-y_{n+1}\right\| \\
& \leq\left\|x_{n+1}-x_{n}\right\|+\left|r_{n+1}-r_{n}\right|\left(\left\|\left(\sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}\right\|+\frac{\left\|J_{r_{n+1}} y_{n+1}-y_{n+1}\right\|}{r_{n+1}}\right) \\
& \quad+\left\|e_{n+1}\right\|+\left\|e_{n}\right\| \\
& \leq\left\|x_{n+1}-x_{n}\right\|+\left|r_{n+1}-r_{n}\right| M_{2}+\left\|e_{n+1}\right\|+\left\|e_{n}\right\| \tag{3.8}
\end{align*}
$$

where M_{2} is an appropriate constant such that $M_{2} \geq \sup _{n \geq 0}\left\{\left\|\left(\sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}\right\|+\right.$ $\left.\frac{\left\|J_{r_{n+1}} y_{n+1}-y_{n+1}\right\|}{\mu}\right\}$. Substituting (3.8) into (3.7), we find that

$$
\begin{aligned}
\left\|z_{n+1}-z_{n}\right\| \leq & \frac{\alpha_{n}}{1-\gamma_{n+1}}\left\|f\left(x_{n+1}\right)-J_{r_{n+1}}\left(y_{n+1}\right)\right\|+\left\|x_{n+1}-x_{n}\right\|+\left|r_{n+1}-r_{n}\right| M_{2} \\
& +\left\|e_{n+1}\right\|+\left\|e_{n}\right\|+\frac{\alpha_{n}}{1-\gamma_{n}}\left\|f\left(x_{n}\right)-J_{r_{n}}\left(y_{n}\right)\right\| \\
& +\frac{\delta_{n+1}}{1-\gamma_{n+1}}\left\|g_{n+1}-J_{r_{n+1}}\left(y_{n+1}\right)\right\|+\frac{\delta_{n}}{1-\gamma_{n}}\left\|g_{n}-J_{r_{n}}\left(y_{n}\right)\right\| .
\end{aligned}
$$

So, we get

$$
\begin{aligned}
\left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| \leq & \frac{\alpha_{n+1}}{1-\gamma_{n+1}}\left\|f\left(x_{n+1}\right)-J_{r_{n+1}}\left(y_{n+1}\right)\right\|+\left|r_{n+1}-r_{n}\right| M_{2} \\
& +\left\|e_{n+1}\right\|+\left\|e_{n}\right\|+\frac{\alpha_{n}}{1-\gamma_{n}}\left\|f\left(x_{n}\right)-J_{r_{n}}\left(y_{n}\right)\right\| \\
& +\frac{\delta_{n+1}}{1-\gamma_{n+1}}\left\|g_{n+1}-J_{r_{n+1}}\left(y_{n+1}\right)\right\| \\
& +\frac{\delta_{n}}{1-\gamma_{n}}\left\|g_{n}-J_{r_{n}}\left(y_{n}\right)\right\|
\end{aligned}
$$

In view of the restrictions $(2),(3),(4)$ and (5), we find that

$$
\limsup _{n \rightarrow \infty}\left(\left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

It follows from Lemma 2.5 that $\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0$. From the restriction (3), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{3.9}
\end{equation*}
$$

Notice that

$$
\begin{aligned}
\left\|x_{n}-J_{r_{n}} y_{n}\right\| \leq & \left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-J_{r_{n}} y_{n}\right\| \\
\leq & \left\|x_{n}-x_{n+1}\right\|+\alpha_{n}\left\|f\left(x_{n}\right)-J_{r_{n}} y_{n}\right\| \\
& +\gamma_{n}\left\|x_{n}-J_{r_{n}} y_{n}\right\|+\delta_{n}\left\|g_{n}-J_{r_{n}} y_{n}\right\| .
\end{aligned}
$$

It follows that

$$
\left(1-\gamma_{n}\right)\left\|x_{n}-J_{r_{n}} y_{n}\right\| \leq\left\|x_{n}-x_{n+1}\right\|+\alpha_{n}\left\|f\left(x_{n}\right)-J_{r_{n}} y_{n}\right\|+\delta_{n}\left\|g_{n}-J_{r_{n}} y_{n}\right\|
$$

In view of the restrictions $(2),(3),(4)$ and (3.9), we find that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-J_{r_{n}} y_{n}\right\|=0 \tag{3.10}
\end{equation*}
$$

Notice that

$$
\begin{aligned}
\left\|x_{n}-J_{r_{n}}\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}\right\| \leq & \left\|x_{n}-J_{r_{n}} y_{n}\right\| \\
& +\left\|J_{r_{n}} y_{n}-J_{r_{n}}\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}\right\| \\
\leq & \left\|x_{n}-J_{r_{n}} y_{n}\right\|+\left\|e_{n}\right\| .
\end{aligned}
$$

Since $\sum_{n=0}^{\infty}\left\|e_{n}\right\|<\infty$, we see from (3.10) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-J_{r_{n}}\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}\right\|=0 \tag{3.11}
\end{equation*}
$$

Since M is an accretive mapping, we have

$$
\begin{aligned}
& \left\langle M\left(J_{r}\left(I-r \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}\right)-M\left(J_{r_{n}}\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}\right),\right. \\
& \left.\quad j_{q}\left(J_{r}\left(I-r \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}-J_{r_{n}}\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}\right)\right\rangle \geq 0 .
\end{aligned}
$$

From $M=\frac{J_{r}^{-1}-I}{r}=\frac{J_{r_{n}}^{-1}-I}{r_{n}}$, we obtain

$$
\begin{aligned}
\langle & \left(\frac{1}{r}-\frac{1}{r_{n}}\right) x_{n}+\left(\frac{1}{r_{n}}-\frac{1}{r}\right) J_{r_{n}}\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n} \\
& \left.j_{q}\left(J_{r}\left(I-r \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}-J_{r_{n}}\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}\right)\right\rangle \\
+ & \frac{1}{r}\left\langle J_{r_{n}}\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}-J_{r}\left(I-r \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}\right. \\
\quad & \left.j_{q}\left(J_{r}\left(I-r \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}-J_{r_{n}}\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}\right)\right\rangle \geq 0 .
\end{aligned}
$$

So, we get

$$
\begin{aligned}
& \left\langle J_{r}\left(I-r \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}-J_{r_{n}}\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}\right. \\
& \left.\quad j_{q}\left(J_{r}\left(I-r \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}-J_{r_{n}}\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}\right)\right\rangle \\
& \leq \frac{r_{n}-r}{r_{n}}\left\langle x_{n}-J_{r_{n}}\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}\right. \\
& \left.\quad j_{q}\left(J_{r}\left(I-r \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}-J_{r_{n}}\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}\right)\right\rangle .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \left\|J_{r}\left(I-r \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}-J_{r_{n}}\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}\right\|^{q} \\
& \leq \frac{r_{n}-r}{r_{n}}\left\langle x_{n}-J_{r_{n}}\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}\right. \\
& \left.\quad j_{q}\left(J_{r}\left(I-r \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}-J_{r_{n}}\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}\right)\right\rangle \\
& \leq \\
& \quad\left\|x_{n}-J_{r_{n}}\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}\right\| \\
& \quad\left\|J_{r}\left(I-r \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}-J_{r_{n}}\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}\right\|^{q-1} .
\end{aligned}
$$

Hence we get from (3.11) that

$$
\begin{aligned}
\left\|J_{r}\left(I-r \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}-J_{r_{n}}\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}\right\| & \leq\left\|x_{n}-J_{r_{n}}\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}\right\| \\
& \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
\end{aligned}
$$

This implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J_{r}\left(I-r \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}-x_{n}\right\|=0 \tag{3.12}
\end{equation*}
$$

Since $J_{r}\left(I-r \sum_{i=1}^{N} \lambda_{i} A_{i}\right)$ is nonexpansive and f is contractive, we find that the mapping $t f+(1-t) J_{r}\left(I-r \sum_{i=1}^{N} \lambda_{i} A_{i}\right)$ is contractive, where $t \in(0,1)$. Let z_{t} be the unique fixed point of the $t f+(1-t) J_{r}\left(I-r \sum_{i=1}^{N} \lambda_{i} A_{i}\right)$, that is,

$$
z_{t}=t f\left(z_{t}\right)+(1-t) J_{r}\left(I-r \sum_{i=1}^{N} \lambda_{i} A_{i}\right) z_{t}
$$

for all $t \in(0,1)$. Put $\bar{x}=\lim _{t \rightarrow 0} z_{t}$. Then we have from Lemma 2.6 that $\bar{x}=Q_{\left(\sum_{i=1}^{N} \lambda_{i} A_{i}+M\right)^{-1}(0)} f(\bar{x})$, where $Q_{\left(\sum_{i=1}^{N} \lambda_{i} A_{i}+M\right)^{-1}(0)}$ is the unique sunny nonexpansive retraction from C onto $\left(\sum_{i=1}^{N} \lambda_{i} A_{i}+M\right)^{-1}(0)$.

Next, we claim that $\lim \sup _{n \rightarrow \infty}\left\langle f(\bar{x})-\bar{x}, j_{q}\left(x_{n}-\bar{x}\right)\right\rangle \leq 0$.
Since

$$
\left\|z_{t}-x_{n}\right\|=\left\|(1-t)\left(J_{r}\left(I-r \sum_{i=1}^{N} \lambda_{i} A_{i}\right) z_{t}-x_{n}\right)+t\left(f\left(z_{t}\right)-x_{n}\right)\right\|
$$

we see that for any $t \in(0,1)$,

$$
\begin{aligned}
\left\|z_{t}-x_{n}\right\|^{q}= & (1-t)\left\langle J_{r}\left(I-r \sum_{i=1}^{N} \lambda_{i} A_{i}\right) z_{t}-x_{n}, j_{q}\left(z_{t}-x_{n}\right)\right\rangle \\
& +t\left\langle f\left(z_{t}\right)-x_{n}, j_{q}\left(z_{t}-x_{n}\right)\right\rangle \\
= & (1-t)\left(\left\langle J_{r}\left(I-r \sum_{i=1}^{N} \lambda_{i} A_{i}\right) z_{t}-J_{r}\left(I-r \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}, j_{q}\left(z_{t}-x_{n}\right)\right\rangle\right. \\
& \left.+\left\langle J_{r}\left(I-r \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}-x_{n}, j_{q}\left(z_{t}-x_{n}\right)\right\rangle\right) \\
& +t\left\langle f\left(z_{t}\right)-z_{t}, j_{q}\left(z_{t}-x_{n}\right)\right\rangle+t\left\langle\left\langle z_{t}-x_{n}, j_{q}\left(z_{t}-x_{n}\right)\right\rangle\right.
\end{aligned}
$$

$$
\begin{aligned}
\leq & (1-t)\left(\left\|z_{t}-x_{n}\right\|^{q}+\left\|J_{r}\left(I-r \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}-x_{n}\right\|\left\|z_{t}-x_{n}\right\|^{q-1}\right) \\
& +t\left\langle f\left(z_{t}\right)-z_{t}, j_{q}\left(z_{t}-x_{n}\right)\right\rangle+t\left\|z_{t}-x_{n}\right\|^{q} \\
\leq & \left\|z_{t}-x_{n}\right\|^{q}+\left\|J_{r}\left(I-r \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}-x_{n}\right\|\left\|z_{t}-x_{n}\right\|^{q-1} \\
& \left.+t\left\langle f\left(z_{t}\right)\right)-z_{t}, j_{q}\left(z_{t}-x_{n}\right)\right\rangle
\end{aligned}
$$

It follows that

$$
\left\langle z_{t}-f\left(z_{t}\right), j_{q}\left(z_{t}-x_{n}\right)\right\rangle \leq \frac{1}{t}\left\|J_{r}\left(I-r \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}-x_{n}\right\|\left\|z_{t}-x_{n}\right\|^{q-1}
$$

By virtue of (3.12), we find that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle z_{t}-f\left(z_{t}\right), j_{q}\left(z_{t}-x_{n}\right)\right\rangle \leq 0 \tag{3.13}
\end{equation*}
$$

Since $z_{t} \rightarrow \bar{x}$ as $t \rightarrow 0$ and the duality mapping j_{q} is single-valued and strong-weak* uniformly continuous on bounded subsets of E, we see that

$$
\begin{aligned}
& \left|\left\langle f(\bar{x})-\bar{x}, j_{q}\left(x_{n}-\bar{x}\right)\right\rangle-\left\langle z_{t}-f\left(z_{t}\right), j_{q}\left(z_{t}-x_{n}\right)\right\rangle\right| \\
& \leq\left|\left\langle f(\bar{x})-\bar{x}, j_{q}\left(x_{n}-\bar{x}\right)-j_{q}\left(x_{n}-z_{t}\right)\right\rangle\right|+\left|\left\langle f(\bar{x})-\bar{x}+z_{t}-f\left(z_{t}\right), j_{q}\left(x_{n}-z_{t}\right)\right\rangle\right| \\
& \leq\left|\left\langle f(\bar{x})-\bar{x}, j_{q}\left(x_{n}-\bar{x}\right)-j_{q}\left(x_{n}-z_{t}\right)\right\rangle\right|+\left\|f(\bar{x})-\bar{x}+z_{t}-f\left(z_{t}\right)\right\|\left\|x_{n}-z_{t}\right\|^{q-1} \\
& \rightarrow 0 \quad \text { as } \quad t \rightarrow 0 .
\end{aligned}
$$

Hence, for any $\varepsilon>0$, there exists $\delta>0$ such that for $t \in(0, \delta)$, the following inequality holds:

$$
\left\langle f(\bar{x})-\bar{x}, j_{q}\left(x_{n}-\bar{x}\right)\right\rangle \leq\left\langle z_{t}-f\left(z_{t}\right), j_{q}\left(z_{t}-x_{n}\right)\right\rangle+\varepsilon
$$

This implies that

$$
\limsup _{n \rightarrow \infty}\left\langle f(\bar{x})-\bar{x}, j_{q}\left(x_{n}-\bar{x}\right)\right\rangle \leq \limsup _{n \rightarrow \infty}\left\langle z_{t}-f\left(z_{t}\right), j_{q}\left(z_{t}-x_{n}\right)\right\rangle+\varepsilon
$$

Using (3.13), we see that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle f(\bar{x})-\bar{x}, j_{q}\left(x_{n}-\bar{x}\right)\right\rangle \leq 0 \tag{3.14}
\end{equation*}
$$

Finally, we prove that $x_{n} \rightarrow \bar{x}$ as $n \rightarrow \infty$.

By virtue of (3.1), Lemma 2.1 and 2.7, we obtain that

$$
\begin{aligned}
&\left\|x_{n+1}-\bar{x}\right\|^{q} \\
&=\left\|\alpha_{n} f\left(x_{n}\right)+\beta_{n} J_{r_{n}}\left(\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}+e_{n}\right)+\gamma_{n} x_{n}+\delta_{n} g_{n}-\bar{x}\right\|^{q} \\
& \leq \alpha_{n}\left\langle f\left(x_{n}\right)-f(\bar{x}), j_{q}\left(x_{n+1}-\bar{x}\right)\right\rangle+\alpha_{n}\left\langle f(\bar{x})-\bar{x}, j_{q}\left(x_{n+1}-\bar{x}\right)\right\rangle \\
&+\beta_{n}\left\|J_{r_{n}}\left(\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}+e_{n}\right)-\bar{x}\right\|\left\|x_{n+1}-\bar{x}\right\|^{q-1} \\
&+\gamma_{n}\left\|x_{n}-\bar{x}\right\|\left\|x_{n+1}-\bar{x}\right\|^{q-1}+\delta_{n}\left\|g_{n}-\bar{x}\right\|\left\|x_{n+1}-\bar{x}\right\|^{q-1} \\
& \leq \alpha_{n} \kappa\left\|x_{n}-\bar{x}\right\|\left\|x_{n+1}-\bar{x}\right\|^{q-1}+\alpha_{n}\left\langle f(\bar{x})-\bar{x}, j_{q}\left(x_{n+1}-\bar{x}\right)\right\rangle \\
&+\beta_{n}\left\|J_{r_{n}}\left(\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) x_{n}+e_{n}\right)-J_{r_{n}}\left(I-r_{n} \sum_{i=1}^{N} \lambda_{i} A_{i}\right) \bar{x}\right\|\left\|x_{n+1}-\bar{x}\right\|^{q-1} \\
&+\gamma_{n}\left\|x_{n}-\bar{x}\right\|\left\|x_{n+1}-\bar{x}\right\|^{q-1}+\delta_{n}\left\|g_{n}-\bar{x}\right\|\left\|x_{n+1}-\bar{x}\right\|^{q-1} \\
& \leq \alpha_{n} \kappa\left\|x_{n}-\bar{x}\right\|\left\|x_{n+1}-\bar{x}\right\|^{q-1}+\alpha_{n}\left\langle f(\bar{x})-\bar{x}, j_{q}\left(x_{n+1}-\bar{x}\right)\right\rangle \\
&+\beta_{n}\left(\left\|x_{n}-\bar{x}\right\|+\left\|e_{n}\right\|\right)\left\|x_{n+1}-\bar{x}\right\|^{q-1} \\
&+\gamma_{n}\left\|x_{n}-\bar{x}\right\|\left\|x_{n+1}-\bar{x}\right\|^{q-1}+\delta_{n}\left\|g_{n}-\bar{x}\right\|\left\|x_{n+1}-\bar{x}\right\|^{q-1} \\
& \leq\left(1-\alpha_{n}(1-\kappa)\right)\left\|x_{n}-\bar{x}\right\|\left\|x_{n+1}-\bar{x}\right\|^{q-1}+\alpha_{n}\left\langle f(\bar{x})-\bar{x}, j_{q}\left(x_{n+1}-\bar{x}\right)\right\rangle \\
&+\left\|e_{n}\right\|\left\|x_{n+1}-\bar{x}\right\|^{q-1}+\delta_{n}\left\|g_{n}-\bar{x}\right\|\left\|x_{n+1}-\bar{x}\right\|^{q-1} \\
& \leq\left(1-\alpha_{n}(1-\kappa)\right)\left(\frac{1}{q}\left\|x_{n}-\bar{x}\right\|^{q}+\frac{q-1}{q}\left\|x_{n+1}-\bar{x}\right\|^{q}\right) \\
&+\alpha_{n}\left\langle f(\bar{x})-\bar{x}, j_{q}\left(x_{n+1}-\bar{x}\right)\right\rangle \\
&+\left\|e_{n}\right\|\left\|x_{n+1}-\bar{x}\right\|^{q-1}+\delta_{n}\left\|g_{n}-\bar{x}\right\|\left\|x_{n+1}-\bar{x}\right\|^{q-1} .
\end{aligned}
$$

It follows that

$$
\left\|x_{n+1}-\bar{x}\right\|^{q} \leq\left(1-\alpha_{n}(1-\kappa)\right)\left\|x_{n}-\bar{x}\right\|^{q}+q \alpha_{n}\left\langle f(\bar{x})-\bar{x}, j_{q}\left(x_{n+1}-\bar{x}\right)\right\rangle+\nu_{n},
$$

where $\nu_{n}=q\left(\left\|e_{n}\right\|\left\|x_{n+1}-\bar{x}\right\|^{q-1}+\delta_{n}\left\|g_{n}-\bar{x}\right\| \mid x_{n+1}-\bar{x} \|^{q-1}\right)$. In view of the restriction (4), we find that $\sum_{n=0}^{\infty} \nu_{n}<\infty$. Using the restriction (2), (3.14) and Lemma 2.8, we see that $\left\{x_{n}\right\}$ converges strongly to \bar{x}. This completes the proof.

Remark 3.1.

(i) Theorem 3.1 is still valid in the framework of the spaces which are Hilbert spaces and L^{p}-spaces, where $p \geq 2$.
(ii) Theorem 3.1 improves and extends the main result of Qin et al. [21], Kim and $\mathrm{Xu}[16]$ and Benavides et al. [4] in the following aspects:

- From a single inverse strongly accretive mapping to the class of strongly accretive and Lipschitzian mappings:
- From the problem of finding an element of $(A+M)^{-1}(0)$ or $A^{-1}(0)$ to problem of finding an element of $\left(\sum_{i=1}^{N} \lambda_{i} A_{i}+M\right)^{-1}(0)$:
- From a forward-backward splitting algorithm with computational errors to a generalized forward-backward splitting algorithm algorithm with computational errors.

From Theorem 3.1, we obtain the following results:
Corollary 3.1. Let E be a real q-uniformly smooth Banach space with constant K_{q} and C be a nonempty closed convex subset of E. Let $A: C \rightarrow E$ be an η-strongly accretive and L-Lipschitzian mapping. Let $M: D(M)(\subseteq C) \rightarrow 2^{E}$ be an m-accretive operator and $f: C \rightarrow C$ be a κ-contraction. Assume that $(A+M)^{-1}(0) \neq \phi$. Let $\left\{x_{n}\right\}$ be a sequence generated in the following iterative process:

$$
\left\{\begin{array}{l}
x_{0} \in C \\
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\beta_{n} J_{r_{n}}\left(\left(I-r_{n} A\right) x_{n}+e_{n}\right)+\gamma_{n} x_{n}+\delta_{n} g_{n}, \forall n \geq 0
\end{array}\right.
$$

where $J_{r_{n}}=\left(I+r_{n} M\right)^{-1},\left\{e_{n}\right\}$ is a sequence in $E,\left\{g_{n}\right\}$ is a bounded sequence in E and $\left\{r_{n}\right\}$ is a positive real number sequence. Suppose that $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ and $\left\{\delta_{n}\right\}$ are sequences in $[0,1]$ satisfying the following restrictions:
(1) $\alpha_{n}+\beta_{n}+\gamma_{n}+\delta_{n}=1$;
(2) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(3) $0<\liminf _{n \rightarrow \infty} \gamma_{n} \leq \lim \sup _{n \rightarrow \infty} \gamma_{n}<1$;
(4) $\sum_{n=0}^{\infty}\left\|e_{n}\right\|<\infty$ and $\sum_{n=0}^{\infty} \delta_{n}<\infty$;
(5) $r_{n}>\mu>0$ for each $n \geq 0, r_{n} \leq\left[\frac{q \eta}{L^{q} K_{q}}\right]^{\frac{1}{q-1}}$ and $\sum_{n=1}^{\infty}\left|r_{n}-r_{n-1}\right|<\infty$.

Then the sequence $\left\{x_{n}\right\}$ converges strongly to $\bar{x}=Q_{(A+M)^{-1}(0)} f(\bar{x})$, which is the unique solution to the following variational inequality:

$$
\left\langle f(\bar{x})-\bar{x}, j_{q}(p-\bar{x})\right\rangle \leq 0, \quad \forall p \in(A+M)^{-1}(0)
$$

Proof. Taking $A_{1}=A_{2}=\cdots=A_{n}=A$ in Theorem 3.1, then $\sum_{i=1}^{N} \lambda_{i} A_{i}=A$. So, we can get the desired conclusion easily.

Corollary 3.2. Let E be a real q-uniformly smooth Banach space with the constant K_{q} and C be a nonempty closed convex subset of E. Let $A: C \rightarrow E$ be an η strongly accretive and L-Lipschitzian mapping. Let $M: D(M)(\subseteq C) \rightarrow 2^{E}$ be an m-accretive operator. Assume that $(A+M)^{-1}(0) \neq \phi$. Let $\left\{x_{n}\right\}$ be a sequence generated in the following iterative process:

$$
\left\{\begin{array}{l}
x_{0} \in C \\
x_{n+1}=\alpha_{n} u+\beta_{n} J_{r_{n}}\left(\left(I-r_{n} A\right) x_{n}+e_{n}\right)+\gamma_{n} x_{n}, \quad \forall n \geq 0
\end{array}\right.
$$

where u is a fixed element in $C, J_{r_{n}}=\left(I+r_{n} M\right)^{-1},\left\{e_{n}\right\}$ is a sequence in E and $\left\{r_{n}\right\}$ is a positive real number sequence. Suppose that $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are sequences in $[0,1]$ satisfying the following restrictions:
(1) $\alpha_{n}+\beta_{n}+\gamma_{n}=1$;
(2) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(3) $0<\liminf _{n \rightarrow \infty} \gamma_{n} \leq \limsup _{n \rightarrow \infty} \gamma_{n}<1$;
(4) $\sum_{n=0}^{\infty}\left\|e_{n}\right\|<\infty$;
(5) $r_{n}>\mu>0$ for each $n \geq 0, r_{n} \leq\left[\frac{q \eta}{L^{q} K_{q}}\right]^{\frac{1}{q-1}}$ and $\sum_{n=1}^{\infty}\left|r_{n}-r_{n-1}\right|<\infty$.

Then the sequence $\left\{x_{n}\right\}$ converges strongly to $\bar{x}=Q_{(A+M)^{-1}(0)} u$, which is the unique solution to the following variational inequality:

$$
\left\langle u-\bar{x}, j_{q}(p-\bar{x})\right\rangle \leq 0, \quad \forall p \in(A+M)^{-1}(0)
$$

Proof. Taking the mapping f maps any element in C into a fixed element u and $\delta_{n}=0$ in Theorem 3.1, we can get the desired conclusion easily.

4. Applications

In this section, we consider some applications of Theorem 3.1 in the framework of Hilbert spaces.
(I) Application to Theorem 3.1 for k-strict pseudocontractive mappings.

Let C be a nonempty closed convex subset of a Hilbert space H.
Definition 4.1.([6]) A mapping $T: C \rightarrow C$ is said to be a ν-strict pseudocontractive mapping if there exists $\nu \in[0,1)$ such that

$$
\begin{equation*}
\|T x-T y\|^{2} \leq\|x-y\|^{2}+\nu\|(I-T) x-(I-T) y\|^{2}, \quad \forall x, y \in C \tag{4.1}
\end{equation*}
$$

Let $T: C \rightarrow C$ be ν-strict pseudocontractive. Define a mapping $A=I-T$: $C \rightarrow C$. It is easy to see that A is a $\frac{1-\nu}{2}$-inverse strongly monotone mapping and $\operatorname{Fix}(T)=A^{-1}(0)$.

Lemma 4.1.([1]) Let C be a nonempty closed convex subset of a Hilbert space H. Given an integer $N \geq 1$, assume that $\left\{T_{i}\right\}_{i=1}^{N}: H \rightarrow H$ is a finite family of ν_{i}-strict pseudocontractive mappings. Suppose that $\left\{\lambda_{i}\right\}_{i=1}^{N}$ is a positive real sequence such that $\sum_{i=1}^{N} \lambda_{i}=1$. Then $\sum_{i=1}^{N} \lambda_{i} T_{i}$ is a ν-strict pseudocontractive mapping with $\nu=\max \left\{\nu_{i}: 1 \leq i \leq N\right\}$ and Fix $\left(\sum_{i=1}^{N} \lambda_{i} T_{i}\right)=\cap_{i=1}^{N} \operatorname{Fix}\left(T_{i}\right)$.

Theorem 4.1. Let C be a closed convex subset of a real Hilbert space H. For each $i=1,2, \cdots, N, T_{i}: C \rightarrow C$ is ν_{i}-strict pseudocontractive mapping. Let $f: C \rightarrow C$
be a κ-contraction. Assume that $\cap_{i=1}^{N} F i x\left(T_{i}\right) \neq \phi$. Let $\left\{x_{n}\right\}$ be a sequence generated in the following iterative process:

$$
\left\{\begin{array}{l}
x_{0} \in C \\
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\beta_{n}\left[I-r_{n}\left(I-\sum_{i=1}^{N} \lambda_{i} T_{i}\right)\right] x_{n}+\gamma_{n} x_{n}+\delta_{n} g_{n}, \quad \forall n \geq 0
\end{array}\right.
$$

where $\left\{g_{n}\right\}$ is a bounded sequence in E and $\left\{r_{n}\right\}$ is a positive real number sequence. Suppose that $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\delta_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ are sequences in $[0,1]$ satisfying the following restrictions:
(1) $\alpha_{n}+\beta_{n}+\gamma_{n}+\delta_{n}=1$ and $\sum_{i=1}^{N} \lambda_{i}=1$;
(2) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{i=0}^{\infty} \alpha_{n}=\infty$;
(3) $0<\liminf _{n \rightarrow \infty} \gamma_{n} \leq \limsup \sup _{n \rightarrow \infty} \gamma_{n}<1$;
(4) $\sum_{n=0}^{\infty} \delta_{n}<\infty$;
(5) $r_{n}>\mu>0$ for each $n \geq 0, r_{n} \leq 1-\nu$ and $\sum_{n=1}^{\infty}\left|r_{n}-r_{n-1}\right|<\infty$, where $\nu=\max \left\{\nu_{i}: 1 \leq i \leq N\right\}$.
Then the sequence $\left\{x_{n}\right\}$ converges strongly to \bar{x}, where $\bar{x} \in \cap_{i=1}^{N} F i x\left(T_{i}\right)$ is the unique solution to the following variational inequality

$$
\langle f(\bar{x})-\bar{x}, p-\bar{x}\rangle \leq 0, \quad \forall p \in \cap_{i=1}^{N} F i x\left(T_{i}\right)
$$

Proof. From Lemma 4.1, we know that $\sum_{i=1}^{N} \lambda_{i} T_{i}$ is a ν-strict pseudocontractive mapping with $\nu=\max \left\{\nu_{i}: 1 \leq i \leq N\right\}$ and $\operatorname{Fix}\left(\sum_{i=1}^{N} \lambda_{i} T_{i}\right)=\cap_{i=1}^{N} \operatorname{Fix}\left(T_{i}\right)$. It follows that $I-\sum_{i=1}^{N} \lambda_{i} T_{i}$ is a $\frac{1-\nu}{2}$-inverse strongly monotone mapping. The conclusion of Theorem 4.1 can be obtained from Theorem 3.1 immediately.
(II) Application to equilibrium problems.

Let $F: C \times C \rightarrow \mathbb{R}$ be a bifunction, where \mathbb{R} is a set of real numbers. The equilibrium problem for the function F is to find a point $x \in C$ such that

$$
\begin{equation*}
F(x, y) \geq 0, \quad \forall y \in C \tag{4.2}
\end{equation*}
$$

The set of solutions of (4.2) is denoted by $\mathrm{EP}(F)$. For solving the equilibrium problem, we assume that F satisfies the following conditions (see [5]):
(A1) $F(x, y)=0$ for all $x \in C$;
(A2) F is monotone, i.e., $F(x, y)+F(y, x) \leq 0$ for all $x, y \in C$;
(A3) F is upper-hemicontinuous, i.e., for each $x, y, z \in C$,

$$
\limsup _{t \rightarrow 0^{+}} F(t z+(1-t) x, y) \leq F(x, y)
$$

(A4) $F(x, \cdot)$ is convex and weakly lower semicontinuous for each $x \in C$.

Lemma 4.2.([5]) Let C be a nonempty closed convex subset of H and let F be a bifunction of $C \times C$ into \mathbb{R} satisfying (A1)-(A4). Let $r>0$ and $x \in H$. Then there exists $z \in C$ such that

$$
F(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \quad \forall y \in C
$$

Lemma 4.3.([9]) Assume that $F: C \times C \rightarrow \mathbb{R}$ satisfies (A1)-(A4). For $r>0$ and $x \in H$, define a mapping $T_{r}: H \rightarrow C$ as follows:

$$
T_{r}(x)=\left\{z \in C: F(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \forall y \in C\right\}
$$

for all $x \in H$. Then the following hold:
(1) T_{r} is single-valued;
(2) T_{r} is firmly nonexpansive, i.e., for all $x, y \in H$,

$$
\left\|T_{r} x-T_{r} y\right\|^{2} \leq\left\langle T_{r} x-T_{r} y, x-y\right\rangle
$$

(3) $\operatorname{Fix}\left(T_{r}\right)=E P(F), \quad \forall r>0$;
(4) $E P(F)$ is a closed and convex set.

Lemma 4.4.([26]) Let C be a nonempty closed convex subset of H and let F be a bifunction of $C \times C$ into \mathbb{R} satisfying (A1)-(A4). Let A_{F} be a multi-valued mapping of H into itself defined by

$$
A_{F} x= \begin{cases}\{z \in H: F(x, y) \geq\langle y-x, z\rangle, \quad \forall y \in C\}, & x \in C \\ \phi, & x \notin C\end{cases}
$$

Then $E P(F)=A_{F}^{-1}(0)$ and A_{F} is a maximal monotone operator with $D\left(A_{F}\right) \subseteq C$. Further, for any $x \in H$ and $r>0, T_{r}$ coincides with the resolvent of A_{F}, i.e., $T_{r} x=\left(I+r A_{F}\right)^{-1} x$.

Theorem 4.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $F: C \times C \rightarrow \mathbb{R}$ be a bifunction satisfying (A1)-(A4) and $f: C \rightarrow C$ be a κ-contraction. Assume $A_{F}^{-1}(0) \neq \phi$. Let $\left\{x_{n}\right\}$ be a sequence generated in the following iterative process:

$$
\left\{\begin{array}{l}
x_{0} \in C \tag{4.3}\\
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\beta_{n} T_{r_{n}}\left(x_{n}+e_{n}\right)+\gamma_{n} x_{n}+\delta_{n} g_{n}, \forall n \geq 0
\end{array}\right.
$$

where $\left\{e_{n}\right\}$ is a sequence in $H,\left\{g_{n}\right\}$ is a bounded sequence in H. Suppose that $\left\{\alpha_{n}\right\}$, $\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ and $\left\{\delta_{n}\right\}$ are sequences in $[0,1]$ satisfying the following restrictions:
(1) $\alpha_{n}+\beta_{n}+\gamma_{n}+\delta_{n}=1$;
(2) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(3) $0<\liminf _{n \rightarrow \infty} \gamma_{n} \leq \limsup \sup _{n \rightarrow \infty} \gamma_{n}<1$;
(4) $\sum_{n=0}^{\infty}\left\|e_{n}\right\|<\infty$ and $\sum_{n=0}^{\infty} \delta_{n}<\infty$;
(5) $r_{n}>\mu>0$ for each $n \geq 0$ and $\sum_{n=1}^{\infty}\left\|r_{n}-r_{n_{1}}\right\|<\infty$.

Then the sequence $\left\{x_{n}\right\}$ converges strongly to $\bar{x}=P_{A_{F}^{-1}(0)} f(\bar{x})$, which is the unique solution to the following variational inequality:

$$
\langle f(\bar{x})-\bar{x}, p-\bar{x}\rangle \leq 0, \quad \forall p \in A_{F}^{-1}(0)
$$

Proof. Taking $A_{i}=0$ for $i=1,2, \cdots, N$ and $J_{r_{n}}=T_{r_{n}}$, iterative scheme (4.3) reduces to (3.1) in a Hilbert space and the desired conclusion follows immediately from Lemma 4.4 and Theorem 3.1. This completes the proof.

References

[1] G. L. Acedo and H. K. Xu, Iterative methods for strict pseudo-contractions in Hilbert spaces, Nonlinear Anal., 67(2007), 2258-2271.
[2] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, On a strongly nonexpansive sequence in Hilbert spaces, J. Nonlinear Convex Anal., 8(2007), 471-489.
[3] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, NoordhoffInternational Publishing, Leiden, 1976.
[4] T. D. Benavides, G. L. Acedo and H. K. Xu, Iterative solutions for zeros of accretive operators, Math. Nachr., 248/249(2003), 62-71.
[5] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63(1994), 123-145.
[6] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20(1967), 197-228.
[7] G. H. G. Chen and R. T. Rockafellar, Convergence rates in forward-backward splitting, SIAM J. Optim., 7(1997), 421-444.
[8] I. Ciorancscu, Geometry of Banach spaces, duality mappings and nonlinear problems, Kluwer Academic Publishers Group, Dordrecht, 1990.
[9] P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6(2005), 117-136.
[10] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., 4(2005), 1168-1200.
[11] O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim., 29(1991), 403-419.
[12] J. S. Jung, Some results on Rockafellar-type iterative algorithms for zeros of accretive operators, J. Inequal. Appl. (2013), 2013: 255, 19 pp.
[13] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19(1967), 508-520.
[14] J. K. Kim, Convergence of Ishikawa iterative sequences for accretive Lipschitzian mappings in Banach spaces, Taiwanese J. Math., 10(2006), 553-561.
[15] J. K. Kim and Salahuddin, Extragradient methods for generalized mixed equilibrium problems and fixed point problems in Hilbert spaces, Nonlinear Funct. Anal. and Appl. 22(2017), 693-709.
[16] T. H. Kim and H. K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal., 61(2005), 51-60.
[17] L. S. Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., 194(1995), 114-125.
[18] D. S. Mitrinovic, Analytic inequalities, Springer-Verlag, New York, 1970.
[19] A. Moudafi and M. Thera, Finding a zero of the sum of two maximal monotone operators, J. Optim. Theory Appl., 94(1997), 425-448.
[20] X. Qin, S. Y. Cho and L. Wang, Iterative algorithms with errors for zero points of m-accretive operators, Fixed Point Theory Appl., (2013), 2013:148, 17 pp.
[21] X. Qin, S. Y. Cho and L. Wang, Convergence of splitting algorithms for the sum of two accretive operators with applications, Fixed Point Theory Appl., (2014), 2014:166, 12 pp .
[22] X. Qin and Y. Su, Approximation of a zero point of accretive operator in Banach spaces, J. Math. Anal. Appl., 329(2007), 415-424.
[23] R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc., 149(1970), 75-88.
[24] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14(1976), 877-898.
[25] T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for oneparameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl., 305(2005), 227-239.
[26] S. Takahashi, W. Takahashi and M. Toyoda, Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl., 147(2010), 27-41.
[27] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38(2000), 431-446.
[28] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16(1991), 1127-1138.
[29] S. Yang, Zero theorems of accretive operators in reflexive Banach spaces, J. Nonlinear Funct. Anal., (2013), 2013:2, 12 pp.

