Browse > Article
http://dx.doi.org/10.4134/JKMS.2014.51.4.679

PERFORMANCE OF RICHARDSON EXTRAPOLATION ON SOME NUMERICAL METHODS FOR A SINGULARLY PERTURBED TURNING POINT PROBLEM WHOSE SOLUTION HAS BOUNDARY LAYERS  

Munyakazi, Justin B. (Department of Mathematics and Applied Mathematics University of the Western Cape)
Patidar, Kailash C. (Department of Mathematics and Applied Mathematics University of the Western Cape)
Publication Information
Journal of the Korean Mathematical Society / v.51, no.4, 2014 , pp. 679-702 More about this Journal
Abstract
Investigation of the numerical solution of singularly perturbed turning point problems dates back to late 1970s. However, due to the presence of layers, not many high order schemes could be developed to solve such problems. On the other hand, one could think of applying the convergence acceleration technique to improve the performance of existing numerical methods. However, that itself posed some challenges. To this end, we design and analyze a novel fitted operator finite difference method (FOFDM) to solve this type of problems. Then we develop a fitted mesh finite difference method (FMFDM). Our detailed convergence analysis shows that this FMFDM is robust with respect to the singular perturbation parameter. Then we investigate the effect of Richardson extrapolation on both of these methods. We observe that, the accuracy is improved in both cases whereas the rate of convergence depends on the particular scheme being used.
Keywords
singular perturbations; turning point problems; boundary layers; fitted operator finite difference methods; fitted mesh finite difference method; Richardson extrapolation; error estimates;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. B. Munyakazi and K. C. Patidar, Limitations of Richardson's extrapolation for a high order fitted mesh method for self-adjoint singularly perturbed problems, J. Appl. Math. Comput. 32 (2010), no. 1, 219-236.   DOI
2 R. Vulanovic and P. A. Farrell, Continuous and numerical analysis of a multiple boundary turning point problem, SIAM J. Numer. Anal. 30 (1993), no. 5, 1400-1418.   DOI   ScienceOn
3 T. Linss, Robustness of an upwind finite difference scheme for semilinear convection-diffusion problems with boundary turning points, J. Comput. Math. 21 (2003), no. 4, 401-410.
4 T. Linss and R. Vulanovic, Uniform methods for semilinear problems with an attractive turning point, Novi Sad J. Math. 31 (2001), no. 2, 99-114.
5 J. J. H. Miller, E. O'Riordan, and G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems, Word Scientific, Singapore, 1996.
6 J. B. Munyakazi and K. C. Patidar, On Richardson extrapolation for fitted operator finite difference methods, Appl. Math. Comput. 201 (2008), no. 1-2, 465-480.   DOI   ScienceOn
7 J. B. Munyakazi and K. C. Patidar, A fitted operator finite difference method for a singularly perturbed turning point problem whose solution has boundary layers, submitted.
8 M. C. Natividad and M. Stynes, Richardson extrapolation for a convection-diffusion problem using a Shishkin mesh, Appl. Numer. Math. 45 (2003), no. 2-3, 315-329.   DOI   ScienceOn
9 K. C. Patidar, High order fitted operator numerical method for self-adjoint singular perturbation problems, Appl. Math. Comput. 171 (2005), no. 1, 547-566.   DOI   ScienceOn
10 K. C. Patidar, High order parameter uniform numerical method for singular perturbation problems, Appl. Math. Comput. 188 (2007), no. 1, 720-733.   DOI   ScienceOn
11 L. F. Richardson, The deferred approach to the limit. I: Single lattice, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 226 (1927), 299-349.   DOI
12 H.-G. Roos and R. Vulanovic, A higher order uniform convergence result for a turning point problem, Z. Anal. Anwend. 12 (1993), no. 4, 723-728.   DOI
13 G. I. Shishkin, Robust novel high-order accurate numerical methods for singularly perturbed convection-diffusion problems, Math. Model. Anal. 10 (2005), no. 4, 393-412.
14 G. I. Shishkin and L. P. Shishkina, The Richardson extrapolation technique for quasilinear parabolic singularly perturbed convection-diffusion equations, J. Phys.: Conf. Ser. 55 (2006), 203-213.   DOI   ScienceOn
15 N. Adzic, Jacobi approximate solution of the boundary layer problem, Zb. Rad. Prirod.-Mat. Fak. Ser. Math. 23 (1993), no. 1, 347-359.
16 N. Adzic, Domain decomposition for spectral approximation of the layer solution, Zb. Rad. Prirod.-Mat. Fak. Ser. Math. 24 (1994), no. 1, 347-357.
17 L. R. Abrahamsson, A priori estimates for solutions of singular perturbations with a turning point, Stud. Appl. Math. 56 (1977), no. 1, 51-69.   DOI
18 N. Adzic, Spectral approximation for single turning point problem, Z. Angew. Math. Mech. 72 (1992), no. 6, 621-624.   DOI
19 N. Adzic, Jacobi polynomials in spectral approximation for shock layer problems, Zb. Rad. Prirod.-Mat. Fak. Ser. Math. 25 (1995), no. 1, 53-65.
20 V. F. Andreev and A. M. Popov, Using Richardson's method to construct high-order accurate adaptive grids, Comput. Math. Model 10 (1999), no. 3, 227-238.   DOI
21 E. P. Doolan, J. J. H. Miller, and W. H. A. Schilders, Uniform Numerical Methods for Problems with Initial and Boundary Layers, Boole Press, Dublin, 1980.
22 R. Fossmeier, On Richardson extrapolation for finite difference methods on regular grids, Numer. Math. 55 (1989), no. 4, 451-462.   DOI
23 A. Frohner, T. Linss, and H.-G. Roos, Defect correction on Shishkin-type meshes, Numer. Algorithms. 26 (2001), no. 3, 281-299.   DOI
24 A. Frohner and H.-G. Roos, The ${\varepsilon}$-uniform convergence of a defect correction method on a Shishkin mesh, Appl. Numer. Math. 37 (2001), no. 1-2, 79-94.   DOI   ScienceOn
25 A. E. Berger, H. Han, and R. B. Kellogg, A priori estimates and analysis of a numerical method for a turning point problem, Math. Comp. 42 (1984), no. 166, 465-492.   DOI   ScienceOn
26 J. A. Gaunt, The deferred approach limit. II: interpenetrating lattices, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 226 (1927), 350-361.
27 D. C. Joyce, Survey of extrapolation process in numerical analysis, SIAM Rev. 13 (1971), no. 4, 435-490.   DOI   ScienceOn
28 P. A. Lagerstrom, Matched Asymptotic Expansions, Springer Verlag, New York, 1988.