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VALUE DISTRIBUTION OF DIFFERENCE OPERATOR ON

MEROMORPHIC FUNCTIONS

Jie Ding and Lian-Zhong Yang

Abstract. In this paper, we investigate the value distribution of the
difference operator on meromorphic functions, and obtain a difference
analogue of a theorem of Hayman on meromorphic functions.

1. Introduction

A function f(z) is called meromorphic, if it is analytic in the complex plane
except at isolated poles. It is assumed that the reader is familiar with the
standard symbols and fundamental results of Nevanlinna theory such as the
characteristic function T (r, f), proximity function m(r, f), counting function
N(r, f), the first and second main theorem etc., (see [11], [15], [23]). In addition
we use σ(f) to denote the order of growth of the meromorphic f(z) and λ(f) to
denote the exponent of convergence of the zeros of f(z). The notation S(r, f)
denotes any quantity that satisfies the condition: S(r, f) = o(T (r, f)) as r → ∞
possibly outside an exceptional set of r of finite logarithmic measure. Let a(z)
be a meromorphic function, we say that a(z) is a small function of f(z), if
T (r, a) = S(r, f).

In 1959, Hayman proved the following theorems.

Theorem A (see [10], Theorem 8). Let f be a nonconstant transcendental

entire function, let n ≥ 3 be an integer, and a be a non-zero constant. Then

f ′(z)− afn(z) assumes all finite values infinitely often.

Theorem B (see [10], Theorem 9). Let f be a nonconstant transcendental

meromorphic function, let n ≥ 5 be an integer, and a be a non-zero constant.

Then f ′(z)− afn(z) assumes all finite values infinitely often.

Recently, there have been significant results on Nevanlinna theory with re-
spect to difference operators, see, the papers [7, 8] by Halburd and Korhonen;
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[5] by Chiang and Feng. Many papers (see [2], [4], [9], [11-20]) have focused on
complex differences and given many difference analogues in value distribution
theory of entire functions.

Liu and Laine [18] obtain the following theorem.

Theorem C (see [18], Theorem 1.1). Let f be a transcendental entire function

of finite order, not of period c, where c is a non-zero constant, and let s(z) be
a nonzero small function of f . Then the difference polynomial fn(z) + f(z +
c) − f(z) − s(z) has infinitely many zeros in the complex plane, provided that

n ≥ 3.

In [3], Chen considered the difference counterpart of Theorem A and proved
a difference analogue of Hayman’s Theorem on entire function.

Theorem D (see [3], Theorem 1.1). Let f be a transcendental entire function of

finite order, not of period c, and let a(6= 0), b, c(6= 0) be three complex numbers.

Then Ψn(z) = f(z+c)−f(z)−afn(z) assumes all finite values infinitely often,

provided that n ≥ 3, and for every b one has λ(Ψn(z)− b) = σ(f).

Qi and Liu [22] investigated the existence of transcendental entire solutions of
non-linear difference equations. As an application, they obtained the following
result.

Theorem E (see [22], Theorem 2). Let f be a transcendental entire function of

finite order, c be a non-zero constant, m and n be integers satisfying n ≥ m > 0,
and let λ, µ be two complex numbers such that |λ|+|µ| 6= 0. If n ≥ 2, then either

fn(z)(λfm(z+c)+µfm(z)) assumes every non-zero finite values infinitely often

or f(z) = exp{ log t
c

z}g(z), where t = (−µ
λ
)

1

m , and g(z) is a periodic function

with period c.

The purpose of this paper is to study value distribution of meromorphic
function with respect to differences. Our methods of proof are also different
from those in the previous theorems.

Theorem 1.1. Let f be a non-constant meromorphic function of finite order,

s(z) be a small function of f(z). Suppose that P (z) is a polynomial, m is the

cardinality of the set {z : P (z) = 0} and deg(P (z)) −m > 3, then P (f(z)) +
f(z + c) − s(z) has at least one zero. If f is a transcendental meromorphic

function, then P (f(z)) + f(z + c)− s(z) has infinitely many zeros.

Zhang and Korhonen [24] researched the value distribution of q-difference
of meromorphic function. Corresponding to Theorem 1.1, we give an analogue
result in q-differences as follows.

Theorem 1.2. Let f be a meromorphic function of zero order, q ∈ C\{0}, s(z)
and P (z) satisfy the condition of Theorem 1.1. Then P (f(z)) + f(qz) − s(z)
has at least one zero. If f is a transcendental meromorphic function, then

P (f(z)) + f(qz)− s(z) has infinitely many zeros.

Remark 1. Some ideas of this paper are based on [6].
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2. Some lemmas

In order to prove our theorem, we need the following lemmas:
Lemma 2.1 is a difference analogue of the logarithmic derivative lemma,

given by Halburd and Korhonen [8] and Chiang and Feng [5] independently.

Lemma 2.1 (see [8], Theorem 2.1). Let f(z) be a meromorphic function of

finite order, and let c ∈ C and δ ∈ (0, 1). Then

m

(

r,
f(z + c)

f(z)

)

+m

(

r,
f(z)

f(z + c)

)

= O

(

T (r, f)

rδ

)

= S(r, f)

for all r outside of a possibly exceptional set with finite logarithmic measure.

Lemma 2.2 (see [23], Theorem 1.12). Let f(z) be a non-constant meromorphic

function, and let P (f) = a0f
n + a1f

n−1 + · · · + an, where a0(6= 0), a1, . . . , an
are small functions of f . Then

T (r, P (f)) = nT (r, f) + S(r, f).

Lemma 2.3 (see [1], Theorem 1.1). Let f be a non-constant zero-order mero-

morphic function, and q ∈ C\{0}. Then

m(r,
f(qz)

f(z)
) = S(r, f(z)).

Lemma 2.4 (see [24], Theorem 1.3). Let f be a non-constant zero-order mero-

morphic function, and q ∈ C\{0}. Then

N(r, f(qz)) = N(r, f(z)) + S(r, f(z))

on a set of lower logarithmic density 1.

Lemma 2.5. Let f(z) be a meromorphic function of finite order, c ∈ C. Then

N(r, f(z + c)) = N(r, f(z)) + S(r, f(z)).

Proof. Using Lemma 2.1 and the formula (12) in [13]

(2.1) N(r, f(z + c)) ≤ N(r + |c|, f) = N(r, f(z)) + S(r, f(z)).

Replacing f(z) with f(z − c), we have

N(r, f(z)) ≤ N(r, f(z − c)) + S(r, f(z − c)) = N(r, f(z − c)) + S(r, f(z))

for every c ∈ C, so we deduce that

(2.2) N(r, f(z)) ≤ N(r, f(z + c)) + S(r, f(z)).

From (2.1) and (2.2), we obtain that

N(r, f(z + c)) = N(r, f(z)) + S(r, f(z)).

Thus we completed the proof. �
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3. Proof of theorems

Proof of Theorem 1.1. We define Φ(z) = P (f) + f(z + c) − s(z). Obviously,
Φ(z) 6≡ C. If it is false, then P (f) ≡ f(z + c)− s(z) + C, so we have that

(3.1) T (r, P (f)) = nT (r, f) + S(r, f) = T (r, f(z + c)) + S(r, f),

where n = deg(P ) > 3. Using Lemma 2.1 and Lemma 2.5, we deduce that

T (r, f(z + c)) = m(r, f(z + c)) +N(r, f(z + c))(3.2)

≤ m(r, f(z)) +m(r,
f(z + c)

f(z)
) +N(r, f(z)) + S(r, f(z))

= T (r, f(z)) + S(r, f(z)).

The (3.1) and (3.2) imply T (r, f(z)) = S(r, f(z)), a contradiction, Therefore
Φ(z) 6≡ C.

Furthermore, we claim that

P ′(f)f ′

P (f)
−

Φ′

Φ
6≡ 0.

Suppose contrary to the claim that P ′(f)f ′

P (f) − Φ′

Φ ≡ 0. By integration we

obtain Φ(z) = aP (f(z)), where a is a constant, hence (a− 1)P (f(z)) = f(z +
c)− s(z).

If a = 1, we can deduce T (r, f(z + c)) = T (r, s(z)). This contradicts with
the hypothesis.

Let a 6= 1. By the similar argument as the Case of Φ(z) ≡ C, we get a
contradiction. So the claim is true.

By a simple calculation we get that

(3.3) P (f) =

Φ′

Φ
[f(z + c)− s(z)]− [f(z + c)− s(z)]′

P ′(f)f ′(z)

P (f)
−

Φ′

Φ

.

From Lemma 2.1, Lemma 2.2 and the First Fundamental Theorem, we ob-
tain that

T (r, P (f)) = nT (r, f(z)) + S(r, f)(3.4)

= T









r,

Φ′

Φ
[f(z + c)− s(z)]− [f(z + c)− s(z)]′

P ′(f)f ′(z)

P (f)
−

Φ′

Φ









≤ m(r, f(z)) +N(r,
Φ′

Φ
[f(z + c)− s(z)]− [f(z + c)− s(z)]′)

+m(r,
Φ′

Φ
−

[f(z + c)− s(z)]′

[f(z + c)− s(z)]
) +m(r,

P ′(f)f ′(z)

P (f)
−

Φ′

Φ
)
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+N(r,
P ′(f)f ′(z)

P (f)
−

Φ′

Φ
) + S(r, f(z)).

In the following we will estimate N(r, Φ′

Φ [f(z+ c)− s(z)]− [f(z+ c)− s(z)]′)
and

N(r,
P ′(f)f ′(z)

P (f)
−

Φ′

Φ
).

The poles of ϕ1(z) =
Φ′

Φ [f(z + c) − s(z)]− [f(z + c)− s(z)]′ come from the
zeros of Φ(z), the poles of P (f), the poles of f(z+ c) and the poles of s(z). By
hypothesis, N(r, s) = S(r, f). In the following we always assume that z0 is not
a pole of s, let z0 be a zero of Φ(z) or a pole of P (f) but not a pole of f(z+ c),
then z0 is a simple pole of ϕ1(z); if z0 is a common pole of P (f) and f(z + c),
and the multiplicity is m and n, respectively, then z0 is a pole of ϕ1(z) with
the multiplicity no more than n+ 1; if z0 is a pole of f(z + c) but not a pole
of P (f), we obtain that z0 is a simple pole of ϕ1(z) because of (3.3). Using
Lemma 2.5, we can get that

N(r,
Φ′

Φ
[f(z + c)− s(z)]− [f(z + c)− s(z)]′)(3.5)

≤ N(r,
1

Φ(z)
) +N(r, P (f)) +N(r, f(z + c)) + S(r, f(z))

= N(r,
1

Φ(z)
) +N(r, f(z)) +N(r, f(z)) + S(r, f(z)).

We deal with the poles of s(z) as above. The zeros of Φ(z), the poles of
P (f(z)), the poles of f(z + c) and the zeros of P (f(z)) compose the poles of

ϕ2(z) = P ′(f)f ′(z)
P (f) − Φ′

Φ . If z0 is a zero of Φ(z), zero of P (f(z)) or pole of

f(z + c), then z0 is a simple pole of ϕ2(z); if z0 is a pole of P (f(z)) but not a
pole of f(z + c), using the Laurent series, we can get that ϕ2(z) is analytic at
z0. Therefore, we conclude that

N(r,
P ′(f)f ′(z)

P (f)
−

Φ′

Φ
)(3.6)

≤ N(r,
1

Φ(z)
) +N(r,

1

P (f)
) +N(r, f(z + c)) + S(r, f(z))

= N(r,
1

Φ(z)
) +

m
∑

i=1

N(r,
1

f(z)− ai
) +N(r, f(z)) + S(r, f(z)),

where a1, a2, . . . , am are the solutions of equation P (z) = 0.
Combining (3.4), (3.5) and (3.6), we have that

nT (r, f(z))(3.7)

≤ 2m(r,
Φ′

Φ
) +m(r, f(z)) +m(r,

f ′(z + c)

f(z + c)
) +

m
∑

i=1

N(r,
1

f(z)− ai
)
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+ 2N(r,
1

Φ(z)
) + 2N(r, f(z)) +N(r, f(z)) + S(r, f(z)).

From (3.2) and Lemma 2.2, we deduce that T (r,Φ(z)) = O(T (r, f(z)).
Therefore, we get that

(3.8) m(r,
f ′(z + c)

f(z + c)
) = S(r, f(z)), m(r,

Φ′

Φ
) = S(r,Φ(z)) = S(r, f(z)).

By (3.8) and the First Fundamental Theorem, we can simplify (3.7) to be

(3.9) (n−m)T (r, f(z)) ≤ 3T (r, f(z)) + 2N(r,
1

Φ(z)
) + S(r, f(z)).

Because of n−m > 3, we deduce that

T (r, f(z)) ≤ CN(r,
1

P (f) + f(z + c)− s(z)
) + S(r, f(z)).

If P (f)+ f(z+ c)− s(z) has no zero, then T (r, f(z)) = S(r, f(z)), a contra-
diction.

When f is transcendental, by the same reason, we conclude that P (f) +
f(z + c)− s(z) has infinite many zeros.

This completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. We define Φ(z) = P (f(z))+f(qz)−s(z). The following
process is almost literally the same as the proof of Theorem 1.1, with Lemmas
2.3 and 2.4 replacing Lemmas 2.1 and 2.5.

This completes the proof of Theorem 1.2. �
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