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COMPARISON OF NUMERICAL METHODS (BI-CGSTAB, OS,
MG) FOR THE 2D BLACK–SCHOLES EQUATION

Darae Jeong a, Sungki Kim b, Yongho Choi c, Hyeongseok
Hwang d and Junseok Kim e, ∗

Abstract. In this paper, we present a detailed comparison of the performance of
the numerical solvers such as the biconjugate gradient stabilized, operator splitting,
and multigrid methods for solving the two-dimensional Black–Scholes equation. The
equation is discretized by the finite difference method. The computational results
demonstrate that the operator splitting method is fastest among these solvers with
the same level of accuracy.

1. Introduction

Black and Scholes [2] derived the Black–Scholes (BS) partial differential equation
for the valuation of a European option under the no-arbitrage assumption. Various
types of exotic options are popular in the market. Finding the analytic closed-
form solution of the BS equation is not easy. Therefore, it is necessary to apply
numerical methods to obtain the values of exotic options. The finite difference
methods (FDM), which converts the differential equations into a system of difference
equations, are very popular to approximate the solution of the BS equations [5].
There have been many numerical methods and among them, we focus on biconjugate
gradient stabilized (Bi-CGSTAB) [21], operator splitting (OS) [11] and multigrid
(MG) [16] methods in this paper.

Bi-CGSTAB method was introduced by H.A. van der Vorst [21], which is similar
to conjugate gradient stabilized (CGS) method with favorable stability properties.
As a iterative type method, Bi-CGSTAB method is appropriate to solve the problem
when the coefficient matrix of problem is large and sparse. MG method introduced
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by R.P. Fedorenko [6, 7] is numerical algorithm using a hierarchy of discretizations.
By employing different mesh size, a multigrid algorithms are combined by smoothers
and coarse-grid correction procedures. For this reason, this method provides rapid
convergence rates than the standard iterative techniques such as the Jacobi and
Gauss–Seidel schemes. There have been applications in option pricing by many
researchers [12, 15, 16, 17]. On option pricing, OS method was proposed by S.
Ikonen and J. Toivanen [11]. This method is by decoupling a complex equation
in various simpler equations and solving the simpler equation with discretization.
Since then, many researchers [4, 5, 12] have applied OS method to the BS equation.

For different types of problems, different system solvers gain advantages over the
other methods, see [19]. To show the performance of the finite difference schemes
for the two-dimensional problems, we compare the well-known solvers, Bi-CGSTAB,
OSM, and MG methods, for the two-dimensional BS equations. There also have been
other system solvers, such as alternating direction method (ADI) [3] and generalized
minimal residual algorithm (GMRES) [13, 18], however we omit the comparison
in this work since GMRES and ADI methods are similar to Bi-CGSTAB and OS
methods, respectively. The outline of the paper is as follows. In Section 2, we first set
up the problem to price stock options. In Section 3, we describe the general setting
of numerical strategies and explain different solvers of linear system. In Section 4,
we show the comparison of the numerical experiments between the solvers. The
conclusions are drawn in Section 5.

2. Black-Scholes Equations

Let si(t), i = 1, 2, . . . , n, be the price of i -th asset at time t and be the unique
solution to a geometric Brownian motion with a constant volatility σi > 0, i =
1, 2, . . . , n. Let S = (s1, s2, . . . , sn) be the vector of asset prices and ρij , i, j =
1, . . . , n, be the correlation coefficients between Brownian motions. We assume that
the interest rate is constant, V (S, t) is the value of a European option that underlies
assets 1, . . . , n, T is the expiration date, and Λ(S) is the payoff function. By following
the ‘no-arbitrage’ argument for the BS equation, a partial differential equation for
V is derived to be

(2.1)
∂V

∂t
+

n∑

i=1

rsi
∂V

∂si
+

1
2

n∑

i=1

n∑

j=1

σiσjρijsisj
∂2V

∂si∂sj
− rV = 0.

In this paper, we use the original BS model with two underlying assets to keep
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this presentation simple. However, we can easily extend the current method for
more than two underlying assets [1]. Let us consider the computational domain
Ω = (0, L)× (0,M) and x = s1 and y = s2. Let us first convert the given backward
equation (2.1) to the following forward equation by a change of variable τ = T −
t, u(x, y, τ) = V (s1, s2, T − τ):

∂u

∂τ
=

1
2
σ2

1x
2 ∂2u

∂x2
+ σ1σ2ρxy

∂2u

∂xy
+

1
2
σ2

2y
2 ∂2u

∂y2
+ rx

∂u

∂x
+ ry

∂u

∂y
− ru,(2.2)

u(x, y, 0) = Λ(x, y) for (x, y, τ) ∈ Ω× (0, T ].

We use the following linear boundary conditions on all boundaries,

∂2u

∂x2
(0, y, τ) =

∂2u

∂x2
(L, y, τ) =

∂2u

∂y2
(x, 0, τ) =

∂2u

∂y2
(x,M, τ) = 0.

3. Numerical Method

In this paper, we discretize the partial derivatives in Eq. (2.2) using finite differ-
ence methods that have been used in option pricing.

3.1. Discretization Let us first discretize the given computational domain Ω =
(0, L) × (0,M) as a uniform grid with a space step h = L/Nx = M/Ny and a time
step ∆τ = T/Nτ . Here, Nx and Ny are the number of grid points, and Nτ is the
total number of time steps. Let the numerical approximations of the solution be
un

ij ≈ u ((i− 0.5)h, (j − 0.5)h, n∆τ) , where i = 1, . . . , Nx, j = 1, . . . , Ny, and n =
0, 1, . . . , Nτ . We use ∂u/∂x ≈ (ui+1,j−uij)/h, ∂2u/∂x2 ≈ (ui−1,j−2uij +ui+1,j)/h2,

∂2u/∂x∂y ≈ (ui+1,j+1 + uij − ui,j+1 − ui+1,j)/h2, and ∂u/∂τ ≈ (un+1 − un)/∆τ.

3.2. Bi-CGSTAB The bi-conjugate gradient stabilized method (Bi-CGSTAB) was
developed to solve nonsymmetric linear systems [21]. We solve Eq. (2.2) by Bi-
CGSTAB method. We write Eq. (2.2) in a discretizad form:

un+1
ij − un

ij

∆τ
= LBSun+1

ij ,

where
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Next, to renumber the multi-indexed data uij as the single-indexed data Ul, we
denote by Ul = UNx(j−1)+i = uij , where l = 1, . . . , Nx × Ny, i = 1, . . . , Nx, and
j = 1, . . . , Ny. Consequently, we get the following system

AUn+1 = bn,(3.1)

where Un+1 = (Un+1
1 , · · · , Un+1

Nx×Ny
), bn = (Un

1 /∆τ, · · · , Un
Nx×Ny

/∆τ), and matrix
A is composed of coefficients of U. To solve the linear system (3.1), Bi-CGSTAB
starts with an intial guess U0 and proceeds as follows:
Bi-CGSTAB cycle

Define the maximum number of iteration ITER and the error tolerance TOL

Set r0 = b−AU0, r̂0 = r0, ρ0 = α = ω0 = 1, v0 = p0 = 0, k = 1

While (k ≤ ITER & ‖rk‖2 > TOL)

ρk =
N∑

i=1

r̂0
i r

k−1
i , β = αρk/(ρk−1ωk−1)

pk = rk−1 + β(pk−1 − ωk−1vk−1), vk = Apk, α = ρk/

N∑

i=1

r̂0
j v

k
i

s = rk−1 − αvk, t = As, ωk =
N∑

i=1

tisi/
N∑

i=1

t2i

Uk = Uk−1 + αpk + ωks, rk = s− ωkt, k = k + 1

End While

3.3. Operator splitting method The basic idea of operator splitting method is
to split the spatial operator into one-dimensional operators and then fractional time
steps are performed with these simpler operators. The operator splitting method
computes the solutions in two time steps:

un+1
ij − un
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∆τ
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where the discrete difference operators Lx
BS and Ly

BS are defined by
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+
1
2
σ1σ2ρxiyj

u∗i+1,j+1 + u∗ij − u∗i,j+1 − u∗i+1,j

h2
.

In OS method, we first solve (u∗ij−un
ij)/∆τ = Lx

BSu∗ij , and then we solve (un+1
ij −

u∗ij)/∆τ = Ly
BSun+1

ij .

3.4. Multigrid method Multigrid methods belong to the class of fastest itera-
tions, because their convergence rate is independent of the step size h, see [8]. We
define a discrete domain by Ωk = {(h(i− 0.5), h(j − 0.5))|1 ≤ i, j ≤ 2k+1}. Ωk−1 is
coarser than Ωk by factor 2. The multigrid solution of the discrete BS equation

(3.2)
un+1

ij − un
ij

∆τ
= LBSun+1

ij

makes use of a hierarchy of meshes created by successively coarsening the original
mesh, see Fig. 1.

Ω3 (16× 16) Ω2 (8× 8) Ω1 (4× 4) Ω0 (2× 2)

Figure 1. A sequence of coarse grids starting with h.

We use a multigrid cycle to solve the discrete system at the implicit time level. A
pointwise Gauss–Seidel relaxation scheme is used as the smoother in the multigrid
method. We first rewrite the above equation (3.2) by L(un+1

ij ) = un
ij for each (i, j) ∈

Ωk, where L(un+1
ij ) = un+1

ij −∆τLBSun+1
ij . Given the number ν1 and ν2 of pre- and

post- smoothing relaxation sweeps, an iteration step for the multigrid method using
the V-cycle is formally written as follows [20]. We use a notation un

k as a numerical
solution on the discrete domain Ωk at time t = n∆τ . Given un

k , we want to find
un+1

k solution which satisfies equation (3.2). At the very beginning of the multigrid
cycle the solution from the previous time step is used to provide an initial guess
for the multigrid procedure. First, let un+1,0

k = un
k . The algorithm of the multigrid

method for solving the discrete BS equation (3.2) is following:

Multigrid cycle

un+1,m+1
k = MGcycle(k, un+1,m

k , Lk, u
n
k , ν1, ν2).
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Step 1) Presmoothing: perform ν1 Gauss-Seidel relaxation steps.

(3.3) ūn+1,m
k = SMOOTHν1(un+1,m

k , Lk, u
n
k),

Step 2) Coarse grid correction
• Compute the residual on Ωk: d̄m

k = un
k − Lk(ū

n+1,m
k ).

• Restriction to Ωk−1: d̄m
k−1 = Ik−1

k d̄m
k , ūn+1,m

k−1 = Ik−1
k ūn+1,m

k .

• Compute an approximation soultion on Ωk−1:

(3.4) Lk−1(u
n+1,m
k−1 ) = d̄m

k−1.

• Solve the equation (3.4):

ûn+1,m
k−1 =

{
MGcycle(k − 1, ūn+1,m

k−1 , Lk−1, d̄
n
k−1, ν1, ν2) for k > 1

apply the smoothing procedure in (3.3) for k = 1.

• Interpolate the correction: ûm
k = Ik

k−1û
m
k−1.

• Compute the corrected approximation on Ωk: um, after CGC
k = ūn+1,m

k + ûm
k .

Step 3) Postsmoothing: un+1,m+1
k = SMOOTHν2(um, after CGC

k , Lk, u
n
k).

4. Computational Results

In this section, we compare the performance of the numerical methods (Bi-
CGSTAB, OS, and MG) using CPU times. Each method is implemented using
MATLAB [14]. We consider three types of two-asset cash-or-nothing options. The
cash-or-nothing options are useful building blocks for constructing more complex ex-
otic option products and they are widely traded in the real world financial market.

Case 1: A two asset cash-or-nothing call pays out a fixed cash amount K if
asset one, x, is above the strike X1 and asset two, y, is above strike X2 at
expiration. The payoff is given by

Λ(x, y) =
{

K if x ≥ X1 and y ≥ X2,
0 otherwise .

Case 2. and Case 3.:

Λ(x, y) =
{

K if x ≤ X1 and y ≤ X2,
0 otherwise .

, Λ(x, y) =
{

K if x ≥ X1 and y ≤ X2,
0 otherwise .

Figures 2(a), (b), and (c) show the payoff function Λ(x, y) for Case 1, Case 2,
and Case 3, respectively. The closed-form solutions [9] are Case 1 : u(x, y, T ) =
Ke−rT M(α, β; ρ), Case 2 : u(x, y, T ) = Ke−rT M(−α,−β; ρ), Case 3 : u(x, y, T ) =
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Figure 2. Payoff functions of (a)Case 1, (b)Case 2, and (c)Case 3, respectively.

Ke−rT M(−α, β;−ρ), where α = [ln(x/X1)+(r−σ2
1/2)T ]/(σ1

√
T ), β = [ln(y/X2)+

(r− σ2
2/2)T ]/(σ2

√
T ) [10]. Let ρ be the correlation between the two variables, then

M(α, β; ρ) =
1

2π
√

1− ρ2

∫ α

−∞

∫ β

−∞
exp

[
−x2 − 2ρxy + y2

2(1− ρ2)

]
dxdy.

We computed the numerical solution on uniform grids, h = 300/2n for n = 5, 6, 7,

and 8 on the computational domain Ω = [0, 300] × [0, 300]. For each case, we ran
the calculation to time T = 1 with a uniform time step ∆τ = 0.01 with a given
strike price of X1 = 100, X2 = 100 and cash amount K = 1. The volatilities are
σ1 = 0.3, σ2 = 0.3 with a correlation ρ = 0.5, and the riskless interest rate r = 0.03.
Figure 3 shows the numerical solution at T = 1 case by case. We let e be the matrix
with components eij = u(xi, yj)−Uij and compute its discrete l2-norm of the error,
‖e‖2.
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Figure 3. Numerical solutions at time T = 1 of (a) Case 1, (b) Case
2, and (c) Case 3, respectively.

We test the numerical experiments of different case with three solvers, Bi-CGSTAB,
OSM and MG. To make a fair comparison of these solvers, we match the accuracy
of these solvers by changing iteration parameters.
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Figure 4. CPU times of (a) Case 1, (b) Case 2, and (c) Case 3, respectively.

In this figures, the solid line with triangles, the dash-dot line with squares, and
the dashed line with stars express OSM, BI-CGSTAB, and MG, respectively. Next,
let us check the CPU times to compare efficiency of these solvers. Table 1 also shows
the CPU times and l2 error with each method. We can confirm that OS method has
a linear CPU time cost as the spatial domain is doubled in each direction. Table 2
and Table 3 also show the CPU times and l2 error with Case 2 and Case 3. And
the corresponding results are plotted in Figs. 4(b) and (c), respectively. From all
these results, we can confirm that OS method is faster than other methods under
the same accuracy.

Table 1. (Case 1) Comparison of l2 error and CPU time.

Mesh Bi-CGStab OSM Multigrid

‖e‖2 CPU time ‖e‖2 CPU time ‖e‖2 CPU time
32× 32 0.02181 0.2340 0.02157 0.3744 0.02238 1.3104
64× 64 0.00926 0.9516 0.00930 0.9828 0.01012 3.0576

128× 128 0.00546 6.1308 0.00542 3.7284 0.00499 14.0245
256× 256 0.00216 94.8954 0.00237 15.2257 0.00258 70.8713

5. Conclusion

The main purpose of this paper is to present the performance comparison of finite
difference schemes of the BS equation for stock option pricing. The large linear
system, derived from the discrete BS equation, was solved by biconjugate gradient
stabilized, operator splitting, and multigrid methods. The performance of these
methods was compared for two asset option problems based on two-dimensional BS
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Table 2. (Case 2) Comparison of l2 error and CPU time.

Mesh Bi-CGStab OSM Multigrid

‖e‖2 CPU time ‖e‖2 CPU time ‖e‖2 CPU time
32× 32 0.01458 0.3276 0.01484 0.3900 0.01667 1.0764
64× 64 0.00746 0.9360 0.00738 0.9984 0.00732 2.5896

128× 128 0.00361 5.9436 0.00368 3.8064 0.00362 7.8313
256× 256 0.00204 94.8330 0.00188 15.2257 0.00192 30.9350

Table 3. (Case 3) Comparison of l2 error and CPU time.

Mesh Bi-CGStab OSM Multigrid

‖e‖2 CPU time ‖e‖2 CPU time ‖e‖2 CPU time
32× 32 0.01465 0.1872 0.01478 0.2808 0.01616 1.2948
64× 64 0.00666 0.9516 0.00663 0.9672 0.00705 2.9796

128× 128 0.00367 6.2088 0.00370 3.6816 0.00345 13.8529
256× 256 0.00179 94.9578 0.00170 14.7889 0.00181 70.6841

equations. The numerical results indicated that although Bi-CGSTAB and multigrid
solvers are accurate, they need a lot of computational times. On the other hand,
operator splitting is faster than the other two methods under the same accuracy.
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