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RELATIONSHIPS AMONG CHARACTERISTIC FINITE ELEMENT
METHODS FOR ADVECTION-DIFFUSION PROBLEMS

ZHANGXIN CHEN

Abstract. Advection-dominated transport problems possess difficulties in the de-
sign of numerical methods for solving them. Because of the hyperbolic nature of ad-
vective transport, many characteristic numerical methods have been developed such
as the classical characteristic method, the Eulerian-Lagrangian method, the trans-
port diffusion method, the modified method of characteristics, the operator splitting
method, the Eulerian-Lagrangian localized adjoint method, the characteristic mixed
method, and the Eulerian-Lagrangian mixed discontinuous method. In this paper
relationships among these characteristic methods are examined. In particular, we
show that these sometimes diverse methods can be given a unified formulation. This
paper focuses on characteristic finite element methods. Similar examination can be
presented for characteristic finite difference methods.

1. Introduction

Advection-diffusion transport problems arise in many areas of engineering and ap-
plied sciences [16, 25, 30]. These problems have a nondissipative (hyperbolic) advective
term and a dissipative (parabolic) part. When the parabolic part dominates, all reason-
able numerical methods perform well. When the hyperbolic part dominates, however,
strictly parabolic numerical methods do not perform well; they exhibit excessive non-
physical oscillations or excessive numerical diffusions. Although extremely fine mesh
refinement is possible to overcome some of the difficulties, it is not a feasible approach
due to excessive computational efforts.

Many classes of numerical methods have been developed for solving advection-diffusion
transport problems [16, 27, 30]. One of them is the class of characteristic methods.
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Because of the hyperbolic nature of advective transport, it is natural to look to a char-
acteristic treatment in solving these problems. There is a rich family of characteristic
methods in the literature, which bear a variety of names, the method of characteristics
(MOC) [28, 34, 40], the modified method of characteristics (MMOC) [23], the transport
diffusion method (TDM) [5, 29, 35], the Eulerian-Lagrangian method (ELM) [32, 33],
the operator splitting method (OSM) [24, 44], the Eulerian-Lagrangian localized ad-
joint method (ELLAM) [9, 37], the modified method of characteristics with adjusted
advection (MMOCAA) [20], the characteristic mixed method (CMM) [1, 22], and the
Eulerian-Lagrangian mixed discontinuous method (ELMDM) [12]. The common fea-
ture of this class is that the advective part is handled by a characteristic tracking
technique (in a Lagrangian framework) and the diffusive part is treated by a spatial
(Eulerian) approximation scheme. These characteristic methods can take reasonably
large time steps and do not numerically diffuse sharp solution fronts, and some of them
can conserve mass. In this paper relationships among these characteristic methods are
examined. In particular, we show that these sometimes diverse methods can be given a
unified formulation. We start with ELMDM, from which we recover all other methods.
This paper focuses on characteristic finite element methods; similar examination can be
presented for characteristic finite difference methods. Most of the earlier characteristic
methods are based on lowest-order finite elements in their respective setting. In this
paper we extend them to general finite elements.

The outline of this paper is as follows. In the next section, we describe a continuous
problem. In the third section, we state a unified formulation of characteristic methods.
In the fourth section, we deduce all the above mentioned methods from this formulation.
In the fifth section, we mention some generalizations. We conclude with two remarks
in the last section. We mention that we do not consider stability and convergence
properties of these characteristic methods, which can be found in the cited references.
Also, it would be interesting to compare the characteristic methods under consideration
computationally. This would involve tremendous work and is beyond the scope of this
paper. This paper focuses on the theoretical relationships among these methods.

2. A Continuous Problem

We consider the advection-diffusion equation for u on a bounded domain Ω ⊂ <d,
d ≤ 3, with boundary ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅:

(2.1)

∂t(φu) +∇ · (bu− a∇u) = f in Ω× J,

u = gD, on ΓD × J,

(bu− a∇u) · ν = gN , on ΓN × J,

u(x, 0) = u0(x) in Ω,

where
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Figure 1. An illustration for the jump definition.

J = (0, T ] (T > 0), a(x, t) ∈ (
L∞(Ω)

)d×d, b(x, t) ∈ (
L∞(Ω)

)d, φ(x, t) ∈ L∞(Ω), gD(x, t) ∈
L∞(ΓD), gN (x, t) ∈ L∞(ΓN ), f(x, t) ∈ L2(Ω) (for each t ∈ J) and u0(x) ∈ L2(Ω) are
given functions (the standard Sobolev spaces Hk(Ω) = W k,2(Ω) with the usual norms
are used in this paper), and ν is the outer unit normal to ∂Ω.

To introduce a unified formulation, we rewrite this equation as follows:

(2.2)

∂t(φu) +∇ · (bu− σ) = f in Ω× J,

σ = a∇u in Ω× J,

u = gD, on ΓD × J,

(bu− σ) · ν = gN , on ΓN × J,

u(x, 0) = u0(x) in Ω.

Namely, an auxiliary variable σ is introduced. This variable usually has a physical
meaning in applications such as the electric field in semiconductor modeling [13, 14] or
the velocity field in petroleum simulation [19, 25]. In the next two sections, we consider
the case where a = (aij) is positive definite:

(2.3) 0 < |ξ|−2
d∑

i,j=1

aij(x, t)ξiξj ≤ a∗ < ∞, (x, t) ∈ Ω× J, ξ 6= 0 ∈ <d,

with a∗ being constant. The situation without this assumption will be addressed in the
fifth section.

3. A Unified Formulation

For h > 0, let (Th)h be a sequence of finite element partitions of Ω; each subdomain
T ∈ Th has a Lipschitz boundary. Let Eo

h denote the set of all interior edges (respectively,
faces) e of Th, Eb

h the set of the edges (respectively, faces) e on ∂Ω, and Eh = Eo
h ∪ Eb

h.
We tacitly assume that Eo

h 6= ∅. Finally, each exterior edge or face has imposed on it
either Dirichlet or Neumann conditions, but not both.

For l ≥ 0, define

H l(Th) =
(
v ∈ L2(Ω) : v|T ∈ H l(T ), T ∈ Th

)
.
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Figure 2. An illustration of characteristics.

With each e ∈ Eh, we associate a unit normal vector ν. For e ∈ Eb
h, ν is just the outer

unit normal to ∂Ω. For e ∈ Eo
h, with e = T1 ∩ T2 and T1, T2 ∈ Th, ν is the unit normal

exterior to T2 with the corresponding jump definition (see Fig. 1): for v ∈ H l(Th) with
l > 1/2, we define the average and jump by

{v} =
1
2

(
(v|T1)|e + (v|T2)|e

)
, [v] = (v|T2)|e − (v|T1)|e.

For e ∈ Eb
h, we utilize the convention (from inside Ω)

{v} = v|e and [v] =

{
v if e ∈ ΓD,

0 if e ∈ ΓN .

For each positive integer N , let 0 = t0 < t1 < · · · < tN = T be a partition of J into
subintervals Jn = (tn−1, tn], with length ∆tn = tn− tn−1, 1 ≤ n ≤ N . Set vn = v(·, tn)
and

∆t = max
1≤n≤N

∆tn.

For any x ∈ Ω and two times 0 ≤ tn−1 < tn ≤ T , the hyperbolic part of problem
(2.1), φ∂tu + b · ∇u, defines the characteristic x̌n(x, t) along the interstitial velocity
ϕ = b/φ:

(3.1)
∂tx̌n = ϕ(x̌n, t), t ∈ Jn,

x̌n(x, tn) = x.

In general, we cannot follow the characteristic in (3.1) exactly; we can only follow
it approximately. There are many ways to solve the first order ordinary differential
equation (3.1). Let us consider the Euler method

(3.2) x̌n(x, t) = x− ϕ(x, tn)(tn − t), t ∈ [ť(x), tn],

where ť(x) = tn−1 if x̌n(x, t) does not backtrack to the boundary ∂Ω for t ∈ [tn−1, tn];
ť(x) ∈ (tn−1, tn] is the time instant when x̌n(x, t) intersects ∂Ω, i.e., x̌n(x, ť(x)) ∈ ∂Ω,
otherwise. See Fig. 2, where, for the purpose of demonstration, the characteristics are
shown for constant ϕ in one dimension. If ∆tn is sufficiently small (depending upon
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the smoothness of ϕ), the approximate characteristics do not cross each other, which
is assumed here. We denote the inverse of x̌n(·, t) by x̂n(·, t). For a function v(x, t), if
t ∈ Jn, we define

(3.3) v̂(x, t) = v(x̂n(x, t), tn).

Note that v̂(x, tn−1,+) = v̂n−1,+(x) follows the characteristics forward from tn−1 to tn

to become vn(x). We shall use this type of functions as test functions below.
Let Vh ×Wh be the finite element spaces for the approximation of σ and u, respec-

tively. They are finite dimensional and defined locally on each element T ∈ Th, so let
Vh(T ) = Vh|T and Wh(T ) = Wh|T . Neither continuity constraint nor boundary values
are imposed on Vh ×Wh. Examples of Vh ×Wh will be given later. Let (·, ·)S denote
the L2(S) inner product (we omit S if S = Ω).

A unified characteristic scheme for (2.1) is: Find (σh, uh) : {t1, . . . , tN } → Vh ×Wh

such that
(3.4)

(φnun
h, v)− (φn−1un−1

h , v̂n−1,+) +
∑

T∈Th

(σn
h ,∇v)T ∆tn −

∑

e∈Eh

({σn
h · ν}, [v])e ∆tn

=
∫

Jn


(f, v̂)−

∑

e∈ΓN

(gN , v̂)e −
∑

e∈ΓD

(gDb · ν, v̂)e


 dt, v ∈ Wh,

∑

T∈Th

((
a−1)n

σn
h −∇un

h, τ
)

T
+

∑

e∈Eh

([un
h], {τ · ν})e =

∑

e∈ΓD

(gn
D, τ · ν)e , τ ∈ Vh,

where v is extended by zero outside Ω̄. The initial approximation u0
h can be defined in

any reasonable manner.
System (3.4) has been introduced in [12], and stems from a space-time mixed for-

mulation of (2.2). It can be seen [12] that (3.4) has a unique solution and the stiffness
matrix arising from it is positive definite for any pair of Vh and Wh. All characteristic
methods under consideration will be derived from (3.4).

4. Relationships

In this section we derive various characteristic methods from (3.4) and discuss their
relationships.

4.1. The Eulerian-Lagrangian mixed discontinuous method (ELMDM). Let
Th be a partition into elements, say, simplexes, rectangular parallelepipeds, and/or
prisms where edges or faces on ∂Ω may be curved. In ELMDM, Vh(T ) and Wh(T ) can
be any sets of polynomials. For example, they can be chosen as follows:

(4.1) Vh(T ) = (Pr1(T ))d , Wh(T ) = Pr2(T ), r1, r2 ≥ 0,
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where Pr(T ) is the set of polynomials of degree at most r on T . Other choices can be
taken:

(4.2) Vh(T ) = (Qr1(T ))d , Wh(T ) = Qr2(T ), r1, r2 ≥ 0,

where Qr(T ) is the set of polynomials of degree at most r in each variable on T . With
these choices, (3.4) is the Eulerian-Lagrangian mixed discontinuous method (ELMDM)
introduced in [12]. For its stability and convergence, refer to [12]. Note that in ELMDM,
the set Pr(T ) can be used even on rectangular parallelepipeds and prisms. Also, any
combination of Pr1(T ) and Qr2(T ) can be utilized for Vh(T ) and Wh(T ). ELMDM
expresses local conservation of mass along the characteristics [12]. Moreover, it is
totally local, and the partition between adjacent elements does not have to match.
Thus ELMDM is of high localizability and parallelizability. While it is in mixed form,
it can be implemented in nonmixed form without introducing new variables. ELMDM
is based on mixed discontinuous finite element methods [4, 11, 13, 14, 17].

4.2. The characteristic mixed method (CMM). Let Th be as in §4.1 and a regular
partition. Associated with the partition Th, let Vh × Wh ⊂ H(div; Ω) × L2(Ω) be
the Raviart-Thomas-Nedelec [31, 36], the Brezzi-Douglas-Fortin-Marini [7], the Brezzi-
Douglas-Marini [8] (if d = 2), the Brezzi-Douglas-Durán-Fortin [6] (if d = 3), or the
Chen-Douglas [15] mixed finite element space, where

H(div; Ω) =
(
v ∈ (L2(Ω))d : ∇ · v ∈ L2(Ω)

)
.

Note that Vh ⊂ H(div; Ω) means that the normal components of elements in Vh are
continuous across interior boundaries. Because of this feature, (3.4) reduces to: Find
(σh, uh) : {t1, . . . , tN } → Vh ×Wh such that

(4.3)

(φnun
h, v)− (φn−1un−1

h , v̂n−1,+) +
∑

T∈Th

(σn
h ,∇v)T ∆tn −

∑

e∈Eh

(σn
h · ν, [v])e ∆tn

=
∫

Jn


(f, v̂)−

∑

e∈ΓN

(gN , v̂)e −
∑

e∈ΓD

(gDb · ν, v̂)e


 dt, v ∈ Wh,

∑

T∈Th

((
a−1)n

σn
h −∇un

h, τ
)

T
+

∑

e∈Eh

([un
h], τ · ν)e =

∑

e∈ΓD

(gn
D, τ · ν)e , τ ∈ Vh.

This is a generalization of CMM introduced in [1, 22], where Vh ×Wh was taken to be
the lowest-order Raviart-Thomas-Nedelec mixed finite element spaces. In particular,
Wh is the space of piecewise constants. With this, (4.3) becomes: Find (σh, uh) :
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{t1, . . . , tN } → Vh ×Wh such that

(4.4)

(φnun
h, v)− (φn−1un−1

h , v̂n−1,+)−
∑

e∈Eh

(σn
h · ν, [v])e ∆tn

=
∫

Jn


(f, v̂)−

∑

e∈ΓN

(gN , v̂)e −
∑

e∈ΓD

(gDb · ν, v̂)e


 dt, v ∈ Wh,

∑

T∈Th

((
a−1)n

σn
h , τ

)
T

+
∑

e∈Eh

([un
h], τ · ν)e =

∑

e∈ΓD

(gn
D, τ · ν)e , τ ∈ Vh,

which is the characteristic mixed method developed in [1, 22]. We remark that a
postprocessing procedure similar to that in [38] was used to improve the approximation
uh in [1]. This postprocessing procedure is antidiffusive, so a slope limiting process was
exploited to stablize their method. For the stability and convergence analysis of (4.4),
see [1]. CMM expresses local conservation of mass along the characteristics as well.
Note that with v in place of v̂n−1,+, backward Euler integration for the three terms
in the right-hand side of the first equation in (4.3), and an explicit treatment of the
advection, we can recover the usual mixed finite element method for parabolic problems
[39].

4.3. The Eulerian-Lagrangian localized adjoint method (ELLAM). To derive
ELLAM, we write (3.4) in Galerkin form (nonmixed form). For this, we introduce the
coefficient-dependent projections Pn

h : L2(Ω) → Vh by

(4.5)
(
(a−1)n(w − Pn

h w), τ
)

= 0 ∀τ ∈ Vh,

for w ∈ L2(Ω), and Rn
h : H1(Th) → Vh by

(4.6)
∑

T∈Th

(
(a−1)nRn

h(v), τ
)
T

= −
∑

e∈Eh

([v], {τ · ν})e +
∑

e∈ΓD

(gn
D, τ · ν)e ∀τ ∈ Vh,

for v ∈ H1(Ih). We remark that the definition of these two projection operators is
local.

4.3.1. The discontinuous case. Using (4.5) and (4.6), (3.4) can be rewritten as follows
[12]: Find uh : {t1, . . . , tN } → Wh such that
(4.7)
(φnun

h, v)− (φn−1un−1
h , v̂n−1,+) +

∑

T∈Th

(Pn
h (an∇un

h) ,∇v)T ∆tn

−
∑

e∈Eh

([un
h], {Pn

h (an∇v) · ν})e ∆tn −
∑

e∈Eh

({(Pn
h (an∇un

h) + Rn
h(un

h)) · ν} , [v])e ∆tn

=
∫

Jn


(f, v̂)−

∑

e∈ΓN

(gN , v̂)e −
∑

e∈ΓD

(gDb · ν, v̂)e


 dt

−
∑

e∈ΓD

(gn
D, Pn

h (an∇v) · ν)e ∆tn ∀v ∈ Wh,
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with σh given by

(4.8) σn
h = Pn

h (an∇un
h) + Rn

h(un
h).

Namely, (3.4) is equivalent to (4.7) and (4.8). When a is piecewise constant and the
following relation holds:

(4.9) ∇Wh(T ) ⊂ Vh(T ), T ∈ Th,

(4.7) becomes: Find uh : {t1, . . . , tN } → Wh satisfying
(4.10)
(φnun

h, v)− (φn−1un−1
h , v̂n−1,+) +

∑

T∈Th

(an∇un
h,∇v)T ∆tn −

∑

e∈Eh

([un
h], {an∇v · ν})e ∆tn

−
∑

e∈Eh

({an∇un
h · ν} , [v])e ∆tn +

∑

T∈Th

(
(a−1)nRn

h(un
h), Rn

h(v)
)
T
∆tn

=
∫

Jn


(f, v̂)−

∑

e∈ΓN

(gN , v̂)e −
∑

e∈ΓD

(gDb · ν, v̂)e


 dt

−
∑

e∈ΓD

(gn
D, (an∇v −Rn

h(un
h)) · ν)e ∆tn ∀v ∈ Wh.

While it is derived from (3.4) under the assumption that a is piecewise constant, (4.10)
(as it is) is a finite element method regardless of a being variable or constant. When Vh

and Wh are chosen as in §4.1, (4.10) can be thought of as ELLAM with discontinuous
finite elements. In this case, ELLAM also preserves mass locally. For its analysis, refer
to [12].

4.3.2. The continuous case. We now consider the case where Wh ⊂ H1(Ω). For sim-
plicity, let

(4.11) ΓD = (x ∈ ∂Ω : b · ν ≥ 0) , ΓN = (x ∈ ∂Ω : b · ν < 0) .

Define
Mh = Wh ∩

(
v ∈ H1(Ω) : v

∣∣
ΓD

= 0
)

.

Note that [v] = 0 on Eh for any v ∈ Mh by continuity and convention. Consequently,
(4.10) reduces to: Find un

h ∈ Mh + gn
D, n = 1, . . . ,N , such that

(4.12)

(φnun
h, v)− (φn−1un−1

h , v̂n−1,+) + (an∇un
h,∇v)∆tn

=
∫

Jn


(f, v̂)−

∑

e∈ΓN

(gN , v̂)e


 dt ∀v ∈ Mh.

This is an extension of ELLAM devised in [9, 37], where piecewise linear polynomials
were used. Also, boundary conditions were treated in an ad hoc manner in [9, 37],
while they are incorporated into the weak formulation in a natural way in (4.12).
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ELLAM with continuous finite elements expresses global conservation of mass. For its
convergence with piecewise linear polynomials, refer to [42, 43].

4.4. The modified method of characteristics (MMOC). MMOC has an inherent
difficulty to handle the general boundary boundary in (2.1) [23]. Traditionally, it
was developed for an advection-diffusion transport problem with a periodic boundary
condition [18, 23, 26]. To derive it from (3.4), we shall follow this tradition. Define

(4.13) Mh = Wh ∩H1(Ω).

With a periodic boundary condition and backward Euler integration for the first term
in the right-hand side of (4.12), this equation becomes: Find un

h ∈ Mh, n = 1, . . . ,N ,
such that

(4.14) (φnun
h, v)− (φn−1un−1

h , v̂n−1,+) + (an∇un
h,∇v) ∆tn = (fn, v)∆tn ∀v ∈ Mh.

For each n, let

G(x) ≡ G(x, tn) = x− ϕ(x, tn)∆tn.

We assume that ϕ has bounded first partial derivatives in space. Then, for ∆tn suf-
ficiently small, G(·) is a differentiable homeomorphism of Ω into itself. Moreover, the
Jacobian of this transformation is

J
(
G(x)

)
=




1− ∂x1ϕ
n
1∆tn −∂x2ϕ

n
1∆tn −∂x3ϕ

n
1∆tn

−∂x1ϕ
n
2∆tn 1− ∂x2ϕ

n
2∆tn −∂x3ϕ

n
2∆tn

−∂x1ϕ
n
3∆tn −∂x2ϕ

n
3∆tn 1− ∂x3ϕ

n
3∆tn


 ,

where ϕ = (ϕ1, ϕ2, ϕ3), and its determinant equals

(4.15)
∣∣J(

G(x)
)∣∣ = 1−∇ · ϕn∆tn + O

(
(∆tn)2

)
.

With a change of variable, ∆tn being sufficiently small, and (4.15), the second term in
the left-hand side of (4.14) can be expressed by
(4.16)(

φn−1un−1
h , v̂n−1,+

)

=
∫

Ω
φn−1(x)un−1

h (x)v
(
x̂n(x, tn−1)

)
dx

=
∫

Ω
φn−1

(
x̌n(x, tn−1)

)
un−1

h

(
x̌n(x, tn−1)

)
v(x)

∣∣J(
G(x)

)∣∣ dx

=
∫

Ω
φn−1

(
x̌n(x, tn−1)

)
un−1

h

(
x̌n(x, tn−1)

)
v(x)

(
1−∇ · ϕn∆tn + O

(
(∆tn)2

))
dx.
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Consequently, (4.14) can be rewritten as follows: Find un
h ∈ Mh, n = 1, . . . ,N , such

that

(4.17)
(φnun

h, v)−
(
φ̌n−1ǔn−1

h , v
)

+ (an∇un
h,∇v)∆tn

= (fn, v)∆tn +
(
φ̌n−1ǔn−1

h , v
)

O (∆tn) ∀v ∈ Mh,

where ǔn−1
h = un−1

h

(
x̌n(x, tn−1)

)
. Ignoring the last term in the right-hand side of (4.17),

we see that

(4.18) (φnun
h, v)−

(
φ̌n−1ǔn−1

h , v
)

+ (an∇un
h,∇v)∆tn = (fn, v)∆tn ∀v ∈ Mh.

Equation (4.18) is an extension of MMOC originally introduced in [23], where φ was
assumed to be independent of t. As mentioned in §4.3.2, (4.12) conserves mass globally.
If the coefficients φ and b are constants, it follows from (4.15) that MMOC globally
conserves mass as well. However, in general, a systematic conservation error of size
O (∆tn) should be expected from MMOC. In the case where ∇ · ϕ = 0, a systematic
error of size O

(
(∆tn)2

)
can occur.

MMOC is considered for continuous finite elements; its analysis can be found in
[18, 23]. MMOC can be also developed for discontinuous elements [12], as for ELLAM
in (4.10). The transport diffusion method (TDM) [5, 29, 35] and the operator splitting
method (OSM) [24, 44] are virtually the same as MMOC, although they were presented
in slightly different forms.

4.5. The modified method of characteristics with adjusted advection (MMO-
CAA). For MMOC to have a global mass conservation, a scheme different from EL-
LAM was developed in [20], i.e., the modified method of characteristics with adjusted
advection (MMOCAA). MMOCAA is defined from MMOC by perturbing the foot of
characteristics slightly [20, 21].

With Mh defined in (4.13) and u0
h ∈ Mh given, for n ≥ 1 set

Qn−1
h =

∫

Ω
φn−1(x)un−1

h (x)dx, Q̌n−1
h =

∫

Ω
φ̌n−1(x)ǔn−1

h (x)dx.

As mentioned above, Qn−1
h 6= Q̌n−1

h in general. Set

x−n = x̌n(x, tn−1)− γϕ(x, tn) (∆tn)2 , x+
n = x̌n(x, tn−1) + γϕ(x, tn) (∆tn)2 ,

where γ is a fixed constant, normally chosen to be less than one [20]. Define

ũn−1
h (x) =





max
(
un−1

h (x−n ) , un−1
h (x+

n )
)

if Q̌n−1
h < Qn−1

h ,

min
{
un−1

h (x−n ) , un−1
h (x+

n )
)

if Q̌n−1
h > Qn−1

h ,

and
Q̃n−1

h =
∫

Ω
φ̌n−1(x)ũn−1

h (x)dx.
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If Q̌n−1
h = Q̃n−1

h , we must accept that mass cannot be conserved; otherwise, find Λn−1 ∈
< such that

(4.19) Qn−1
h = Λn−1Q̌n−1

h + (1− Λn−1)Q̃n−1
h .

Define

(4.20) ūn−1
h = Λn−1ǔn−1

h + (1− Λn−1)ũn−1
h ,

and

(4.21) Q̄n−1
h =

∫

Ω
φ̌n−1(x)ūn−1

h (x)dx.

Clearly, Q̄n−1
h = Qn−1

h , so the conservation law is preserved. Now, continue in n with
ūn−1

h in place of ǔn−1
h in MMOC (4.18); i.e., find un

h ∈ Mh, n = 1, . . . ,N , such that

(4.22) (φnun
h, v)−

(
φ̌n−1ūn−1

h , v
)

+ (an∇un
h,∇v)∆tn = (fn, v)∆tn ∀v ∈ Mh.

For the analysis of MMOCAA, see [21]. Again, MMOCAA can be considered for
discontinuous finite elements [12].

4.6. The method of characteristics (MOC). The classical method of characteris-
tics is a finite difference method that is based on the forward tracking of particles in
cells or elements [28, 34, 40]. Here we extend it to the finite element setting. Again, we
consider (2.1) with a periodic boundary condition. With the notation in (3.3) and the
above definition of Mh in (4.13), the explicit finite element method of characteristics is
defined by: Find un

h ∈ Mh, n = 1, . . . ,N , such that

(4.23) (φ̂nûn
h, v)−

(
φn−1un−1

h , v
)

+
(
an−1∇un−1

h ,∇v
)

∆tn = (fn, v)∆tn ∀v ∈ Mh.

The Eulerian-Lagrangian method (ELM) developed in [32, 33] is similar to (4.23). It
is known that the forward tracked characteristic method gives rise to the difficulty
of distorted grids. Also, this explicit method requires that a Courant-Friedrich-Lewy
(CFL) time step constraint be imposed. An implicit forward tracked characteristic
method, i.e., the finite elements incorporating characteristics (FEIC), was introduced
in [41]. FEIC uses space-time elements with edges oriented along characteristics. Again,
it distorts grids, particularly in multi-dimensional cases. Further, it has restrictions on
the space-time elements near the boundary of the space domain. In one dimension,
for example, at each time step the treatment of boundary conditions in FEIC exploits
one triangular space-time element at the inlet boundary, which effectively limits the
Courant number to be of order one.
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5. Remarks on a Degenerate Diffusion

So far we have assumed that (2.3) holds. We now consider the case where a = (aij)
is symmetric and positive semi-definite:

(5.1) 0 ≤ |ξ|−2
d∑

i,j=1

aij(x, t)ξiξj ≤ a∗ < ∞, (x, t) ∈ Ω× J, ξ ∈ <d.

When (5.1) holds, there is a symmetric, positive semi-definite matrix κ such that

(5.2) a = κκ.

Now, (2.2) is of the form

(5.3)

∂t(φu) +∇ · (bu− κσ) = f in Ω× J,

σ = κ∇u in Ω× J,

u = gD, on ΓD × J,

(bu− κσ) · ν = gN , on ΓN × J,

u(x, 0) = u0(x) in Ω.

Corresponding to (5.3), the counterpart of (3.4) is: Find (σh, uh) : {t1, . . . , tN } →
Vh ×Wh such that
(5.4)

(φnun
h, v)− (φn−1un−1

h , v̂n−1,+) +
∑

T∈Th

(κnσn
h ,∇v)T ∆tn −

∑

e∈Eh

({κnσn
h · ν}, [v])e ∆tn

=
∫

Jn


(f, v̂)−

∑

e∈ΓN

(gN , v̂)e −
∑

e∈ΓD

(gDb · ν, v̂)e


 dt, v ∈ Wh,

∑

T∈Th

(σn
h − κn∇un

h, τ)T +
∑

e∈Eh

([un
h], {κnτ · ν})e =

∑

e∈ΓD

(gn
D, κnτ · ν)e , τ ∈ Vh.

All the characteristic methods considered in the previous section except CMM can be
recovered from (5.4) in the same fashion. CMM inherently requires that a be positive
definite. To relax this requirement, we can employ the expanded concept in CMM
[2, 10]; we do not pursue this.

6. Concluding Remarks

Relationships among various characteristic methods are examined in this paper. We
begin with a unified scheme, from which we derive ELMDM, CMM, ELLAM, MMOC
(TDM, OSM), MMOCAA, and MOC (ELM, FEIC). While ELMDM is in mixed form,
it utilizes any finite element spaces, which do not need to satisfy the inf-sup condition.
It is also totally local and directly applies to a degenerate diffusion problem. It can
be implemented in nonmixed form without introducing new variables. CMM requires
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a nondegenerate diffusion coefficient. Moreover, it uses the property that the normal
components of elements in the vector space are continuous across interior boundaries.
The former requirement can be relaxed via the expanded concept, while the latter can
be removed by introducing Lagrange multipliers over boundaries [3]. Both ELMDM and
CMM conserve mass locally. ELLAM with discontinuous finite elements conserves mass
locally, while it with continuous elements conserves mass globally. MMOC has certain
difficulties, especially with regard to mass conservation. MMOCAA (with continuous
finite elements) evolves from MMOC to conserve mass globally, but it still has the
inherent difficulty in the treatment of boundary conditions. The classical MOC gives
rise to the usual difficulty of distorted Lagrangian grids in over one dimension, which
backtracking methods avoid.
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